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Abstract. Prototype selection is primarily effective in improving the classification performance of Nearest
Neighbor (NN) classifier and also partially in reducing its storage and computational requirements. This paper
reviews some prototype selection algorithms for NN classification and experimentally evaluates their perform-
ance using a number of real data sets. Finally, new approaches based on combining the NN and the Nearest
Centroid Neighbor (NCN) of a sample [3] are also introduced.

1 Introduction

Much of the research work in the frame of supervised
pattern recognition has been almost entirely devoted to the
analysis and characteristics of classification algorithms
and to the study of feature selection methods. Recently,
however, an increasing emphasis is being given to the
evaluation of procedures used to collect and clean the
training sample, a critical aspect for effective automation
of discrimination tasks.

The NN rule [4] is a well-known supervised non-
parametric classifier that combines its conceptual simplic-
ity and an asymptotic error rate conveniently bounded in
terms of the optimal Bayes error. In its classical manifes-
tation, given a set of n previously labeled prototypes or
training set (TS), this classifier assigns any given sample
to the class indicated by the label of the closest prototype
in the TS. More generally, the k-NN rule maps any sample
to the pattern class most frequently represented among its
k closest neighbors.

Nevertheless, the NN classifiers also suffer from
certain drawbacks. The performance of these rules, as
with any non-parametric method, is extremely sensitive to
incorrectness or imperfections in the TS. On the other
hand, its applicability to real-time problems, with a large
set of prototypes of high dimensionality, can become
prohibitive because of the immense computational loads
required for searching the nearest neighbors of each sam-
ple in the TS.

Extensive efforts have been devoted to the improve-
ment of the NN classification rules in various aspects [4].
First, condensed NN rules [5, 12], fast NN search algo-
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rithms [9, 10] and adaptive learning rules [14, 16] try to
alleviate the high computational cost of the NN rules.
Second, alternative distance metrics [19, 22], adaptive
decision rules [13], sample re-combination [11] and edit-
ing [1, 8, 20, 25] contribute to improving the classifica-
tion performance of the NN rules.

Joint use of edited and condensed NN rules, gener-
ally referred to as prototype selection [7], has been pro-
posed to pick out an appropriate subset of prototypes with
computational efficiency and accuracy as ultimate goals

- [6]. While condensing aims at selecting a sufficiently

small subset of prototypes that leads approximately the
same performance than the NN rule using the whole TS,
editing eliminates outliers from the original TS and
“cleans” possible overlapping among regions of different
classes.

Outlier has traditionally been defined as a case that
does not follow the same model as the rest of the data
[24]. Now the term outlier is being employed to cover a
broad range of circumstances reflecting some confusion
among different situations and a lack of rigorous and
unified concept of outlier data. In general, there are three
of these potential situations: noisy or atypical data that can
be produced by errors (measuring, recording, etc) [26],
new unidentified patterns appearing in the classification
phase and that do not belong to any of the classes repre-
sented in the TS [18], and also mislabeled prototypes in
the TS [2].

The present work compares the performance of ex-
isting prototype selection algorithms by running a set of
experiments over several real databases. In particular, this



paper focuses on improving the classification accuracy of
the NN rule by means of editing approaches.

The rest of this paper is organized as follows. The
prototype selection algorithms tested in the.experimental
study are outlined in Section 2. By combining different
neighborhood concepts, new editing approaches are de-
rived in Section 3. Databases and experiments are de-
scribed in Section 4. Next, Section 5 provides the main
experimental results. Finally, some concluding remarks
and future extensions are drawn in Section 6.

2 Algorithms

As already mentioned in Section 1, this work is concerned
with editing algorithms. All these methods are primarily
aimed at improving classification accuracy of the NN rule
by preprocessing the training prototypes. Nevertheless,
they also obtain, as a byproduct, a decrease in the TS size
and accordingly, a reduction in the computational burden
of the classification rule.

In this section, the editing approaches tested in the
empirical study are briefly described:.In particular, these
schemes correspond to the original Wilson’s technique
[25], the unlimited repetition of-Wilson’s editing proposed
by Tomek [23], the all &-NN editing. method [23],
depuration [1], proximity graph:based editing [20], and
the k-NCN editing approach [8].

Wilson’s editing

This corresponds to the first propesal’to edit the NN rule.
In a few words, it consists of applying the k-NN classifier
to estimate the class label of all:prototypes in the TS and
discard those samples whose class-label does not agree
with the class associated with the largest number of the k&
neighbors.

Thus, the Wilson’s editing procedure can be written
as follows:

e Let S = X. (X is the original TS, and S will be the
resulting or edited TS)

¢ For each x, in X do:
a) T=X-{x]}.
b) Find the k-NN of x,in T

c) Discard x, from S if there is a majority of NNs
from a different class.
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Tomek’s editing

This proposal consists of editing the already edited TS and
so on, while prototypes liable to be edited remain in the
TS.

According to the author (and also to a large number
of experimental evaluations), the procedure is always
stopped after a finite number of iterations, because after a
certain number of repetitions, the TS becomes immune to
further applications.

All k-NN editing

This .corresponds to an application of Wilson’s editing
using all the [-NN rules, with / ranging from 1 through k,
for a predetermined value of .

o LetS=X.
e For each x, in X do:
a) T=X-{x}

b) Setflag=1and/=1
c) While flag =1 and I < k+1 do:

1. Find the I-NN of x,in T.

2. Discard x, from S if there is a majority of
NNs from a different class, and set flag = 0.

3. Setl=1+1

Depuration of TS

This is a methodology that can be regarded as a cleaning
process removing some suspicious instances of the TS and
correcting the class labels of some others while retaining
them and accordingly, it is designed to cope with all types
of imperfections of the training instances (mislabeled,
noisy and atypical or exceptional cases).

The method involves the application, only several
times, of the Generalized editing [15] and afterwards, the
employment of Wilson’s technique, perhaps also reiter-
ated. In Generalized editing, two parameters must be
defined: k and k’, in such a way that (k + 1) /2 <k’ <k.

For each prototype x, in the TS, its k& NNs are
searched in the remainder of the TS. If a particular class
has at least k' representatives among those & neighbors,
then x; is labeled according to that class, independently of
its original label. Otherwise, x, is edited (i.e., removed)
from the TS. In short, the procedure looks for modifica-
tions of the training sample structure through changes of
the labels of some training patterns and removal of some
others.



Proximity graph-based editing

In [20] the Gabriel Graph (GG) and the Relative Neigh-
borhood Graph (RNG) are used for editing the NN classi-
fication rule. These are two well-known examples of
proximity graphs that establish a geometrical relation
between a sample and some of its neighbors. In brief, the
simplest editing scheme can be defined as follows:

e Compute the proximity graph (GG or RNG)
corresponding to the given TS.

e Discard those prototypes that are misclassified by
their graph neighbors (that is, pairs of samples that
define the set of edges in the resulting proximity
graph).

k-NCN editing

This is a way of Wilson’s algorithm particularized for the
case of using the k-NCN classification rule [21] to esti-
mate the class label of prototypes.

It is worth mentioning that the k-NCN classifier is
thought to obtain a more accurate information about
prototypes and more specially, for those close to decision
boundaries. In general, this results in a practical
improvement of the corresponding editing preocedure.
The k-NCN editing algorithm consists of the following
steps:

eletS=X.
* For each x, in X do:
a) T=X-{x}.

b) Find the k-NCN of x, in T.

c) Discard x, from S if there is a majority of NCNs
from a different class.

3 A new editing approach

A heuristic alternative to editing the NN rule is here pro-
posed. This scheme tries to jointly use information about
proximity as well as about the spatial distribution of pro-
totypes around a given sample. The aim of this approach
is to obtain a balanced trade-off between the classical
nearest neighborhood and the surrounding neighborhood
represented by the NCNs.

After computing the kK NCNs of a given sample in the
TS, only those whose NN among all prototypes in the TS
has their same class label assigned are considered for
editing. The procedure can be summarized as follows:

oLetS=X
e For each x, in X do:
a) T=X-{x}.

46

b) Find the k-NCN of x, in T.

c) Select the j < k NCNs correctly labeled
according to the NN rule.

d) Discard x, from S if there is a majority of those
J NCNs belonging to a different class.

Alternatively, one might use the general k-NN
decision rule (instead of the particular 1-NN) for editing
the set of the NCNs (Step 2.c of the algorithm).
Nevertheless, it is worth noting that, in general, the use of
the k-NN scheme in the editing procedures does not lead
to a significantly better behaviour than the simple NN
classifier.

4 Experiments

Experiments over nine standard benchmark data sets
taken from the UCI Repository [17] have been carried out
to compare the performance of the editing algorithms
previously introduced. A short description of the corre-
sponding databases is given in Table 1.

Data set No. No. TS Te§t set

classes features size size
Glass 6 9 174 40
Iris 3 4 120 30
Liver 2 6 276 69
Pima 2 6 615 153
Vehicle 4 18 678 168
Vowel 11 10 429 99
Cancer 2 9 546 137
Heart 13 216 54
Wine 3 13 144 34

Table 1 Description of experimental data sets.

Since all these data sets are small, five-fold cross-
validation has been applied to obtain the performance
results. Each initial database has randomly been divided
into training and test samples, as shown in Table 1. Thus
the experiment consists of applying the NN rule to each of
the test sets, where the training portion has been preproc-
essed by using the different editing schemes.

5 Results

Two main aspects are of interest in this section. From -
each trial, the reduction in the TS size and the classifica-
tion accuracy are calculated. The percentage reduction of
training samples gives a direct measure of the amount of
computational savings due to the number of prototypes
resulting from each editing technique. On the other hand,



the recognition accuracy provides a check on the ability of
the algorithms to select the most “efficient” prototypes
(for example, high classification accuracy may result from
retaining more prototypes instead of selecting fewer effi-
cient samples).

In order to balance these two competing goals, a
normalized Euclidean distance between each (reduction,
recognition) pair and the origin (0% reduction, 0%
recognition) has been calculated. Using this measure, the
“best” technique is deemed as the one that produces the
largest distance. Another way of visualizing this is to plot
the recognition accuracy versus the reduction percentage
and look for the point that is closest to the (100%, 100%)
corner.

The k-NCN editing has been tried with increasing
values of the neighborhood & (ranging from 3 through 9),
and the ones leading to the best performance have finally
been included in the tables. On the other hand, the editing
approach proposed here, hereafter namely Edited k-NCN,
has been run with only two different values of the
parameter k (that is, 3 and 5). Finally, the Wilson’s editing
technique and its iterative algorithm (Tomek’s editing)
along with the all <-NN scheme have been used with k = 3
in all experiments.

Table 2 reports the average classification accuracy
obtained by the NN rule applied over the resulting edited
sets. The recognition rate for each entire original TS (i.e.,
no editing) has also been included for comparison

purposes. Values in brackets correspond to the standard
deviation. Highligh indicates the best method for each
experimental database. Analogously, Table 3 represents
the resulting TS size after applying each editing
procedure.

Results in Table 2 show that in general, the best
alternatives for these particular data sets correspond to the
unlimited repetition of Wilson’s technique, &-NCN
editing, depuration and also RNG-based editing. On the
other hand, it seems that the GG-based edited sets suffer
from an important degradation in performance almost
without exception under all the cases, but specially in the
Vowel database. With respect to the recognition accuracy
achieved by the editing algorithm here proposed, it should
be noted that it is very similar to that of the best option in
each database.

Examining the other critical factor of interest (see
Table 3), namely edited set size, the results show that, as
is to be expected, the Tomek’s editing generally obtains
the highest reduction rate: the averaged percentage of
prototypes discarded from the initial TS is about 45%. On
the other hand, the results also indicate that the other
methods are very similar in terms of resulting edited set
size: in particular, all of them provide about 15% - 25%
less reduction than the iterative version of Wilson’s
technique.

Glass Iris Liver Pima Vehicle  Vowel Cancer Heart Wine
Original TS 70.0 96.7 65.2 63.9 64.3 97.6 95.6 58.2 723
(5.30) (1.52) (4.82) (5.70) (1.79) (1.71) (2.49) (6.23) (3.37)
Best k-NCN 68.0 96.0 70.1 74.1 62.7 89.7 96.0 69.6 71.8
(5.79) (134  (6.71) (2.64) (2.16) (421)  (1.90) (3.63)  (3.99)
Wilson (k = 3) 63.0 96.7 69.3 72.0 59.6 86.67 96.0 64.4 71.8
(6.20) 2.11) (6.24) (2.59) (3.16) (6.46) (1.90) (1.39) (8.02)
Repetition (k = 3) 64.5 96.7 71.4 73.2 60.0 95.0 96.5 66.3 72.9
(7.58) 2.37) (8.50) 3.67) (4.20) (11.55) 2.27) (3.04) (7.61)
Edited k-NCN (k = 3) 67.0 96.7 68.1 72.2 61.4 89.7 96.3 67.8 70.0
(5.34) (2.11) (4.85) (3.47) (3.24) 4.21) (2.13) (2.22) (6.81)
Edited k-NCN (k = 5) 65.0 96.7 66.4 73.9 62.5 81.0 96.2 67.4 70.0
(7.07) 2.11) (6.94) (2.45) (1.00) (7.70) (2.45) (1.89) (9.00)
GG 67.0 95.3 69.3 74.1 59.6 614 95.9 67.8 70.0
(5.79) (1.64) 4.71) 3.27) (5.76) 391 (2.00) (5.57) (5.39)
RNG 67.5 90.2 68.1 72.0 63.2 929 96.3 65.9 68.8
(6.52) (1.34) (4.85) (2.35) (2.79) (3.38) (1.67) (3.44) (6.86)
All k-NN (k = 3) 64.2 96.7 68.1 71.7 59.6 86.7 96.3 65.2 67.7
(6.29) (2.36) (7.39) (3.84) (2.36) (7.22) (2.28) 241) (5.5)
Depuration 67.0 96.7 70.3 75.9 61.3 83.2 96.7 69.3 70.6
(k=3,k=2) (5.12) (1.52) (7.15) (2.58) (5.54) (7.91) (2.34) (5.32) (11.76)

Table 2 Classification rates of the NN rule applied to different edited sets.
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Glass Iris Liver Pima  Vehicle Vowel Cancer  Heart Wine
Original TS 174 120 276 615 678 429 546 216 144
Best k--NCN 115.8 115.6 190.8 456.0 422.6 412.8 529.6 147.2 105.6
(5.49) (0.80) (445) (10.14)  (7.96) (3.54) (2.73) (3.87) (2.06)
Wilson (k = 3) 114.8 115.4 176.0 427.8 4232 407.0 529.6 138.2 100.2
(6.43) (1.36) (7.16) (6.43) (8.08) (4.34) (2.06) (0.75) (3.66)
Repetition (k = 3) 76.8 33.0 146.8 338.2 340.2 378.0 321.8 131.6 86.2
(43.44) (47.54) (54.38) (47.74) (46.26) (23.33) (25.98) (6.58) (15.36)
Edited £-NCN (k = 3) 114.6 115.6 176.8 424.0 431.8 412.2 5274 135.2 103.8
(5.75) (0.80) (8.06) (3.74) (5.74) (3.19) (4.03) (3.19) (2.93)
Edited k&-NCN (k= 5) 109.8 116.2 185.6 438.6 437.0 376.6 528.4 139.0 104.2
(6.68) (0.75) (4.45) (3.07) (7.07) (7.00) (3.72) (2.19) (1.94)
GG 105.6 115.2 190.4 472.8 342.8 119.4 530.8 147.8 110.8
(4.32) (1.17) (3.93) (842) (11.14)  (6.53) (1.60) (3.54) (2.23)
RNG 132.2 115.0 195.2 474.6 469.0 397.4 532.0 152.4 118.0
(6.18) (0.63) 6.73) (10.07) (7.64) (3.26) . (2.76) 4.18) (2.61)
All k-NN (k = 3) 111.0 114.6 1454 363.2 377.2 406.4 519.8 115.0 92.8
(6.24) (0.89) (12.95) (10.13) (7.01) (5.03) (5.40) (3.32) (4.15)
Depuration 142.4 35.0 232.0 403.6 601.4 426.0 338.2 183.8 109.8
(k=3,k'=2) (26.34) (47.53) (48.39) (49.55) (18.11) (2.45) (36.96) (12.00) (16.66)
Table 3 Size of edited sets.
Figures 1-a through 1-f visually illustrate the Thus, a certain trade-off between accuracy and TS

percentage reduction versus classification accuracy for
Glass, Vehicle, Vowel, Wine, Pima and Liver databases,
respectively. It is apparent that, in most cases, differences
among the performance of the distinct editing algorithms
are not significant: in fact, all of them achieve a high
enough recognition accuracy, but also retain a
considerable amount of prototypes. This is consistent with
the fact that editing is aimed at improving the NN
classification accuracy, while the TS size reduction can be
understood only as a consequence of the methodology

applied.

Perhaps the most surprising result from the
experiments refers to Figure 1-c. As can be seen, for the
Vowel database, GG editing eliminates a very large
number of prototypes (72.23% reduction). Nevertheless,
as it can be expected, it also suffers from an important
drop in recognition accuracy (61.42%). On the other hand,
for this particular database, all the other editing algorithms
provide a very low reduction rate (5.65%) and a high
enough classification accuracy (89.13%).

6 Conclusions and future extensions

When using a NN classifier, it is necessary to work with a
sufficiently reduced number of prototypes due to practical
reasons. Nevertheless, it is convenient a large TS in order
to approach optimal recognition accuracy. On the other
hand, the presence of mislabeled prototypes can strongly
degrade the classification accuracy.
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size may constitute a good solution for both problems.
Taking into account these two important issues, in the
present paper, some experiments have been carried out
over a number of real data sets using several standard
prototype selection techniques.

the
editing algorithms here tested are marginal. In general, on
the other hand, almost all the schemes retain a very
similar number of prototypes in most cases. Therefore, it
is difficult to conclude the most efficient editing technique
under these particular databases.

Differences in recognition accuracy among

Future work includes investigation of the potential of
editing and condensing tools for achieving even better
performance (that is, reduction rate and recognition
accuracy). On the other hand, another interesting issue to
be further studied refers to the effect of applying different
metrics to various prototype selection methods. This
should help to draw more definitive conclusions with
regard to the benefits of using distinct editing and
condensing techniques.
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