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Abstract. This paper proposes an approach for color segmentation which is an alternative to the search of a total
order in the color space. Instead of looking for a total order, we look for a suitable metric that defines a color
gradient, which is a fundamental step of the morphological segmentation paradigm.

1 Introduction

An important step in morphological segmentation is to en-
hance the edges of the objects in the image to be segmented.
After edge enhancement, the morphological segmentation
paradigm can be applied. For grayscale images, the Mor-
phological Gradient [1, 2] is a very good option. The re-
sult of this operator is a grayscale image, where each point
is the difference between the maximum and the minimum
graylevels of the image inside a structuring element (i.e.,
a finite subset of the domain). Therefore, the gradient op-
erator enhances the differences between pixels inside the
structuring element.

The detection of edges in color images is easier for
the human eye, because there are much more dissimilar-
ity information. However, the design of image processing
tools to enhance edges in color images is much more com-
plex. The natural dissimilarity measure in grayscale images
is just the difference of intensities between pixels, while in
color images a measure of the intuitive notion of the dis-
similarity between colors is necessary. Unfortunately, such
metric is unknown.

Even though the color space can be seen as a complete
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lattice, the order relation is not total and if one imposes a
total order, it will not be natural for the human eye. In other
words, the human eye does not objectively compare two
colors, for instance, red and blue, and decides which one is
higher.

The main objective of this paper is not to look for
a total order relation in the color space like other related
works [3, 4], but to look for suitable metrics to compute
a gradient for color images. We believe this approach is
more sound because it does not imposes any artificial order
relation, but try to keep the intuitive notion of dissimilarity
between colors.

Following this introduction, Section 2 presents color
images and discusses the main problem related with the def-
inition of color image operators. Section 3 presents several
definitions of color gradients and their applicability. Sec-
tion 4 reviews the morphological segmentation paradigm.
Section 5 presents some comparisons between the defined
gradients. Section 6 discusses some directions for future
research.

The color images shown in this paper are available at
our web site: http://www.vision.ime.usp.br/demos.



2  Color Images and Space Models

This section characterizes color images, recalls some color
image models and discusses the root of the major problem
related to color image operators definition.

Let Ly, Ly. ..., Ly, be totally ordered complete lat-
tices (also called chains) {2]. For instance: a subset of Z,
or a closed subset of R are chains. Let \/ denote the supre-
mum, or maximum, and A the infimum, or minimum, op-
erations in chains. Let L be the Cartesian product of L,
Ly..,Ly,le,l€L<<=]= (ll,lg,...,lm), l; € L;,
i={1,...,m}.

Let E be a non empty set that is an Abelian group
with respect to a binary operation denoted by +. A map-
ping £ from E to L, 1(2) = (fi(2), fa(2), .- -, fm(2)),
fi: E — L;and z € E is called a multivalued or mul-
tispectral image. The mappings f; are called bands of the
image. A color image is an example of a multivalued func-
tion where L = Ly x Lo x Lg is the representation of the
colors under a certain color space model (a coordinate sys-
tem where each point represents a unique color) {5, 6]. Let
Fun[E, L] denote the set of all mappings from E to L, i.e.,
all the possible color images.

Three different color space models are used in this
paper: RGB (Red, Green and Blue), IHS (Intensity, Hue
and Saturation) and YIQ (the usual N.T.S.C. transmission)
color coordinate systems.

The RGB system is a cube defined in a Cartesian sys-
tem. This cube is defined by three subspaces related to one
of the three primary colors, red, green and blue, and the
pure representation of these colors are located at three cor-
ners of the cube. The other corners represent the inverse
colors cyan, magenta and yellow, plus the white and black.
Generally, one color is represented by a point inside this
cube.

The IHS system is defined by a coordinate transforma-
tion of the RGB system [6]. This color space is composed
by three attributes: Intensity (holds the luminosity informa-
tion), Hue (describes uniquely a color in its pure form; for
example, the red color without any information from other
attributes) and Saturation (measures the amount of white
light mixed with pure colors).

The YIQ system is used in the known N.T.S.C. color
television standard. The Y value is the luminance of a color.
The I and Q values jointly describe the hue and saturation
attributes of a color.

From now on, let L1, L, and L3 be three generic chains
and L be their Cartesian product. Let < be an order relation
over L such that [ < [’ if and only if each component of I’
is greater than the correspondent component of I, i.e., ! < I’
= (L <ULl <ULl < 1), forany I, € L.

The set L with the order relation < form a lattice struc-
ture [2). The supremum (respec., infimum) of { and I, 'Y I
(respec. I A1"), (I,I' € L), is the supremum (respec., infi-

317

mum) of its components, i.e., [Y1' = ([ VI}, Vi), I3V 1)
(respec., I\ = (L AL L AL I3 ALE))

Even though L is a complete lattice, i.e., there exists an
order relation between its elements, this order is not total.
Some works in the literature [3, 4] imposes a total order
to this lattice, but a total order here will not be natural in
the sense that it will not reflect the correct perception of
the human eye. However, when the order is not total, the
supremum and infimum of two colors [ and I’ ({,I’ € L)
may be neither [ nor !’ as is the case of a chain like the
graylevel range. This is one of the problems with color
image operators: extra colors can be created in the process
of transforming a color image into another. For instance,
the yellow color is the “supremum” between red and green
ones.

For segmentation purposes, we use the color informa-
tion for finding markers and enhance edges. To enhance
edges we use suitable color metrics to define color gradi-
ents, which transforms the color image into a graylevel one.

3 Gradient Operators for Color Images

In this section we present several definitions of gradients
for color images and a discussion of their applicability.

Let f be a color image, i.e., f € Fun[E, L], where
EcZxZandL = K x K x K, if f is in the RGB or
YIQ color models; or L = K x © x K, if f is in the IHS
color model (K =[0,1,2,3,...,k — 1] and © = [0, 359)]).

Let z € E. The translation of B C FE by z, denoted
B;,isgivenby B, = {y€ E: (y — z) € B}.

The following operator definitions are morphological
gradients.

Definition 3.1 Given g € Fun[E, K], the gradient of g,
Vi(g), is given by:

Vgl(g) =dp(g) —eB(g), (0

where § and € are, respectively, the morphological dilation
and erosion [1, 2], and B C E is the structuring element
of those operators.

The result of these operators is an image where each point
is the maximum difference of graylevel inside B.

Definition 3.2 Given g € Fun[E, K), the internal gradi-
ent of g, Vi, (g), is given by:
Vis(9) =g -e5(9), 2)

where € is the morphological erosion and B C E'is a struc-
turing element.

These two definitions make it possible to define two color
gradients.



Definition 3.3 Given f € Fun[E, L), the color gradient |
of f, VL), is given by:

VL) = V{Vs(f), Vs(£), Vs(f)}, @)
where V g(e) is the morphological gradient and B C E is
a structuring element.

The result of this color gradient is a graylevel image where
each point is the maximum of the maximum difference of
graylevel in B for each band of the color image.

Definition 3.4 Given f € Fun|E, L], the color gradient Il
of f, VE(F), is given by:

VE() = \{V(£), V() Va(f)} @)
where Vi; () is the internal gradient and B C E is a struc-
turing element.

The edges that result from these operators are the supre-
mum of the largest edges for each band. Therefore, the
segmentation from these gradients can give poor results if
the color image is too noisy.

The next two definitions treat color pixel values as vec-
tors in the color space.

Definition 3.5 Let L be a lattice as defined in section 2, the
norm, or distance 111 of a colorl € L is given by:

drrr(l) = (12 + 3+ 12)3 ). )
where |p| means the floor of the value of p [7].

Definition 3.6 Let L be a lattice as defined in section 2, the
color distance IV between l and l' (1,I' € L) is given by:

= Vil -

The next two gradients are based on the norm and on
color distances.

drv (1,1 Ll =Bl s 131} (6)

Definition 3.7 Given f € Fun[E, L), the color gradient
IIT of f, VEL(F), is given by:

V(=)

wherew = (fi(ym)— fr(ym), fo(ym)—f2(ym), fa(ynm)—
f3(ym)), ym is the point such that dirr(f(yn))
\{9 dr11(f(y)), Yym is the point such that drrr(f(ym))
yEB.
A dirr(f(y)) and B C E is a structuring element cen-
yE x
tered at the origin of E.

=dr1(u), Q)
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Definition 3.8 Given f € Funl|E, L), the color gradient
IV of f, VIV (f), is given by:

\ drv(f(z), f)),

YyEB;

VE (=) = ®)

where B C E is a structuring element centered at the ori-
ginof E.

The next definition is useful for gradients computed
under IHS color system. Since intensity and saturation are
represented by functions ¢ € Fun[E, K|, their gradients
can be computed by V(). However, this is not the case
for hue, whose representation is given by a function A €
Fun[E,Q]. In order to compute a gradient for hue, it is
necessary to define a metric function for it.

Definition 3.9 Let 61,60, € ©O. The hue distance between
6, and 05 is given by:

dr(61,62) = [ A\ {|61 — 02,360 ~ |61 — O2[}] .
The distance introduced above returns an integer value be-
tween 0 and 180. In order to compute the proposed gra-
dient, these values will be normalized to K. Let mg :

[0,180] — [0, k — 1] be the normalization function.

)

Definition 3.10 Given an image h € Fun(E,®)], the an-
gular gradient Vg (h), Vg : Fun[E,®] = Fun[E, K],
is given by, forall x € E,

Ve (k) (z) = {BV o dn(h(z), h(y))
ye{B:—{z
A dn(h(z), A(y)))-

y€{B:—{z}}

m (
(10)

where B C E is a structuring element centered at the ori-
ginof E.

Let p,, pp and g, be three integers. The following
gradient is defined as a linear combination of the morpho-
logical gradients for I and S with the angular gradient for
H. The coefficients of the linear combination are used to
enhance or to obscure the peaks of a gradient image.

Definition 3.11 Given f € Fun[E, L] in the IHS color
model. The color gradient V, VV (f), VV : Fun|[E, L] -
Fun|E,Z), is defined by:

VYV () = taVa(fi) + 1 Ve (f2) + 1. Va(fa),

where fy, fo and f3 repfesenz respectively the I, H, S color
bands and B C E is a structuring element centered at the
origin of E.

an

The color gradient introduced above is called sum of
weighted gradients because each gradient is scaled in order



to improve or decrease the weight in the sum. For example,
on images where the hue information is the most important,
the hue gradient could give a good result by itself. However,
in some cases it is not sufficient to enhance the border be-
tween objects with similar hues; it could be necessary to
weight, for example, the saturation gradient in order to dis-
tinguish the borders. The linear combination of gradients to
enhance edges on color images is also valid and should be
tested under other color models.

Transforming the coordinates from RGB to YIQ and
taking only the Y component of the image (which holds
the graylevel information) one can use the morphological
gradient on this band to define another gradient.

Definition 3.12 Given an image f € Fun[E,L] in the
YIQ color model, the gradient VV!, VY1 : Fun[E, L] —
Fun[E, K), of f is given by:

VY1 (f) = Ve(f)

where B C FE is a structuring element centered at the ori-
ginof E.

12)

4 Beucher-Meyer Paradigm

Image segmentation in the context of Mathematical Mor-
phology is usually done by a powerful segmentation method
that finds exact borders of specified objects. This method
simplifies the segmentation process reducing the problem
of segmenting objects directly to the problem of finding
markers for the specified objects [8, 9].

Finding the borders of the objects one wants to seg-
ment using the watershed operator [10, 11, 12] is the base
of the paradigm. In order to select the desired borders and
to avoid the known over-segmentation effects [8, 12], a pre-
vious preprocessing based on connected filters [13] (which
do not deform the borders) is usually applied.

Borders of colored objects are discontinuities between
neighbor pixels in the color space. These borders can be
detected using the color gradients presented above. As the
graylevel gradient, they are also very sensitive 10 noise in
the image, i.e., they enhance the transitions due to the bor-
ders of the objects and also the transitions due to noise.
Therefore the gradient image is usually a noisy image in the
sense that it carries more information than it is necessary.
The consequence is that the result of the watershed operator
to the gradient image is usually over-segmented {12, 9, 14].
The solution is already classical: to eliminate the borders
one does not want by applying an operator that changes the
homotopy [1] of the gradient function [8, 9, 14].

Given an image f, the homotopy operator, is a fil-
ter {1, 15, 14] that changes only the regional minima (16,
1, 15) of f (there is no modification on the regional max-
ima [16, 1, 15]). Hence, one can say that it changes the
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homotopy tree of f because it changes the low homotopy
of f [16]. This property is important because it guarantees
that the watershed lines found in the filtered image are a
subset of the watershed lines found in the gradient image,
i.e., no regional maximum is added, only regional minima
are suppressed.

After the application of that filter on the gradient im-
age, the watershed operator finds only the borders of the
objects one wants to segment. This method is known as
“Beucher-Meyer paradigm” [8].

5 Experimental Results

In this section, we discuss the application of Beucher-Meyer
paradigm using the gradients presented in Section 3. Sev-
eral experiments are shown with various color images in
order to compare the effects of the gradients in the result of
the segmentation. The quality of each experiment is quan-
tified visually following two criteria: (a) how much the wa-
tershed lines extends away from the object borders, and (b)
how much the watershed lines are contained in the object to
be segmented, i.e, the object is not entirely segmented.

The goal in the first experiment is to segment the red
ball (Fig. 1a). An inside marker is assigned to this ball,
as well as, an external marker (Fig. 1b) which are used to
apply the paradigm. There are several colored balls in the
image and the borders of the balls will be enhanced dis-
tinctly for each gradient as the experiments show. For all
the following experiments, Gradients I, IT and IIT are ap-
plied on RGB images; Gradients IV and V are applied on
IHS images; and Gradient VI is applied on YIQ images.

Gradient 1 (Fig. 2a) provides a good border enhance-
ment, but in some cases it misses some important borders.
The resulting segmentation (Fig. 2b) is an example where
part of the correct border is misplaced (it segments part of
the orange ball).

Gradient II (Fig. 2¢) is better than I but the result of
the segmentation (Fig. 2d) is still wrong in the sense that
the watershed line is larger than the ball.

Gradient III (Fig. 2e) is better that II but some small
shadows still appear (Fig. 2f).

The same problem reported with gradient I happens
with gradients IV and V (Fig. 2g and Fig. 2i). For gradient
V, when the same weight, g, = up = g = 1, is given
for each gradient, the information of each gradient is not
sufficient to enhance a border between the red and the or-
ange ball (Fig. 2i) and these objects are segmented as one
(Fig. 2j). This occurs because the hue information is the
most important in the process of segmenting the red ball
for this image but the red and the orange balls have similar
hues.

The resulting segmentation using gradient V can be
fixed by a weight adjustment in the saturation (g, = 10



(@) (b)
Figure 1: (a) Original image. (b) Markers.

and p, = pp = 1). Figure 2k shows the gradient V with
the new weighting. The result of the segmentation after this
weighting is shown in Fig. 21. Notice the border between
the red and the orange balls.

Gradient VI (Fig. 2m) gives a good result but, as I, II
and III, some small shadows still appear (Fig. 2n).

Figure 3a shows another image for which the experi-
ment is repeated. There is only one ball, but the image has
some interesting characteristics. Besides the existence of
two shady regions, the image is blurred. Again, the internal
and external markers are provided (Figure 3b).

All color gradients enhance well the borders (Fig. 4a,
¢, e, g 1, k, m) and their respective segmentations (Fig. 4
b, d, f, h, j, 1, n) are good, despite the location of the ball
around a blurred region with high luminosity. Visually, gra-
dient V with the same weight g = up = p. = 1 for
all the bands (Fig. 3i) and with weighting . = 10 and
Pa = ps = 1, as before (Fig. 3k), are the ones that better
enhance the border of the red ball (Fig. 3j and Fig. 3], re-
spectively). This last is visually almost perfect. For thirty
three different images similar to these two presented, gradi-
ent V makes very few mistakes in relation to the others.

The last experiment we show is done with an image of
better visual quality. Figure 5 shows an image of colored
jelly beans and Fig. 6 shows the markers used to segment
the green beans.

Figures 7, 8, 9, 10, 11, 12 and 13 show the result of
the segmentation when gradients I, II, III, IV, V with same
weights (g = pp = pe = 1), V with weights p, = 0,
py = 1 and p, = 0, and VI, respectively, are applied. All
segmentations apparently have errors but gradient V with
weights g, = 0, pp = 1 and g, = 0 is the most coherent
because there are green beans below the marked ones, that
are segmented together, giving the impression that the seg-
mentation is wrong. Actually, there are fewer markers than
necessary.

6 Conclusion

The color image segmentation problems can be solved by
Beucher-Meyer paradigm if we use a suitable color metric
~ todefine a color gradient. Several color gradients have been
defined and tested in conjunction with the paradigm. The
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Figure 2: Color gradient and watershed lines.
(a-b) gradient I. (c-d) gradient II. (e-f) gradient
IIL. (g-h) gradient IV. (i-j) gradient V. (k-1) gra-
dient V (weighted). (m-n) gradient VL.
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Figure 3: Another example of markers (a) Orig-
inal image. (b) Markers.

weighted gradient (gradient V) visually gives the best re-
sults but some more experiments have to be done. The ma-
jor difficult with the weighted gradient is to find the correct
weights. For this problem we still do not have a systematic
solution.
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dient V (weighted). (m-n) gradient VI.
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