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Abstract. We present an algorithm for computing a robust adaptive polygonal approximation of an implicit curve
in the plane. The approximation is adapted to the geometry of the curve because the length of the edges varies with
the curvature of the curve. Robustness is achieved by combining interval arithmetic and automatic differentiation.
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1 Introduction

An implicit object is defined as the set of solutions of an
equation f(p) = 0, where f:2 C R® — R. For well-
behaved functions f, this set is a surface of dimensionn —1
in R™. Of special interest to computer graphics are implicit
curves (n = 2) and implicit surfaces (n = 3), although
several problems in computer graphics can be formulated
as high-dimensional implicit problems [12, 17].

Applications usually need a geometric model of the
implicit object, typically a polygonal approximation. While
it is easy to compute polygonal approximations for para-
metric objects, computing polygonal approximations for
implicit objects is a challenging problem for two main rea-
sons: first, it is hard to find points on the implicit object [9];
second, it is hard to connect isolated points into a mesh [8].

In this paper, we consider the problem of computing a
polygonal approximation for a curve C given implicitly by
a function f: 2 C R? — R, that is,

C ={(z,y) € R?: f(z,y) = 0}.

In Section 2 we review some methods for approximating
implicit curves, and in Section 3 we show how to compute
robust adaptive polygonal approximations. By “adaptive”
we mean two things: first, {2 is explored adaptively, in the
sense that effort is concentrated on the regions of Q that
are near C; second, the polygonal approximation is adapted
to the geometry of C, having longer edges where C is flat
and the curvature is low, and shorter edges where C bends
more and the curvature is high. By “robust” we mean that
the algorithm finds all pieces of C in §2 (implicit curves can
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Figure 1: Our algorithm in action.

have several connected components) and that it estimates
correctly the variation of curvature along C. In other words,
the computed approximation captures efficiently both the
topology and the geometry of C. Adaption and robustness
are achieved by combining interval arithmetic and auto-
matic differentiation, which are explained in Section 3.

An example of what our algorithm does is shown in
Figure 1 for the ellipse given implicitly by 22/6 + y% = 1.
Further examples are given in Section 3.6 (see Figure 3).



2 Approximation methods for implicit curves

Approximating a curve C given implicitly by f:Q — R is
a hard problem mainly because it is hard to find just where
in Q that C lies: it can be anywhere, and even nowhere,
in £, and it can have several components, of varying size,
some of which may be closed and nested inside each other.

The classical method for avoiding chasing C blindly
inside 2 is to decompose 2 into a grid of small rectangular
or triangular cells and then traverse the grid and locate C
by identifying those cells that intersect C. This process is
called enumeration.

The two main problems with enumeration are: how
to select the resolution of the grid, so that we do not miss
small components of C; and how to decide whether a cell in
the grid intersects C. One simple test for the second prob-
lem is to check the sign of f at the vertices of the cell. If
these signs are not all equal, then the cell must intersect C
(provided f is continuous, of course). However, if the signs
are the same, then we cannot discard the cell, because it
might contain a small closed component of C in its interior,
or C might enter and leave the cell through the same edge.

In practice, the simplest solution to both problems is to -

use a fine regular grid and hope for the best. Figure 2 shows
an example of such full enumeration on a regular rectan-
gular grid. The enumerated cells are shown in grey. The
points where C intersects the boundary of those cells can
be computed by linear interpolation or, if higher accuracy
is desired, by any other classical method, such as bisection.
Note that the output of an enumeration is simply a set of
line segments; some post-processing is needed to arrange
these segments into polygonal lines.

Full enumeration works well-—provided a fine
enough grid is used — but it can be very expensive, because
many cells in the grid will not intersect C, specially if C has
components of different sizes (as in Figure 2). If we take
the number of evaluations of f as a measure of the cost of
the algorithm, then full enumeration will waste many eval-
uations on cells that are far away from C. Typically, if the
grid has O(n?) cells, then only O(n) cells will intersect C.
The finer the grid, the more expensive full enumeration is.

Another popular approach to approximating an im-
plicit curve is continuation, which starts at a point on the
curve and tries to step along the curve. One simple contin-
uation method is to integrate the Hamiltonian vector field
(~0f/dy,df0x), combining a simple numerical integra-
tion method with a Newton corrector [2]. Another method
is to follow the curve across the cells of a regular cellular
decomposition of €2 by pivoting from one cell to another,
without having to compute the whole decomposition {12].

Continuation methods are attractive because they con-
centrate effort where it is needed, and may adapt the com-
puted approximation to the local geometry of the curve, but
they need starting points on each component of the curve;
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Figure 2: Full enumeration of the curve given implicitly by
y? — 2% + & = 0 in the square Q = [~2,2] x [-2,2].

these points are not always available and may need to be
hunted. Moreover, special care is needed to handle closed
components correctly.

What we need is an efficient and robust method that
performs adaptive enumeration, in which the cells are
larger away from the curve and smaller near it, so that com-
putational effort is concentrated where it is most needed.
The main obstacle in this approach is how to decide reli-
ably whether a cell is away from the curve. Fortunately,
interval methods provide a robust solution for this problem,
as explained in Section 3. Moreover, by combining interval
arithmetic with automatic differentiation (also explained in
Section 3), it is possible to reliably estimate the curvature
of C and thus adapt the enumeration not only spatially, that
is, with respect to the location of C in 2, but also geomet-
rically, by identifying large cells where C can be approx-
imated well by a straight line segment. The goal of this
paper is to present a method for doing exactly this kind of
completely adaptive approximation, in a robust way.

3 Robust adaptive polygonal approximation

As discussed in Section 2, what we need for robust adaptive
enumeration is some kind of oracle that reliably answers
the question “Does this cell intersect C?”. Testing the sign
of f at the vertices of the cell is an oracle, but not a reli-
able one. It turns out that it is easier to implement oracles
that reliably answer the complementary question “Is this
cell away from C?”. Such oracles test the absence of C in



the cell, rather than its presence, but they are just as effec-
tive for reliable enumeration. We shall now describe how
such absence oracles may be implemented and how to use
them to compute adaptive enumerations reliably.

3.1 Inclusion functions and adaptive enumeration

An absence oracle for a curve C given implicitly by
f:Q C R? — R can be readily implemented if we have an
inclusion function for f, that s, a function F' defined on the
subsets X of Q and taking real intervals as values such that

F(X)2 f(X) = {f(z,y) : (z,y) € X}.

In words, F(X) is an estimate for the complete set of values
taken by f on X. This estimate is not required to be tight:
F(X) may be strictly larger than f(X). Nevertheless, even
if not tight, estimates provided by inclusion functions are
sufficient to implement an absence oracle: if 0 ¢ F(X),
then 0 ¢ f(X), that is, f(z,y) # O for all points (z,y)
in X, and X does not intersect C. Note that this is not an
approximate statement: 0 ¢ F'(X) is a proof that X does
not intersect C.

Once we have a reliable absence oracle, it is simple to
write a reliable adaptive enumeration algorithm as follows:

explore(X):

if 0 ¢ F(X) then
discard X

elseif diam(X) < ¢ then
output X

else
divide X into smaller pieces X;
for each 4, explore(X,)

Starting with a call to explore(£2), this algorithm performs
a recursive exploration of 2, discarding subregions X of
when we can prove that X does not contain any part of
the curve C. The recursion stops when X is smaller than a
user-selected tolerance €. The output of the algorithm is a
list of small cells whose union is guaranteed to contain the
curve C.

In practice, Q2 is a rectangle and X is divided into rect-
angles too. A typical choice is to divide X into four equal
rectangles, thus generating a quadtree [27,28], but it is also
common to bisect X perpendicularly to its longest size, or
to alternate the directions of the cut.

3.2 An algorithm for adaptive approximation

The algorithm above is only spatially adaptive, because all
output cells have the same size. Geometric adaption re-
quires that we estimate how the curvature of C varies inside
a cell. This can be done by using an inclusion function G
for the (normalized) gradient of f, because this gradient is
normal to C. Note that G has two components: one for

12

0f/0x and one for 3f /Qy; the value G(X) is thus a rect-
angle (i.e., the product of two intervals). When G(X) is
small, the normal to C is not changing much inside X, and
so C is approximately flat in X, which means that C can be
approximated well by a straight line segment in X.

With the inclusion of estimates for the curvature and
an additional user-selected tolerance 4, the algorithm above
changes from adaptive enumeration to adaptive approxima-
tion with line segments:

explore(X):

if 0 ¢ F(X) then
discard X

elseif diam(X) < ¢ or diam(G(X)) < 4 then
approx(X)

else
divide X into smaller pieces X;
for each i, explore(X;)

This algorithm works essentially like to previous one, ex-
cept that now approx(X) is called to approximate C in-
side X by a segment. This is done by computing and join-
ing the points where C intersects the boundary of X.
Finding these intersection points reduces to finding the
zero of a single-variable real function 4 in an interval [a, b]
such that the signs of h(a) and h(b) are different. Any clas-
sical method can be used for this, such as bisection, New-
ton’s method, or Brent’s method. The important point is to
use the same method everywhere and to arrange the com-
putation such that it gives the same result at neighboring
cells, even if those cells do not share complete edges. If
C only cuts cell edges once, then these precautions guaran-
tee that the computed line segments can be glued together

" into a consistent polygonal approximation for C. Linear in-

terpolation is not recommended for computing those zeros,
because it will probably generate inconsistent results.

We shall now briefly describe interval arithmetic,
the natural tool for implementing inclusion functions, and
automatic differentiation, the natural tool for computing
gradients.

3.3 Interval arithmetic

Interval arithmetic was originally introduced as a tool to
improve the reliability of numerical computations through
automatic error control [24]. Since then, it has been recog-
nized as the simplest technique for studying the global be-
haviour of real functions, and as the natural tool for imple-
menting inclusion functions. Interval arithmetic has been
used successfully in several graphics problems [5,11,13,22,
25,29,35], including the implementation of absence oracles
for adaptive enumeration of implicit curves [23, 30, 33].
Interval arithmetic can compute robust bounds for the
range of functions by representing ranges of values as inter-
vals and providing interval versions of all basic arithmetic



operations and elementary functions. Interval operations
must generate intervals that are guaranteed to contain all
the values obtained by operating with all the numbers in
the input intervals. This is easy to do for the elementary
operations and functions [24].

Implementing interval arithmetic in floating-point ma-
chine arithmetic is not difficult, although care has to be
taken with.roundings [31]. There are several packages for
interval arithmetic available in the Internet [20]. Specially
convenient are packages in languages that allow operator
overloading, such as C++ and Fortran 90, because then al-
gebraic.expressions can be written in the familiar way and
inclusion functions are automatically built by the compiler.
When operator overloading is not available, inclusion func-
tions can be built with the help of a precompiler [7].

3.4 Automatic differentiation

To estimate how the curvature of the implicit curve C varies:

inside a cell X of €2, we need to compute and estimate the
gradient of f inside X. We have seen that interval arith-
metic is a good tool for estimating functions, but how do
we compute the gradient?

One answer is to use symbolic differentiation, which
manipulates an algebraic expression for f into algebraic
expressions for 8f/0x and Of/dy. Another answer is
to use numerical differentiation, which computes approx-
imations for 8f/0x and Jf/0y based on Newton quo-
tients or higher-order divided differences. Both techniques
are fairly simple to implement, but they are not good so-
lutions in general: Symbolic differentiation can generate
very long expressions, specially when the expression for f
contains many common sub-expressions— the evaluation
of the derivative expressions thus obtained becomes slow.
Numerical derivatives are fast to compute but notoriously
ill-conditioned, and are best avoided.

It happens that there is a computational technique that
combines the speed of numerical differentiation with the
accuracy of symbolic differentiation: it is called automatic
or computational differentiation. This simple technique has
been rediscovered many times [19,24,26,36], but is still not
well known; in particular, applications of automatic differ-
entiation in computer graphics are still not common [21].

Derivatives computed with automatic differentiation
are not approximate: the only errors in their evaluation are
round-off errors, and these will be significant only when
they are significant for evaluating the function itself.

Like interval arithmetic, automatic differentiation is
easy to implement [18, 36]: instead of operating with
single numbers, we operate with tuples of numbers
(uo0,u1, ..., Un), Where ug is the value of the function and
u; is the value of its partial derivative with respect to the i-th
variable. We extend the elementary operations and func-

13

tions to these tuples by means of the chain rule and the
elementary calculus formulas. Once this is done, deriva-
tives are automatically computed for complicated expres-
sions simply by following the rules for each elementary
operation or function that appears in the evaluation of the
function itself. In other words, any sequence of elementary
operations for evaluating f(z1,...,x,) can be automati-
cally transformed into a sequence of tuple operations that
computes not only the value of f ata point (z1,...,z,) but
also all the partial derivatives of f at this point. Again, op-
erator overloading simplifies the implementation and use of
automatic differentiation, but it can be easily implemented
in any language [18], perhaps aided by a precompiler [7].

Here are some sample automatic differentiation
formulas forn = 2:

Il

(w0, w1, u2) + (vo,v1,v2) (uo + vo,u1 + v1,uz + v2)

(w0, u1,u2) - (vo,v1,v2) = (Uovo, UoV1 + Vou1, Uov2 + Vouz)

sin(up, u1,u2) = (sinug,u1 cosug, Uz cosup)

exp(uo, u1,u2) = (exp uo, u1 eXp Ug, U2 €XPUQ)

Note how values on the left-hand side are reused in the com-
putation of partial derivatives on the right-hand side. This
makes automatic differentiation much more efficient than
symbolic differentiation: several common sub-expressions
are identified and evaluated only once.

We can take the formulas for automatic differentiation
and interpret them over intervals: each u; is now an in-
terval, and the operations on them are interval operations.
This combination of automatic differentiation with interval
arithmetic allows us to compute interval estimates of partial
derivatives automatically, and is the last tool that we needed
for the adaptive approximation algorithm of Section 3.2.

3.5 Implementation details

We implemented the algorithm described in Section 3.2
in C++, coding interval arithmetic routines from scratch and
taking the automatic differentiation routines from the book
by Hammer et al. [15].

To test whether the curve is flat in a cell X, we com-
puted an interval estimate for the normalized gradient of f
inside X. This gave a rectangle G(X) in [-1,1] x [-1,1].
The test diam(G(X)) < & was implemented by testing
whether both sides of G(X') were smaller than §. This is not
the only possibility, but it is simple and worked well, except
for the non-obvious choice of the gradient tolerance 4.

Our implementation of approx(X ) computed the inter-
section of C with a rectangular cell X by dividing X along
its main diagonal into two triangles, and using classical bi-
section on the edges for which the sign of f at the vertices
was different. As mentioned in Section 3.2, this produces a
consistent polygonal approximation, even at adjacent cells
that do not share complete edges.



If the sign of f was the same at all the vertices of X,
then we simply ignored X; this worked well for the exam-
ples we used. If necessary, the implementation of approx
may be refined by using the estimate G(X) to test whether
the gradient of f or one of its components is zero inside X.
If these tests fail, then X can be safely discarded because
X cannot contain small closed components of C and C can-
not intersect an edge of X more than once: closed compo-
nents must contain a singular point of f, and double inter-
sections imply that 3f/dx or df/Jy vanish in X. We did
not find these additional tests necessary in our experiments.

3.6 Examples of adaptive approximation

Figure 3 shows several examples of adaptive approxima-
tions computed with our program. The white cells of many
different sizes reflect the spatial adaption. The grey cells of
many different sizes reflect the geometric adaption. Inside
each grey cell, the curve is approximated by a segment.
The last two curves have complicated expressions, and
the quadtree is too refined near the curves, making it hard to
see the polygonal approximation. For this reason, we only
show the leaves of the quadtree in these two examples.

4 Related work

Early work on implicit curves in computer graphics concen-
trated on rendering, and consisted mainly of continuation
methods in image space. Aken and Novak [1] showed how
Bresenham’s algorithm for circles can be adapted to ren-
der more general curves, but only gave details for conics.
Their work was later expanded by Chandler [6]. These two
papers contain several references to the early work on the
rendering problem. More recently, Glassner [14] discussed
in detail a continuation algorithm for rendering.

Special robust algorithms have been devised for alge-
braic curves, that is, implicit curves defined by a polyno-
mial equation. One early rendering algorithm was proposed
by Aron [3], who computed the topology of the curve us-
ing the cylindrical algebraic decomposition technique from
computer algebra. He also described a continuation algo-
rithm that integrates the Hamiltonian vector field, but is
guided by the topological structure previously computed.
More recently, Taubin [34] gave a robust algorithm for ren-
dering a plane algebraic curve. He showed how to compute
constant-width renderings by approximating the Euclidean
distance to the curve. His work can be seen as a specialized
interval technique for polynomials.

Dobkin et al. [12] described in detail a continuation
method for approximating implicit curves with polygonal
lines. Their algorithm follows the curve across a regular
triangular grid that is never fully built, but is instead tra-
versed from one intersecting cell to another by reflection
rules. Since the grid is regular, their approximation is not
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geometrically adaptive. Moreover, the selection of the grid
resolution is left to the user and so the aliasing problems
mentioned in Section 2 may still occur.

Suffern [32] seems to have been the first to try to re-
place full enumeration with adaptive enumeration. He pro-
posed a quadtree exploration of the ambient space guided
by two parameters: how far to divide the domain without
trying to identify intersecting cells, and how far to go before
attempting to approximate the curve in the cell. This heuris-
tic method seems to work well, but of course its success de-
pends on the selection of those two parameters, which must
be done by trial and error.

Shortly afterwards, Suffern and Fackerell [33] applied
interval methods for the robust enumeration of implicit
curves, and gave an algorithm that is essentially the one de-
scribed in Section 3.1. Their work is probably the first ap-
plication of interval arithmetic in graphics (the early work
of Mudur and Koparkar [25] seems to have been largely
ignored until then).

In a course at SIGGRAPH’91, Mitchell [23] revisited
the work of Suffern and Fackerell [33] on robust adaptive
enumeration of implicit curves, and helped to spread the
word on interval methods for computer graphics. He also
described automatic differentiation and used it in ray trac-
ing implicit surfaces.

Snyder [29, 30] described a complete modeling sys-
tem based on interval methods, and included an approxima-
tion algorithm for implicit curves that incorporated a global
parametrizability criterion in the quadtree decomposition.
This allowed his algorithm to produce an enumeration that
has final cells of varying size, but the resulting approxima-
tion is not adapted to the curvature.

Hickey et al. [16] described a robust program based on
interval arithmetic for plotting implicit curves and relations.

Figueiredo and Stolfi [10] showed that adaptive enu-
merations can be computed more efficiently by using tighter
interval estimates provided by affine arithmetic.

5 Conclusion

We have described an algorithm for robust adaptive approx-
imation of implicit curves. As far as we know, this is the
first algorithm which computes a reliable enumeration that
is both spatially and geometrically adaptive.

The natural next step in this research is to attack im-
plicit surfaces, which have recently become again an active
research area [4]. The ideas and techniques presented in
this paper are useful for computing robust adaptive approx-
imations of implicit surfaces. However, the solution will
probably be more complex, because we face more difficult
topological problems, not only for the surface itself but also
in the local approximation by plane polygons.
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Figure 3: Examples of adaptive approximation. Il
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Figure 3: Examples of adaptive approximation (cont.). (L =219, &=0.99)
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