STOCHASTIC TEXTURE IMAGE RETRIEVAL AND SIMILARITY MATCHING
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Abstract. Stochastic texture images representing various foil materials (like polymer sheets, nonwoven textiles
and paper) provide important information about these materials, and are very utilized in industry. Often, it is
difficult to objectively measure the similarity among those images, or to discriminate images of different types
of materials. This work proposes a new multi-resolution method for texture image discrimination and similarity
matching. The wavelet transform is used to represent the images in multiple resolutions, and to describe them in
terms of their orientation and graylevel distributions. It is also proposed a multi-resolution similarity measure based
on this representation. Finally, some experiments illustrate the performance of our method, and some conclusions

are presented.
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1 Introduction

Texture image analysis and discrimination often arise in
quality control of foil-like manufactured materials, like pa-
per and non-woven textiles. In general, these images con-
tain important information, represented by a composition of
periodic and stochastic features at various scales, resulting
from local clumping and aligning of constituent matter with
varying degree of regularity. Such images are often stored
in large digital catalogs, and many times we face the diffi-
cult problem of retrieving images that are similar to a given
example, as well as some product or process information
associated to the retrieved images (e.g. finding products in
a catalog that have properties similar to a provided paper
sample). In this context, it is important to determine a set
of parameters for texture representation and discrimination,
as well as a similarity measure, that could be used to re-
trieve images similar to a given example from a database
(i.e. a digital image catalog).

A study conducted by Rao and Lohse [1] has indicated
that three dimensions are important in natural texture dis-
crimination, namely, “repetitiveness”, “directionality”, and
“granularity and complexity”. A retrieval system based on
these three dimensions should reproduce human perceptual
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saliencies. Liu and Picard [2] proposed a retrieval system
based on the Wold decomposition of textures, that incorpo-
rates the three features suggested by Rao and Lohse. How-
ever, it is not clear how such features extend to similarity
matching of stochastic textures, such as those found in pa-
per and non-woven textile samples.

Texture anisotropy in multiple resolutions may pro-
vide an estimate of the “directionality” dimension proposed
by Rao and Lohse. A method was suggested by Scharcan-
ski and Dodson [3] for anisotropy measurement in stochas-
tic textures, which uses local gradient distributions and lo-
cal dominant orientations. Good results were obtained with
this approach, but its performance in multiple scales is not
satisfactory. The same authors [4] proposed to calculate
anisotropy in stochastic textures using the correlation of lo-
cal gradients within a given neighborhood. However, this
method is also limited in terms of multi-scale analysis.

In this work, the image grayscale distribution and tex-
ture anisotropy are measured at different resolutions, using
the wavelet transform. Based on these features, a represen-
tation in multiple resolutions is assembled, and we show
that stochastic texture discrimination and similarity match-
ing may be achieved using such a representation. The next
sections describe a technique to detect local gradients in



multiple resolutions using wavelets, and our approach to
stochastic texture representation. Finally, we present some
experimental results and conclusions.

2 Measuring Local Graylevel Variability in Multiple
Resolutions

We measure local graylevel variability at different resolu-
tions based on local gradients. In order to estimate the local
gradients in multiple resolutions, we utilize the redundant
two-dimensional wavelet transform proposed in {5]. Be-
low, we briefly describe the wavelet transform in two di-
mensions, and how to detect local gradients in a texture im-
age using wavelets.

2.1 Wavelet Transform in Two Dimensions

In this work, the 2-D wavelet decomposition uses only two
detail images (horizontal and vertical details) [5], instead
of the already conventional approach where three detail im-
ages (horizontal, vertical and diagonal details) are used [6].

This two-dimensional wavelet transform requires two wavelets,

namely, 1! (z,y) and ¥?(z,y). At a particular scale s we
have:

) 1 .
viey) = 95,0,

The dyadic wavelet transform f(z,y), at a scale s = 27
has two components given by:

1,2. (1

Wi f(z,y) = f*dhi(z,y), 1= 1,2 ©))
Therefore, the multi-resolution wavelet coefficients are:
Wij(iB,y) = (Wll]f(I,y),szJf(.’lf,y)) . (3)

The original signal f(z,y) is then represented by the two
dimensional wavelet transform, in terms of the two dual
wavelets £1(z, y) and £€%(z,y):

flmy) = Y (Whf(zy)«&i(zy)+ @
J

+W3; f(z,9) * €; (2,9))

In order to build a multi-scale representation, we need a
scaling function ¢(z, y), whose integral over the plane equals
“1”, and tends to “0” at infinity [S]. Thus, ¢(z,y) is a
smoothing function, and its component at a scale 27 is:

S2ff(1‘1 y) = f * Poi (IL‘, y)

We may interpret the component Sys f(z, y) as a smoothed
version of f(z,y), and the components Wo; f(z,y), for
j 1,...,J, as the image details lost by smoothing go-
ing from Sso f(z,y) to Sys f(z,y). Further details may be
found in [5] and [6].
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2.1.1 Local Gradients in Multiple Resolutions

Now, it is necessary to find a wavelet basis such that its
components W, f(z,y) are related to the local gradients
of the image at the scale 2/}. A smoothing function ¢(z, y)
is selected such that its integral over the plane R? is equal
to “1”, and it converges to “0” at infinity. We then define:

0
V) = gc(on) ad o) = gs() ©)

Note that the wavelet coefficient W f(z,y) can be written

() -

2 (fxe)(z,)
s ( Z(fr )y )
SV(f *6,)(@,9),

which in fact corresponds to the gradient of the smoothed
version of f at the scale s. Thus, the coefficient W, f(z,y)
can be used as an estimate for the gradient of the image
at the scale s. Using dyadic scales (s = 27), the gradient
magnitude is given by:

Wl f(z,y)

wsf("’: y) Wff(a:,y)

Q)

I

IWos £z, = /W F@ )2 + W3 £(2,0)2, ®)
and the gradient orientation can be calculated from:
W2 f(z,y) )
W‘zlJ' f(fL‘, y)
Equations (8) and (9) are used to obtain the magnitude
and orientation of the gradients in multiple resolutions. Be-

cause we are interested in digital images f[n, m], we use a
discrete version of the wavelet transform [5].

09 (x,y) = arctan ( C)

3 Texture Representation in Multiple Resolutions
3.1 Texture Directionality Representation

We use the distribution of angles 8(z,y) over all locations
(z,y), atdifferent resolutions, to represent structural anisotropy
[4]. When all angles § are equally probable, the sample is
isotropic. ’

Scharcanski and Dodson [3] used a threshold to sup-
press the influence of noise in the angular distribution. How-
ever, usually gradient magnitudes associated to noise are
smaller than magnitudes related to texture image structures.
Therefore, we use the edge magnitude as a “weight”, and
obtain a modified angular distribution in such a way that a
threshold is no longer needed, and noise influence is mini-
mized, as it is explained next.

In order to estimate the angular distribution, initially
the interval [0, 27) is divided in IV equally spaced subinter-
vals, whose centers are denoted by 8; = 2£¢ 4 = 0,1,..., N—
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1. The angles 6,; (z, y) are quantized to the closest §; value.
Let us denote by k(6;) the sum of the gradient magnitudes
along the quantized direction 8;. The resulting polar plot of
8; x k(8;) is typically elliptic for anisotropic samples, and
tends to be circular for isotropic samples. Figure 1 shows
the polar plots of two different texture images, appearing in
Figure 3 (i.e. mdlj44al and pxxe50cl). Texture mdlj44al
is isotropic, while texture pxxe50c/ is anisotropic. Both po-
lar plots were calculated at the resolution 22,
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Figure 1:
pxxe50cl.

Polar plots: (a) Texture mdlj44al. (b) Texture

The angular distribution determines two orthogonal axes

of extremal variance, that coincide with the directions of the
eigenvectors Vi, and v, of the covariance matrix [3]. In
order to estimate the covariance matrix, we calculate:

Pz (’!,) = k}(g,) COS(ai)
py(i) = k(Bi)sen(Qi) ’

Let us denote the means of the vectors p, and p,, by uz and
,uy, respectively. The covariance matrix is then calculated
by:

=0,1,.,N—1.  (10)

N-—-1
N1 2 — 1) (Py() — 1) -

=0 j

an
Please, notice that the eigenvectors Vo, and v, are ob-
tained from (11), as well as the corresponding eigenvalues
Amax and Apin. The eigenvalues Aax € Amin define the semi-
axes of an ellipse aligned with the directions of the eigen-
vectors. The eccentricity e of this ellipse is given by the
ratio of the eigenvalues:

2

C(i,j)=

Il
<3

)\max

Amin .

(12)
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The calculated eccentricity e provides a measure for the tex-
ture anisotropy. It should be noticed that the eccentricity
can be calculated at different resolutions, since equation (9)
provides angular information at each scale 27. Please, no-
tice that the main orientation of the texture at each scale is
given by the direction of Vypax.

3.2 Texture Graylevel Representation

The texture graylevel distribution estimated at each resolu-
tion also contains important information. At each scale 27,
the distribution is represented by the graylevel histogram of
the corresponding image Ss; f(z,y) (i.e. a smoothed ver-
sion of the texture image at resolution 27). This histogram
is represented by a vector g, with length N,.

Typically, samples of similar textures also have sim-
ilar graylevel histograms, and we use this information for
texture discrimination and similarity matching. Please, no-
tice that information provided by the angular distribution is
orthogonal to that provided by the graylevel distribution. In
this work, both are combined in a texture similarity mea-
sure, as it will be discussed later.

Figure 2 shows the histograms of two different tex-
ture images appearing in Figure 3, namely, mdlj44al and
pxxe50cl. It can be noticed that sample mdlj44al has smaller
mean graylevel than texture pxxe50ci, since the histogram
peak is closer to the origin.
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Figure 2: Graylevel histograms: (a) Texture mdlj44al. (b)
Texture pxxeS0cl.

3.3 Texture Similarity Matching

In order to measure the similarity among texture images,
the angular and graylevel information are combined into a
multi-resolution similarity measure. Qur similarity match-
ing procedure is described next.



For the texture example provided by the user, the angu-
lar and graylevel histograms, denoted respectively by k5™

J
and gzﬂmp e are calculated at each resolution 27. The angu-

lar histogram k'f*' and graylevel histogram g{* correspond-
ing to each texture image in the database, at each resolution
27, are compared to those obtained from the texture exam-
ple.

The angular dissimilarity between the example and the
database test image is measured by the Euclidean distance
d3"® between vectors k;-ample and k™, which is calculated
by:

ang __
& _|

sample _ pelest
k; k;j

. (13)

In a similar way, the Euclidean distance d;!e“s between vec-

tors g™ and g'*' measures the graylevel dissimilarity,
g g" y y

and it is calculated by:

sample test

dens __ .
dj = |8 J

(14)

Given the distances d;-"g and d?e“s, a texture similar-
ity measure is obtained at the resolution 27, as described
next. Considering that these two distances are associated to
orthogonal feature space dimensions, they are combined in
a unified distance measure. It should be noticed that vec-
tors k; and g; may have different lengths. To compensate
_ for this difference, a normalization factor is utilized. The
distance d‘]’»e"s is multiplied by \/—%Z where N and N, rep-
resent, respectively, the lengths of k; and g;. The distances
d*"® and dge"s are then combined using the Euclidean norm,

J
d; = /(&2 + (d&ews)2.

as follows:
To take into account different resolutions 27, the distances
d; are combined to obtain the multi-resolution distance mea-

sure:
d=>Y_d;,

j=1

(15)

(16)

where J is the number of scales used in the wavelet trans-
form. To complete this similarity matching procedure, all
samples in the database are organized in decreasing order
with respect to the multiresolution distance d, and a selec-
tion of the M most similar are shown to the user.

4 Experimental Results

To illustrate the performance of our method, we used S-
radiographic images of paper samples, all with resolution
of 280 x 280 pixels, obtained from [7]. For each of these
textures, nine sub-images (140 x 140 pixels) were obtained
(with superposition). Samples of nine different types of pa-
per were used in our experiments, and a total of 81 images
were stored in the database. Figure 3 shows samples of
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the nine different samples qtilized in our experiments. Two
dyadic scales were used (27, for 7 = 1,2). The vectors g;
and k; have, respectively, lengths of 256 and 32.

Figure 3: The nine textures used in the experiments. From
left to right, top to bottom: mdlj44al, pxxe46bl, pxxe50c],
axxs24a5, gxoSadgl, hsma33b3, rshm36bl, msym53a2,
kxa765c¢2.

The performance of the algorithm proposed in the pre-
vious section is iltustrated in Figure 4. The top image is a
sample obtained from texture pxxe50c/, with resolution of
181 x 171 pixels. Please, notice that this sample has a differ-
ent size than the images in the database, showing that this
experiment represents a more general case. The other tex-
tures shown in Figure 4!, from top to bottom, left to right,
are the textures retrieved from the database, in decreasing
order of similarity. The first nine texture retrieved are pre-
cisely the nine representative samples of the paper sample
pxxe50c] previously stored in the database.

1Some of the images in this Figure had their colormaps altered, for
better visualization purposes.



Figure 4: Results of the first similarity matching experiment. First row: sample of the texture pxxe50c!. Following rows:
results shown in decreasing order of similarity, from left to right, top to bottom.

Figure 5: Results of the second similarity matching experiment. First row: sample of the texture hsma33b1. Following rows:
results shown in decreasing order of similarity, from left to right, top to bottom.
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Multiresolution Distances (pxxe50c¢/)
d?ens dgens di"g dg“g
2.09 1.68 0.60 1.32
1.70 1.54 1.46 2.69
2.43 1.89 1.32 2.46
2.72 2.25 1.02 1.96
2.36 2.14 1.14 2.48
1.03 191 2.04 3.39
1.39 2.24 2.85 4.86
1.87 2.06 2.72 4.86
1.61 1.95 3.71 6.70
16.06 16.90 3.98 6.42
16.12 16.99 4.10 6.59
16.05 16.87 4.30 7.04
16.08 16.94 429 6.88
16.76 17.54 2.74 4.70
16.28 17.22 4.09 6.40
16.37 17.41 3.81 6.13
16.37 17.37 3.87 6.24
16.09 16.96 4.63 7.68

Table 1: Density and anisotropy distances (levels 2 and 2%)
from the sample of the texture pxxe50c/ and the images re-
trieved from the database, in decreasing order of similarity.

Table 1 shows the graylevel and anisotropy distances
for the images shown in Figure 4. From top to bottom, the
graylevel and anisotropy distances (levels 2! and 22) from
the user provided sample (obtained from texture pxxeSOc/)
and the first eighteen images retrieved from the database are
shown. These results show that indeed the first matches are
closer to the sample provided by the user.

Figure 5 shows a similar result, for a sample of the
texture hsma33bl with resolution of 220 x 220 pixels. It
should be noticed that this texture is not represented in our
texture image database. Even in this case, our method shows
to be robust, and retrieves textures similar to the given ex-
ample.

Table 2 shows the graylevel and anisotropy distances
for the images shown in Figure 5. From top to bottom, the
graylevel and anisotropy distances (levels 2! and 22) from
the user provided sample (obtained from texture Aisma33b/)
and the first eighteen images retrieved from the database are
shown.

The multi-resolution anisotropy measure proposed in
this work can also be used as an orientation measure for
natural textures, as shown in Figure 6. First line shows two

2Some of the images in this Figure had their colormaps altered, for
better visualization purposes.
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[ Multiresolution Distances (hsma33bl)
d?léns dgens d?hg d;mg
1.02 1.59 1.05 2.00
1.20 1.99 1.32 2.47
1.50 2.30 1.05 2.11
2.93 3.71 3.32 5.32
4.76 6.03 1.04 2.10
3.02 4.08 3.63 5.78
2.47 2.87 4.19 6.76
5.04 6.48 1.64 2.90
2.80 3.64 4.39 7.01
5.69 7.38 1.10 1.99
4.56 5.40 3.70 5.72
5.92 7.56 1.42 2.59
6.00 7.75 1.36 2.45
6.98 9.16 1.17 2.02
6.43 8.15 3.15 5.00
5.86 7.56 4.81 7.82
6.53 8.56 4.86 7.75
8.57 10.75 2.73 4.34

Table 2: Density and anisotropy distances (levels 2! and 22)
from the sample of the texture hsma33b/ and the images re-
trieved from the database, in decreasing order of similarity.

samples of the straw texture, from the Brodatz Album [8].
The second image is rotated 30° with respect to the first one.
In the following rows, the respective polar plots are pre-
sented, at the resolutions 2*,2% e 23. The major semi-axes
of the ellipses indicate the main orientation of the textures.
It can be noticed that the proposed method is consistent
across different scales.

5 Concluding Remarks

A new method for the multi-resolution representation of
stochastic texture images, such as paper and non-woven
textiles, was presented. In the proposed approach, a tex-
ture is decomposed into its multiple resolution components,
using the wavelet transform. At each resolution, two fea-
tures were utilized to represent the texture, namely, the sam-
ple anisotropy that describes the texture directionality, and
the sample graylevel histogram that describes the texture
graylevel distribution. Also, based on these features, a multi-
resolution similarity measure was proposed.

The obtained experimental results indicate that stochas-
tic texture similarity matching can be achieved using our
approach. Also, the eccentricity obtained from equation
(12) may be used as a measure for the “directionality” di-
mension proposed in [1].

. Our future work will concentrate on improving sim-
ilarity matching using statistical information, and test the
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Figure 6: Orientation measurements in multiple scales. Top
row: samples of the straw texture, from the Brodatz Album.
Other rows: respective polar plots, at dyadic scales 2!, 22
and 23,

performance of our method in a large image database.
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