A Framework for Networked Reactive Characters

DI.ZA SZWARCMAN'
BRUNO FEUO
MONICA COSTA
ICAD - Intelligent CAD Laboratory, Department of Informatics, PUC-Rio,
Rua Marqués de Sao Vicente, 225, 22453-900 Rio de Janeiro, RJ, Brazil
e-mail: dilza@inf.puc-rio.br

Abstract — This paper presents a framework for distributed reactive characters on a computer network and
proposes innovative concepts for shared state management. Firstly, behavioral accuracy is defined in terms of
three types of state (physical, procedural and emotional). Secondly, visual soundness — a concept inversely
proportional to behavioral accuracy — is associated with the autonomy of clones. Thirdly, the usual concept of
dead reckoning is relaxed by exploring the idea of autonomy, which is the basis for networked reactive
characters. The framework, built on top of an open-architecture toolkit called Bamboo, can gracefully cope with
reactive environments producing good levels of visual soundness, which results in smooth animations, and

behavioral accuracy.

1 Introduction

Virtual environments distributed over computer networks
began in the early 80’s [1]. However, despite all these
years of activities, this research area still faces enormous
challenges and lacks uniformity in its concepts and
definitions, specially considering networked virtual
environments populated by reactive characters. Notably,
autonomy of virtual humans is a subject not fully
investigated in the context of shared state management.
Unfortunately, at the other side of the spectrum, most of
the people working on reactive characters [2, 3, 4, 5, 6, 7,
8] are not focused on networked virtual environments.

JackMOO (9], VLNET (10] and Improv [11] are
remarkable projects on distributed virtual actors, however,
the first two adopt centralized models and thus have
limited scalability, while the latter does not concentrate on
shared state management.

This paper relies on clone autonomy as an adequate
approach to networked virtual environments inhabited by
reactive characters. It proposes a flexible and clear view of
the concept of shared state management and presents a
framework for networked reactive characters. A prototype
is built on top of Bamboo [12, 13], which is an open-
architecture toolkit particularly useful in the development
of scalable virtual environments.

Before presenting the main ideas of this paper, the
techniques for managing shared state information are
described in section 2. After this preliminary review,

¥ Author for correspondence.

0-7695-0878-2/00 $10.00 © 2000 IEEE

section 3 presents visual soundness and behavior accuracy
as desirable properties of a networked virtual environment.
It also proposes dead reckoning on the basis of clone
autonomy as an adequate shared state management
technique to obtain good levels of the above properties.
Sections 4 and 5 explain in detail the proposed technique,
starting out with a summary of other types of dead
reckoning algorithms available. In section 6, the paper
presents the model of reactive characters used: Although
the model constitutes a fundamental part of the
framework’s development, it is not the main focus of this
paper. The resulting framework’s class structure is
presented in section 7. Finally, experimental results are
discussed in section 8 and conclusions are produced in
section 9.

2 Shared State Management

Shared state management is the area of networked virtual
environment dedicated to the techniques of maintaining
shared state information [1]. In a networked virtual
environment, local objects are replicated in remote hosts
and the users have the illusion of experiencing the same
world. The consistency of this shared experience is hard to
be achieved without degrading the virtual experience. In
fact, one of the most important principles in networked
virtual environments says that no technique can support
both high update rate and absolute state consistency [1].
To guarantee total consistency, the state of the virtual



environment can only be changed after the last update has
been surely disseminated to all hosts. For that matter,
shared state information must be stored in a centralized
repository — or some corresponding model [14] ~ with
hosts exchanging acknowledgements and retransmitting
lost state updates before proceeding with new ones.
Update rates, therefore, become limited which in turn
produces non-smooth movements and non-realistic scenes.
Highly dynamic virtual environments, such as the ones
populated by reactive characters, must tolerate
inconsistencies in the shared state.

There are two techniques for managing shared state
updates that allow inconsistencies [1]: (1) frequent state
update notification and (2) dead reckoning. In the first
technique, hosts frequently broadcast (or multicast) update
changes without exchanging acknowledgments. This
technique has been mostly used by PC-based multi-player
games [15]. In dead reckoning techniques (see section 5),
the transmission of state updates is less frequent and the
remote hosts predict the objects’ behavior based on the
last transmitted state. Both techniques. allow the use of
decentralized replicated databases where every virtual
component has a pilot, the main representation that resides
in its controlling host, and several clones, the replicas that
reside in other hosts.

The quality of a networked virtual environment is
also determined by its scalability, which is its capacity of
increasing the number of objects without degrading the
system. Therefore techniques of managing shared state
updates should be used in conjunction with resource
management techniques for scalability and performance.
Singhal and Zyda [1] present an excellent description of
some of these techniques, such as packet compression,
packet aggregation, area-of-interest filtering and
multicasting protocols.

3 Visual Soundness and Behavioral Accuracy

In networked virtual environments the hosts should pass
the test of visual soundness and every clone should exhibit
behavioral accuracy. These two concepts are proposed in
this paper and are presented below.

A host passes the test of visual soundness if all
virtual components move smoothly and interact in a
precise way (local precision). One example of local
precision failure is the overlapping of objects. Another
example is when a character fails to put his hand in the
right place while trying to shake hands with another one.
An environment that passes the test of visual soundness
may be considered a networked virtual environment that is
visually sound.

A clone exhibits behavioral accuracy when it mirrors
the following states of its pilot:

204

¢ physical (e.g. position, velocity, and acceleration),

e procedural (e.g. commitments, goals, and
sequences of tasks),

e emotional (e.g. fear, joy, and excitability).

It is evident that a host may exhibit a high level of
behavioral accuracy but fail the test of visual soundness
(e.g. clones and their pilots have quite similar positions
and velocities, but clones’ movements are jerky). The
reverse is also possible; that is, a host may pass the test but
exhibit low level of behavioral accuracy. In fact,
behavioral accuracy and visual soundness can be
understood as being inversely proportional to each other.
Behavioral accuracy depends on the system’s shared state
consistency. However, increasing state consistency limits
the update rate, which in turn decreases visual soundness.
Looking the other way around, visual soundness is related
to local precision, which is achieved by giving autonomy
to clones, that is, capacity to act by their own according to
the local environment presented by each host. This
perspective based on the problem of autonomy is the
starting point for the main ideas of this paper. A totally
autonomous clone would act exactly like a local object but
would, of course, have no behavioral accuracy. The
challenge is to search for techniques that guarantee
reasonable levels of behavioral accuracy while passing the
test of visual soundness and providing good levels of
scalability.

Dead reckoning is the basic technique to overcome
the above-mentioned challenge. However, the usual
concept of dead reckoning should be expanded. Firstly,
dead reckoning protocols should be built on the basis of
clone autonomy. Secondly, these protocols should take

into account the states of mind of entities. The
consequences of this approach are many:
(1) The state information may be physical,

procedural or emotional.

There will be many different protocols adapted
to each type of object and behavior.

The protocols consist of two parts: a prediction
mechanism and a recovery mechanism. The
prediction mechanism estimates the values of the
shared states and the recovery mechanism tries to
restore values in the neighborhood of the pilots’
state values.

(2)
(3)

4 Networked Reactive Clones

Dead reckoning has its origin in networked military
simulations and multi-player games, where users
manipulate aircraft or ground vehicles. In these systems,
prediction and recovery is a matter of trying to guess and



converge to the pilot’s trajectory. Second-order
polynomial is the technique most commonly used to
estimate these objects’ future position based on current
velocity, acceleration and position. It provides fairly good
prediction since aircraft and vehicles do not usually
present large changes in velocity and acceleration in short
periods of time. Moreover, the source host can also
execute the prediction algorithm and calculate the error
between pilot and clones’ position, only sending updates
when necessary. Convergence to the pilot’s trajectory is
usually done with curve fitting [1].

When it comes to articulated avatars, a couple of
different approaches can be taken for dead reckoning. For
applications requiring high state consistency, joint-level
dead reckoning algorithms can be used to predict in-
between postures [16]. This approach does not take into
account the action the avatar is executing and dead
reckoning computations are performed on joint angle
information received at each update message. However, in
many situations consistency at the level of articulated parts
is not essential. Especially in collaborative work systems,
where avatars interact with each other and together
manipulate objects, local precision at each host becomes
more important. Furthermore, articulated avatars have
gained intelligence over the past years and efforts are
being made to give them capacity to understand and
accept orders like “say hello to Mary” [9]. In this context,
dead reckoning at the level of physical actions has been
considered [9, 10, 11, 17]. That is, instead of sending
position updates, the pilot sends to clones messages that
indicate the low-level physical action it is executing:
“smile”, “dance” or ‘“wave”. In these systems, clones
predict pilot’s state by performing the same actions,
regardless of the fact that each host may be presernting
different object movements. However, in these script-
based systems clones reactivity .is very limited. For
instance, clones cannot deviate from other objects if their
pilots do not order them to. They can decide, though, the
best place to put their foot when stepping forward.

This paper proposes another approach to avatar dead
reckoning that gives even more autonomy to clones,
providing them with some power of decision. With no
intelligence at all, clones are restricted to executing by
their own only certain localized actions. For example, if
the pilot tells them to “walk to the door”, the environment
will probably not remain still during all the time they take
to get there. So, while they walk, the pilot must tell them
how to react to environment changes — “deviate right” or
“get your head down”. However, remembering that pilot
and clones always experience different views, some hosts
may present poor visual soundness. On the other hand, if
clones can make decisions based on what they see, hear
and feel then they can get to the door naturally, deviating

205

from an angry dog or smiling to a friend that passes by.
Behavioral accuracy will be maintained at a higher level
by making clones always consistent with pilot’s overall
commitments, goals, and emotional states.

Figure 1 shows the example of a character that does
not like Mr. Green, one of the avatars in the room. In this
example, the pilot and its clone experience different
emotional states depending on the position and posture of
Mr. Green and, consequently, they follow different paths
towards the target. Although the local and remote hosts
exhibit different animated scenes, this distributed virtual
experience will be perfectly acceptable if the pilot has
only the following characteristics: “walk to the wall
between the doors” (procedural behavior) and “/ am
afraid of Mr. Green” (emotional behavior).

Local Host

Remote Host
Bemme e R

Mr Green close
and staring at

G s

Figure 1 Pilot and clones with different
emotional states.

As in traditional dead reckoning approaches, the
proposed management system for networked reactive
characters is based on the tolerance to inconsistencies.
Depending on the local view at each host, pilot and clones
can decide differently. In some situations, different
decisions can take clones’ physical and emotional
behavioral accuracy to unacceptable levels. In this matter,
a recovery mechanism that restores state consistency is
presented in the next section. It is worth noting that, for all
types of dead reckoning algorithms, inconsistencies
introduce undesirable consequences. For example, a dead
reckoned aircraft might collide with another object when
the predicted trajectory deviates from the real one. The
literature lacks information about how these situations
should be handled. This paper claims that, for reactive



characters, clones’ autonomy is the most adequate
approach to tackle these problems gracefully.

From the above reasoning, the proposed framework
was designed to support dead reckoning of high level tasks
for reactive characters and traditional dead reckoning for
non-reactive avatars. Physical action dead reckoning is
made available as a special case of high-level task dead
reckoning, namely as a task that does not require recovery.
The framework’s shared state management mechanism is
highly flexible in the sense that it can adapt itself to the
virtual component’s type and to the task type, with or
without recovery.

5 Recovering Mechanism Keeps Clones under
Control

Increasing clones’ autonomy makes them capable of
avoiding collisions, expressing emotions and interacting
with other avatars according to what they experience
locally. Each clone can act differently as long as it obeys
the pilot’s high level order. The prediction mechanism is
such that the estimated states are not the same at all hosts
and are unknown to the pilot. Taking again the “walk to
the door” example, while the pilot decides to deviate right
from a fearing entity, one or more clones may decide to
deviate left or even not deviate at all, depending on the
entity’s state at each host. If all clones get to the door in
approximately the same period of time, then the goal is
achieved. However, clones that deviate left may encounter
other obstacles that can make them get too far from the
pilot and from the door. In this case, these clones should
try to recover to the pilot’s state. A recovery mechanism is
proposed for this purpose.

Both, pilot and clone, have specific roles in the

time

recovery mechanism. The pilot, after telling clones the
task to be executed, should send them state update
messages until the task is finished. The interval of time
between updates may be determined by environment
properties that influence clones behavioral accuracy such
as the type of application, the number of entities and the
level of activity. In this way, the update rate will be
dynamically adapted to environment demands. Since
predicted states are not known to the pilot, the update rate
cannot be based on state error. Considering that updates
have the purpose of helping clones out in extraordinary
situations where they cannot find their way to execute a
task, the average working update rate will tend to be low.
On the other hand, upon receiving an update
message, each clone will verify if it needs to recover from
inconsistencies. That will be the case if it is approximating
neither the pilot state nor the goals. The clone will recover
from inconsistencies by suspending the main task and
executing a recovery action that will take it to the
neighborhood of pilot’s state in the most natural way
possible. Recovery is determined by a temporary
redefinition of priorities, which can eventually be more
restrictive than the original top most priority (e.g.
“converge to the actual pilot’s path” takes precedence to
the more generic task “leave the room”). When the
recovery action is terminated, the main task is resumed.
Figure 2 illustrates the following case:

e The characteristics of avatar 1 are “leave the room”
and “keep away from people”.

e Object 2 is swinging randomly around a small area,
which causes different reactions from other objects
(i.e. the hosts will never display the same position
of object 2).

left door right door
}___

object 2 is swinging

-::::j@"‘.:::-

[ ] update message
° recovering points

Figure 2 Recovering consistency.



e The clone of pilot ! is initially going left (because
the left door is a valid exit), when it notices object
3 and then starts getting far from the target.

e The update message from the pilot triggers the
recovery action at point A.

» Clone 1 converges to the pilot’s path.

From point B forward anything can happen depending on
the actual position of object 2 (e.g. clone 1 follows the
pilot’s path towards the right door, or clone 1 goes to the
left door). In any case, the high-level behaviors will be
consistent.

6 Modeling a Reactive Character

Based on the architecture for reactive characters presented
by [5] for behavioral animation, the mental model of
Figure 3 is proposed for pilots and clones in a networked
virtual environment. This model reflects a hybrid approach
to avatars’ intelligence that combines logical reasoning,
proposed by traditional Al, with reactive behavior, the
dynamic response to environment changes proposed by the
agent theory. Its elements are drawn on general principles
of cognition science that rule human mind models.

Unconscious

Behavioral
Functions

Learned Emotion
Procedures)| Generator
Fy

[ Cognition Center
Conscious

Controlled Procedures
( logical / deductive

reasoning )

3

[Hieror
LFear, joy etc )

—> calls

[ Perception Center |
( Vision, hearing etc )

—» read/write

Figure 3 A mental model for avatars.

The Memory stores facts and emotions, either pre-
programmed or perceived by the character during its
existence in the virtual environment. The data stored in the
Memory is operated on by controlled and automatic
procedures of the Cognition Center. Controlled procedures
require conscious attention and are used for deductive and
logical reasoning such as path planning. Learned
Procedures, Behavioral Functions and Emotion Generator
are the automatic procedures that model the character’s
unconscious. Events or goals automatically trigger them.

Learned Procedures are reactive plans that
continuously revise the Memory to adapt themselves to
unexpected events and to the character’s emotional state.
The name Learned Procedures comes from the fact that

207

these procedures represent learned skills with no need for
conscious attention. Behavioral Functions are primitive
forms of automatic procedures and represent reactive
physical actions. The Emotion Generator operates on the
Memory to generate emotional states.

The Perception Center detects events in the virtual
environment associated to vision, hearing and touch and
passes the information to the Emotion Generator. The
automatic procedures of the Cognition Center and the
Perception Center together implement the reactive
behavior of the avatar.

7 A Framework on Top of Bamboo Toolkit

Bamboo is a toolkit for developing dynamically
extensible, real-time, networked applications [12, 13].
Bamboo’s design focuses on the ability of the system to
configure itself dynamically, what allows applications to
take on new functionality after execution. Bamboo is
particularly useful in the development of scalable virtual
environments on the Internet because it facilitates the
discovery of virtual components on the network at
runtime.

Provision for dynamic extensibility is accomplished
by the implementation of the plug-in metaphor
popularized by commercial packages such as Netscape
Navigator. Bamboo offers a set of mechanisms that enable
the coexistence of plug-ins in a multi-threaded
environment. It also provides a particular combination of
these mechanisms with a “main” routine, forming a
specific executable called Bamboo’s kernel, which
constitutes the initial runtime environment for plug-ins to
hook into (Figure 4). It is completely up to the plug-ins to
give the application its functionality. :

Bamboo works with "modules", which can be thought
of as containers of plug-ins. The data a plug-in inter-
operates with can be physically coupled with it. Modules
can then define geometry, behaviors, protocols and so
forth. In practice, several modules will combine to create a
specific application. Dynamically loaded modules can be
retrieved from local disk or from the Web via HTTP.

(X

Bamboo
Kernel

w

plug-in 1
plug-in 2

Figure 4 Bamboo’s abstract runtime view.




The proposed framework for distributed reactive
characters is being developed as a C++ Bamboo module.
It offers a set of classes that provides the basic
functionality needed for shared state management as
described in sections 4 and 5. It also supports frequent
state regeneration.

Firstly, the framework considers that, at each host,
the local virtual environment is composed of Entities,
reactive and non-reactive ones. In other words, an Entity
can be a static decoration object or a human-like avatar.
Each shared component of the networked virtual world is
then implemented by one pilot Entity and several clone
Entities, one object at each participating host. The pilot is
the master object whose state - considered the virtual
component’s true state - all clones continuously try to
mirror. It is the pilot’s responsibility to send messages to
clones informing its state or the action it is executing so
they can maintain behavioral accuracy at an acceptable
level.

An Entity is actually the root node of a tree structure
made up of EntityParts (Figure 5). The hierarchical
structure reflects the physical dependence between parts: if
one node moves, all its children move along. Every tree
node may have a Body and a set of Actions it can perform.
Actions are state machines that can be started, suspended,
resumed or terminated.

EntityPart

Parent  Children
Body Actions

—=x

Entity
Clone/Pilot

" Perception Center |

Emotion Generat:

Figure 5 The Entity structure and hierarchy.

The messages sent to an Entity are treated by its
Message Handler. These messages can be remote or local
ones. Remote communication is only possible from a pilot
to its clones or from one clone to its pilot. Entities
pertaining to two different virtual components can
communicate locally at each host. After receiving a local
message from another component, a clone might need to
inform its pilot about it.

The Entity object also includes a Sync Unit that is
responsible for the shared state management. If the Entity

208

is a pilot, the Sync Unit sends update messages to clones at
the appropriate rate, depending on whether state
consistency is maintained with frequent state notification
or with traditional dead reckoning. If it is a clone, the Sync
Unit controls the activation of dead reckoning prediction
and convergence algorithms as update messages arrive.

A reactive Entity, called AutoEntity, yet includes a
Memory, an Emotion Generator and a Perception Center,
all parts of the mental model presented in Figure 3. In this
case, the Actions that the EntityParts can perform
correspond to behavioral functions. Learned procedures
are Actions associated to the root node since they access
the Memory and make no sense for individual parts. A set
of sensor objects — Vision and others ~ constitute the
Perception Center. The AutoEntity class has its own Sync
Unit that overrides the corresponding unit in the Entity
class. If the AuroEntity is a pilot, the Sync Unit sends
update messages to clones at the appropriate rate,
depending on whether state consistency is maintained with
frequent state notification or with dead reckoning of high-
level tasks. In the case of dead reckoning, the automatic
adaptation of the update rate to environment demands is
not yet part of the framework though it can be
programmed by the application developer. If it is a clone,
the Sync Unit controls the activation of the recovering
mechanism — suspension of the main task and execution of
the recover action — as update messages arrive.

When the framework module is loaded, a display
thread, which continuously cycles the rendering engine, is
launched. The rendering engine culls and draws all
Entities on all active cameras and is implemented as a
callback. Running Actions have their state machines
cycled by attaching them as callbacks to the rendering
engine’s pre-callback handler, as shown in Figure 6.
Sensors attach callbacks to the post-callback handler to
verify environment changes that the current cycle of all

Pre-callback

Sync Units callbacks
handler
Action1 of Entity1
Action1 of Entity2
A
Action2 of Entity1
Rendering
func()
Egﬁgg“ba(:k Sensors callbacks

Figure 6 Display thread.



Actions have created. Sensors’ callbacks then activate the
Emotion Generators, if necessary. Sync Units, working in
conjunction with the Actions class, also attach callbacks to
the display thread to manage the virtual component’s
shared state.

The framework also provides the Network Interface
Unit (NIU) to take care of remote communication at the
virtual environment level. Incoming messages related to
the virtual environment’s composition and configuration,
such as creation and deletion of clones, are handled by the
NIU itself. Component level messages are passed on to the
appropriate local Entity.

8 Experimental Results

Several examples were run in a Windows NT environment
producing good results, although performance was not
formally investigated. Some of these examples are
presented in Figures 1 and 2 above.

Figure 7 shows another example where Mr. Green 1s
ordered to move to a position four blocks straight ahead.
A flying disc that is managed by traditional dead
reckoning comes in the way. Mr. Green’s pilot and clone
take on different paths depending on the position of the
disc at each host. However, collision 1s avoided and Mr.
Green gets to the desired position at both hosts.

In addition to the good levels of visual soundness
produced, an important result is the reduced number of
transmitted networked messages. As already mentioned, to
“walk to the door” a clone with limited autonomy would
require one message for each step of the pilot’s way.
Considering a rather low velocity, this would mean 1

Figura 7 Reactive and non- reactive entities

209

message/sec. In the prototype environment shown, one
recover message every 7 seconds produced good
behavioral accuracy for a level of activity of four moving
entities. This primary result gives a fairly good idea of the
benefits of the proposed management mechanism.

9 Conclusions and Future Work

Behavior and autonomy of virtual humans are not well
explored concepts in the area of networked virtual
environments. On the other hand, most of the people
working on reactive characters are not focused on shared
state management over a computer network. This paper
explores a common view amongst these areas of research
and proposes innovative concepts for shared state
management. Firstly, behavioral accuracy is defined in
terms of three types of behavior (physical, procedural and
emotional). Secondly, visual soundness — a concept
inversely proportional to behavioral accuracy is
associated with the autonomy of clones. Although the
literature have already mentioned that dead reckoning
should handle any type of shared state and state prediction
may be object-specific [1], these ideas are not clearly
explained. For instance, the authors of Improv [11] do not
present this system in terms of shared state management,
although its scripted events have been recognized as a
form of object-specific state prediction elsewhere [1].
JackMOO [9] is another impressive form of scripted
events system, but like in Improv clones have very limited
reactivity. As far as collision is concerned, real-time
distributed collision agreement for dead reckoning
algorithms are not clearly mentioned in the literature [1];
the existent systems probably fail the test of visual
soundness. Most of the interesting dead reckoning
extensions, such as the position history-based protocol
[18], produce smooth animation but cannot cope with
undesirable collisions that happen when the predicted
trajectory differs from the real one. For reactive
characters, one possible solution for many of the above-
mentioned drawbacks is to relax the concept of dead
reckoning by exploring the idea of autonomy. Therefore,
this paper proposes a framework for networked reactive
characters that supports dead reckoning of high level tasks
producing good levels of visual soundness and behavioral
accuracy.

The proposed shared state management mechanism
also works in favor of scalability in that it substantially
reduces the number of transmitted network messages.
Moreover, as virtual characters become more intelligent
the average recovery messages rate becomes lower.
Clones tend to need pilot’s help less frequently. Naturally,
reduced message rate implies greater local computation.



Some of the drawbacks of physical action dead
reckoning are not solved by dead reckoning of high-level
tasks. One of them is related to the interaction between
reactive characters and moving objects. If, for example,
while “Mr. Green” is dancing, a ball is thrown, it might hit
“him” at one host and not hit “him” at another host. Either
the ball’s trajectory is allowed to be different at each host,
which poses a problem since the ball will not be able to
“walk” to the right position, or the ball is forced to always
follow its pilot’s path which will produce unrealistic
scenes. Another drawback is related to the initialization of
actors when a new participant joins the environment. As
existing actors may be executing an action, initialization of
clones at the new user’s host becomes more elaborate then
a simple state update. For environments divided in areas of
interest assoclated to multicast groups, initialization is an
important issue because clones may have to be initialized
as the pilot crosses region boundaries.

There are several topics for future work. The
framework should be expanded and improved to handle
more complex animation and characters. The mental
model for avatars is surely a subject for further
investigation. Recovering criteria should also be studied in
more detail — on the pilot’s side, this concerns the set of
rules used to dynamically adapt the update rate and, on the
clones’ side, the set of rules used to trigger the recovering
action. Also resource management techniques for
scalability and performance should be investigated,
especially area-of-interest filtering, which is central to
networked reactive characters. Real-time distributed
collision agreement is another important topic for further
research.

Acknowledgments — The authors would like to thank the
CNPq for the financial support (scholarships and
equipment financing through the Pronex program) and the
SIBGRAPI 2000 reviewers for the valuable contributions.

References

[1] S. Singhal and M. Zyda, Networked Virtual
Environments — Design and Implementation, ACM Press
(1999).

[2] C.W. Reynolds, “Flocks, herds, and schools: a
distributed behavioral model”. In Proc. of SIGGRAPH'87,
volume 21, 25-34 (July 1987).

[3] J. Bates, A.B. Loyall and W.S. Reilly, “Integrating
reactivity, goals, and emotion in a broad agent”, Technical
Report CMU-CS-92-144, School of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA, 1992.

[4] X. Tu and D. Terzopoulos, “Artificial fishes: physics,
locomotion, perception, behavior”. In Computer Graphics
Proceedings, Annual Conference Series, ACM
SIGGRAPH, 43-50 (1994).

210

[5S1 M. Costa and B. Feij6, “Agents with emotions in
behavioral animation”, Comput. & Graphics 2, No. 3,
377-384 (1996).

[6] H. Maldonado, A. Picard, P. Doyle and B. Hayes-
Roth, “Tigrito: a multi-mode interactive improvisational
agent”, Stanford Knowledge Systems Laboratory Report
KSL-97-08, Stanford University (1997).

{71 N. Badler, R. Bindiganavale, J. Bourne, M. Palmer, J.
Shi and W. Schuler, “A parameterized action
representation for virtual human agents”. In Workshop on
Embodied Conversational Characters, Lake Tahoe, CA
(1998).

8] P. Béicheiraz, D. Thalmann, “A behavioral animation
system for autonomous actors personified by emotions”. In
Proc. of First Workshop on Embodied Conversational
Characters (October 1998).

[9] J. Shi, T.J. Smith, J. Granieri and N.I. Badler, “Smart
avatars in JackMOO”. In Proc. of the 1999 Virtual Reality
Conference (VR’99), IEEE, Texas, USA, 156-163 (1999).
[10] T.K. Capin, LS. Pandzic, NM. Thalmann and D.
Thalmann, “Realistic avatars and autonomous virtual
humans in VLNET networked virtual environments”. In
Virtual Worlds in the Internet (R. Earnshaw and J. Vince,
eds.), Chapter 8, IEEE Computer Society Press, 157-174
(1998).

[117 K. Perlin and T. Goldberg, “Improv: a system for
scripting interactive actors in virtual worlds”. In Computer
Graphics Proceedings, Annual Conference Series, ACM
SIGGRAPH, 205-216 (1996).

[12] K. Watsen and M. Zyda, “Bamboo - a portable
system for dynamically extensible, networked, real-time,
virtual environments”. In Proc. of the 1998 Virtual Reality

Annual International Symposium (VRAIS’98), IEEE,
Atlanta, GA, 252-259 (1998).
[13] Bamboo Web site (as in April 5, 2000),

http://npsnet.org/~watsen/Bamboo/index.html.

[14] V. Anupam and C. Bajaj, “Distributed and
collaborative visualization”. IEEE Multimedia 1(2), 39-49
(Summer 1994).

[15] Id Software, Doom (Dec. 1993).

[16] T.K. Capin, L.S. Pandzic, D. Thalmann, N. Magnenat
Thalmann, “A dead-reckoning algorithm for virtual human
figures”. In Proc. of the 1997 Virtual Reality Annual
International Symposium (VRAIS’ 97), 1IEEE,
Albuquerque, USA, 161-169 (1997).

[17] Living Worlds Web site (as in October 10, 1999),
http://www.vrml.org/WorkingGroups/living-
worlds/draft 2

[18] S.K. Singhal and D.R. Cheriton, “Using a position

history-based  protocol ~ for  distributed  object
visualization”, Chapter 10 of Designing Real-Time
Graphics  for Entertainment [Course Notes for

SIGGRAPH '94 Course #14] (July 1994).



