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Abstract.

This paper presents a simple and robust algorithm for estimating the local geometric properties of

intersection curves, namely the tangent, normal, binormal, curvature and torsion vectors at any point. In addition,
two new marching directions that make use of these properties are given.

1 Introduction

The numerical marching method is the most widely used
method for computing intersection curves. This scheme
comprises three primary phases [8, 6]: hunting (start point),
tracing, and sorting. The hunting phase provides starting
point for stepping on the intersection curve. It should lo-
cate all branches of the intersection curve and prevent mul-
tiple copies of the same sequence of points during marching
phase. Hodographs [10], subdivision techniques [3, 9], and
algebraic methods (1, 5] have been applied for handling the
hunting problem. The marching phase computes sequences
of points of an intersection curve branch by tracing out from
a starting point. Incorrect step direction or size may lead
to erroneous results. The sorting phase groups those se-
quences of points into disjoint branches of the intersection
curve. When the points on the intersection curve can be
found sequentially, this phase is trivial.

Most marching methods make use of local differential
geometry or Taylor series expansions about each point of
the intersection curve to control the step. Tracing in the
tangent direction [8, 3], along a circle [2, 13], and along a
parabola [11] are some solutions presented in the literature
and the most used step size is the one dependent on the
curvature [3, 11]. Differential equation system [7, 5] and
continuation method [1] are also used to trace out a branch
of the intersection curve.

When the parametric form of a curve is known its lo-
cal properties, such as tangent, curvature, normal, binormal,
curvature, and torsion, can be derived exactly. However, in
the case of marching schemes, these properties are used for
determining the unknown curve. Motivated by the applica-
tions of differential properties in determination of march-
ing directions, Ye and Maekawa [14] proposed algorithms
based on Differential Geometry to compute the local prop-
erties of the intersection curve as long as the intersection
points are obtained.
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Using torsion and the derivative of the curvature, we
could test other marching directions inspired in classical
Differential Geometry. Instead of using approximative curves
that have contact of first and second order, we did some ex-
periments with curves that have a contact of third order with
the intersecting curve. However, after several attempts we
realize that the formulas proposed by Ye and Maekawa [14],
although theoretically correct, are not computationally ro-
bust at the intersecting points where the parametric surfaces
are not enough transversal. The reason arises from the lim-
itations of computer-based representation for small devia-
tions of the intersecting surface normal vectors.

In this paper we present an alternative way for esti-
mating the properties of the intersection curve of any two
regular surfaces. The only requirement is that the normal
vectors of the two intersecting surfaces are known. Our
algorithm is based on the tangent and normal vectors esti-
mated by Wu and Andrade [13]. Moreover, we used the
results to derive more accurate marching directions.

Section 2 introduces some basic concepts of Differen-
tial Geometry and Section 3 summarizes some related re-
sults. In Section 4 we present our basic idea and its im-
plementation. We also show that the estimated values are
good approximations to the theoretical values. Section 5
illustrates the application of our algorithm to intersection
problems. Finally, some concluding remarks are drawn in
Section 6.

2 Basic Concepts

To be self-contained we summarize in this section some
concepts to be used in Section 4 and fix notations for them [12,
4].

A parametric curve & = a(u) in 13,

a(u) = (z(u),y(u), z(u),u € [a,b] C R,



is called regular if its tangent vector

a(u) = (&(u),y(u), 2(u)) # 0

never vanishes.

If the curve is at least twice continuously differen-
tiable, the deviation of a curve from a straight line at any
point u can be measured by its curvature
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where x denotes the cross product of two vectors. If k(u) =
0 Vu, then the curve reduces to a straight line. An isolated
point at which the curvature vanishes is an inflection or a
flat point. From the curvature, one can derive the radius
r(u) of the (osculating) circle (r(u) = n_(lu—)—) whose first
and second derivatives agree with those of the curve at the
point a(u).

If the curve is at least three times continuously differ-
entiable and k(u) # 0, one can measure the deviation of a
curve from being planar by its torsion 7, given by
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where & denotes the third-order derivative of cv. The torsion
7(u) vanishes for planar curves. The functions «(u) and
7(u) are independent of the parameterization and determine
uniquely a curve in 3. When the parameter s is such one
that | &(s) | = 1Vs, we say that the parameterization of the
curve is by arc length s.

To any point a{u) on the curve a we may introduce
a special coordinate system to facilitate the description of
local curve properties. This coordinate system with origin
at a(u) has axes X, Z, and Y, respectively, in the directions

_a(v)
W= T
afu) x &(u)
W= Tawxawr @
n(u) = b(u) x t{u).

The vectors t(u), n(u), and b(u) are called, respec-
tively, (unit) tangent vector, (unit) normal vector, and (unit)
binormal vector. This reference system or trihedron is called
the Frenet frame. The associate planes are: osculating plane
(tn), normal plane (nb), and rectifying plane (¢b) (Figure 1).

One can get the so-called Frenet formulas for a curve
« parameterized with respect to arc length s

t'(s) = +(s)n(s)
n'(s) = =—ki(s) —7b(s)
b(s) = —7n(s)
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Figure 1: A Frenet frame.

From these equations and Taylor’s formulas follows
that when As — 0 the projections of a(s) on the three
planes of the Frenet frame behave near the point a(s,) like
the curve

X(S) - s — H‘(SGO) S3
Y(s) = n(;0)52 ﬁlgo)s3 “4)
Z(S) — _"‘.‘(30)67-(80)33

It is also shown that in the neighborhood of a(s,) the
curve a(s) has third-order contact to a circular helix set at
its Frenet frame

- § 8§ bs
ﬂ = 6(5) = (acos -,asm-—, "'_)7
c ¢ ¢

(3)
where

_ 7(85)
K2(80) + 72(50)

£(80)
T K2(s,) + 72(s0)

,c=+vVa?+b2.

In particular, if 7(s,) vanishes, the curve behaves like a
circle.

As already mentioned, the curvature and the torsion
are deviations of a curve from a straight line and from a os-
culating plane, respectively. Geometrically, with the use of
Frenet frame, it is equivalent to say that they are, respec-
tively, the angular velocities of ¢(s) and b(s) with As — 0

(t(s) — t(s = As))

o) = Jim, SO ©
b b(s—A
e

The torsion 7(s) may be positive or negative. It is positive
when the vector a(s) — a(s — As) is, with regard to the
osculating plane, in the same half-space of the vector b(s),
otherwise it is negative.



We also have that

(s i 2sin 422 ®
MOY AsSo a(s) ~ a(s — As)

sign[r(s)] = sign[(a(s) —a(s — As)) - b}, (9)
where ¢(As) is the angle between the binormals at a(s)
and a(s — As).

Consider a parametrized surface r = r(u,v) in %3,
r = (z(u,v),y(u,v), z(u,v)), u,v € [a,b]x[c,d] C R
If z, y, and z are differentiable and
Ty X T # 0 for (u,v) € [a,b] x [¢,d),

we say that r(u, v) is a regular surface. The tangent vector
to a surface curve r(u(t), v(t)) can be computed from

. _Or it or :
T =— —
Ju v
In particular, the tangents to the isoparametric curves
are given by
or or
— Ty= .
ou ' Qv
They are nowhere tangent to each other and determine
the surface tangent plane. The normal vector

N (u,v)

Tu =

Tu X Ty

_|7‘uxr,,|

(10)

together with the unnormalized vectors r,, and r, form a
local coordinate system at 7(u,v). This frame plays the
same important role for surfaces as the Frenet frame does
for curves.

Suppose that we cut the surface r(u,v) at P with a
plane that contains the normal vector at P. This plane in-
tersects r(u, v) along a plane curve r{u(t), v(t)) whose cur-
vature is called the normal curvature &, of the surface in the
direction 7 (u(t), v(t)) at P. This curvature is given by
L(2)? + 2Mud + N(0)?

E(1)? +2Fun + G(0)2 ' -

Kn =

11

where

E=ry-ry, F=ry-ry,, G=ry -1y
L:Tuu‘Na M:"'uv'Ny N:"'vv'N

are, respectively, the first and second fundamental form co-
efficients of r(u,v).

When two regular surfaces S; (u,v) and Sz(s,w) in-
tersect, we say that the intersection is transversal at a point
Si(u,v) = Sa(s,w) = P when their normal vectors
Ns, (u,v) and N, (s,w) are not parallel at that point. If
an intersection is transversal at P, the tangential direction
of the intersection curve at P is given by

t = Nsl(uav) XNS2(577-U)
B |Nsl(uiv) XN’sz(S,’UJ) |

(12)
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3 Previous Work

Wu and Andrade [13] proposed a robust algorithm for es-
timating the osculating circle at the intersection point P
from the tangent vector at P, tp, and the tangent vector
at the previous intersection point Q, tg. It is robust in the
sense that as far as the tangent vectors are determinable the
method works. An approximate osculating circle at P is
constructed as follows (Figure 2):

Center (C): the intersection of three planes: the plane that
contains ) and has g as normal vector, the plane that
contains P and has ¢p as normal vector, and the plane
that contains P and has anormal tp x ¢q.

Radius (R): the distance between C and P.

Then, the curvature and the normal vector at P are, respec-
tively,

(13)

Figure 2: An estimated osculating circle.

Ye and Maekawa [14] derive the local transversal in-
tersection curve properties at a point P from the local prop-
erties of the intersecting surfaces, F' and G, at that point.

The tangent vector of the intersection curve is given by
Eq.(12). If the surfaces are in parametric form, Eq.(10) can
be used for computing the surface normal vectors.

The normal vector of the intersection curve is derived
as functions of normal curvatures and normal vectors of the
two surfaces

Knp — Kng cosf Kna — Knp cosf
nE G P NE + =€ - ;‘g Na, (19)
in

- sin” ¢
where cos@ = Nr - N and k,, can be evaluated with help
of Eq.(11).

The curvature and its derivative with respect to arc
length (notation *“/”’) can be computed, respectively, from

1
"= Tsind |

V(Enp)? + (Kng)? = 26npkng cosd (15)



C1(u) = ((4 + cos(4u)) cos u, (4 + cos(4u)) sin u, sin(4u)), Au = 0.01

u Point K T K
Exact Estimated Ratio Exact Estimated Ratio Exact Estimated Ratio
-9.86 | (-3.47,1.61,-0.98) | 0.56902 | 0.56916 | 0.99975 | 0.51416 0.53178 | 0.96687 | -0.00685 | -0.00371 | 1.84621
-9.85 | (-3.52,1.59,-0.99) | 0.56855 0.56878 0.99960 | 0.49574 0.51295 0.96646 | -0.00981 -0.00680 1.44183
-9.84 | (-3.57,1.57,-0.99) [ 0.56793 0.56823 0.99945 | 0.47778 0.49457 0.96605 | -0.01261 -0.00975 1.29293
-9.83 | (-3.63,1.55,-0.99) | 0.56714 0.56753 0.99931 | 0.46028 0.47665 0.96566 | -0.01525 | -0.01255 1.21488
-0.02 | (4.99,-0.10,-0.08) | 0.51242 | 0.51255 | 0.99974 | 0.12619 0.12716 | 0.99238 | -0.00352 | -0.00527 | 0.66825
-0.01 | (4.99,-0.05,-0.04) | 0.51225 0.51232 0.99985 | 0.12562 0.12622 0.99525 | -0.00176 | -0.00352 | 0.50076
-0.00 | (5.00,-0.00,-0.00) | 0.51219 0.51221 0.99996 | 0.12543 0.12566 0.99817 | -0.00000 [ -0.00176 -
0.01 (4.99,0.05,0.04) 0.51225 0.51221 1.00007 | 0.12562 0.12548 1.00111 | 0.00176 -0.00000 -
0.02 (4.99,0.10,0.08) 0.51242 0.51232 1.00018 | 0.12619 0.12568 1.00405 | 0.00352 0.00176 1.99821
C3(u) = (cos(u),sin(u) — 1, 2sin(x/2)), Au = 0.01
u Point K T Py
Exact Estimated Ratio Exact Estimated Ratio Exact Estimated Ratio
-3.96 | (-0.68,-0.27,-1.83) | 0.93847 0.93672 1.00186 | 0.21801 0.22026 0.98981 | 0.32499 0.32540 0.99874
-3.95 | (-0.69,-0.27,-1.83) | 0.94197 0.94022 1.00185 | 0.21593 0.21819 0.98964 | 0.32475 0.32524 0.99850
-3.94 | (-0.69,-0.28,-1.84) | 0.94545 0.94371 1.00184 | 0.21382 0.21610 0.98947 | 0.32444 0.32500 0.99826
-3.93 | (-0.70,-0.29,-1.84) | 0.94893 0.94719 1.00183 | 0.21170 0.21399 0.98930 | 0.32405 0.32469 0.99802
-0.02 | (1.00,-1.02,-0.02) | 0.50002 0.50004 0.99996 | -0.37499 | -0.37498 1.00002 | -0.00198 | -0.00298 | 0.66661
-0.01 | (1.00,-1.01,-0.01) | 0.50000 0.50001 0.99998 | -0.37499 | -0.37499 1.00001 | -0.00099 | -0.00198 | 0.49997
-0.00 | (1.00,-1.00,-0.00) | 0.50000 0.50000 0.99999 | -0.37500 | -0.37499 1.00000 | -0.00000 | -0.00099 -
0.01 (1.00,-0.99,0.01 ) | 0.50000 0.50000 1.00001 | -0.37499 | -0.37500 | 0.99999 | 0.00099 -0.00000 -
0.02 (1.00,-0.98,0.02 ) | 0.50002 0.50001 1.00002 | -0.37499 | -0.37500 | 0.99997 | 0.00198 0.00099 2.00007
Table 1: (1,4) curve and a space curve of degree four.
and (Ang — Anpcos8)(b- Ng)), (17)
£ =" n, (16)

where
" 2, AnF — Apgcosf Ang — Anpcosf ' P .

M= K2+ N+ Ng. where the curvature « is given by Eq.(15) and the binormal

sin? 6 sin® 6

A, of each surface is a function of its second form coeffi-
cients, derivatives, and normal vector N

An 3(Lu'v" + M(u"v' +w'v") + Nuv") +
PuwuN (W)2 + 3Py N (w') %0 +
37'uvaul('Ul)2 + Tvv'uN(vl)S-

Note that the derivatives u/, u”, v' and v" can be ob-
tained by solving the following linear systems

Ev' + Fv'
Fu' + Gv'

Ty -t

and
Eu" + Fv"

il

Fu" + Gv"

1l

They also show that the torsion at P can be obtained
from

_—_l——((/\nF — Angcos8)(b- Nr) +

T )
Kk sin® 6
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vector by the expression £ X 7.
In addition, they derived a set of formulas for com-
puting the differential properties of tangential intersection
v

curves Ny = Ng = N). In particular, by setting w = %
and u = Z—i, the tangent vector may be given by the expres-
sions

W AF,
|wFu+Fy}?
FutpFy

|FutnFo?

not definable,

ifby; #0
else if by = 0 and baa # 0,
otherwise
(18)
where
b1 = a%lLG + 2a11a9: Mg + a%l Ng — L,
bia = a1a12La + 2(a11a2: + az1a12) Mg + az1a3, Ng —
Mg, and
bao = a%zLG + 2a32a20 Mg + a%zNG — Np, with
_ det(F,,Gy,N) _ _det(Fy,Gw,N)
1= VEcGa—(Fg)?’ 2= VEcGe~(Fg)?’
ag) = LGP N)  nd gy = _det{Guw,Fo N)
VEGcGo—(Fc)? VEcGe~(Fg)?

a1




C1(0.0): Exact k = 0.461539, Exact £’ = -0.00000, Exact torsion= 0.068376

Au & Esgrmnz:ied (K,) ! Eslt:i:lac.:ii (K') T EE:;Z;Ed (,’_)
0.2 0.466204 0.989992 -0.022913 0.000000 0.119135 0.573938
0.1 0.462718 0.997451 -0.012992 0.000000 0.080786 0.846387
0.01 0.461550 0.999975 -0.001342 0.000000 0.068499 0.998203
0.001 0.461539 1.000000 -0.000134 0.000000 0.068377 0.999982
0.0001 | 0.461538 1.000000 -0.000013 0.000000 0.068376 1.000000

C>(0.0): Exact s = 0.5, Exact s’ = 0.00000, Exact torsion=-0.375000

Au P Estimﬁifed (Ii) I‘L' Eﬂi,:z:id (K’) s Estirm"i:ed (T)
0.2 0.500706 0.998590 -0.020055 0.000000 -0.374626 1.000999
0.1 0.500176 0.999648 -0.009965 0.000000 -0.374907 1.000248
0.01 0.500002 0.999996 -0.000994 0.000000 -0.374999 1.000002
0.001 0.500000 1.000000 -0.000099 0.000000 -0.375000 1.000000
0.0001 | 0.500000 1.000000 -0.000010 0.000000 -0.375000 1.000000

4 Our Proposal

Table 2: Improvements on problematic points.

Because of the limitation on the computer-based represen-
tation, the Eqs.(14—-17) only work well when

cosf =Np -Ng<1l—c.

19)

They are numerically unstable when sin 6 assumes very small
values. This means that in the neighborhood of a non-
transversal intersection point, wrong values for k and 7 are
generated. It leads us to look for a more robust algorithm,
even though it delivers approximations instead of exact val-

ues.

Similar to the one proposed by Wu and Andrade, our
algorithm depends solely on the computability of the tan-
gent vectors of the intersection curve. It is based on the
intuitive geometric meaning of the local curve properties
expressed by Eqs.(6) and (7).

From Eqgs.(12) and (18) one can easily get the tan-
gent vector for transversal as well as tangential intersection
point. The normal vector and the curvature can be evalu-
ated by Eq.(13). Knowing the tangent and the normal vec-
tors, the binormal vector is computed from the cross prod-
uct b = ¢ X n. In this way, a Frenet frame may be defined at
any traced intersection point. Eqs.(8) and (9) let us estimate
the torsion 7 from the deviations of these Frenet frames.

Finally, considering two successive points a(s — As)
and «(s) on the intersection, the derivative of the curvature

is simply given by

k'(s) = lim

k(s) — k(s — As)

As—0

(s) —a(s — As)’

(20)

We carried out a set of tests in known parametric curves
for comparing the estimated values with the exact ones com-
puted from Eqs.(1-3). Table 1 presents the deviations of the
* estimated values from the exact ones when the Frenet frame
varies with u for two curves: a curve of type (1,4) on a torus
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(it is a helix which turns four times around the torus) and a
space curve of degree four.

For simplicity, we considered that Aw is constant, in-
stead of keeping arc length constant. It is worth noting that,
except at the points where the sign of the torsion changed,
the estimated values are close to the exact ones even with
relatively large step sizes. The sign of an estimated torsion
also agrees with the sign of the corresponding exact one.

For the problematic points it is expected that smaller
step sizes will improve the estimation. Table 2 summarizes
the improvements of the estimated values for two problem-
atic points, C(0.0) and C(0.0), when we reduced the step
size Au. Observe that the smaller is Au, the closer is the

estimated values to the exact ones.

5 Marching Directions

Theoretically we know that the higher the contact order of
the intersection curve and a curve along which we step,
the more consecutive points they have in common. Hence,
one application of our algorithm and the one proposed by
Ye and Maekawa [14] is to compute the intersection curve
more accurately by stepping in the direction of a curve that
has a contact of higher-order with the intersection curve,
such as the ones represented by Eqs.(4) and (5). We call the
tracing method along Eq.(4) a polynomial one, and along
Eq.(5), a helical technique.

The marching direction is used for estimating the next
tracing point. Because of the trade-off between efficiency
and accuracy, that point is usually not on the intersection
curve. Newton iterations are required to improve the ac-
curacy of reached points at each step. It is clear that the
near lies the point to the curve [6], the less iterations are
necessary to improve its coordinates in relation to the exact
intersection curve. Hence, it is interesting to know whether
marching along the curves given by Egs.(4) and (5), which




sin(4u) + v(0.00000001 #* sin(4u) — 0.99999999 * cos(4u)),
0<u<2rand -0.5<v<0.5
G1(s,w) = [(4 + cos(s)) sin(w), (4 + cos(s)) cos(w), sin(s)],

F1(u,v) = (4 + cos(4u)) cos(u) + v(0.00000001 * cos(4u) + 0.99999999 * sin(4u)) * cos(u),
(4 + cos(4u)) sin(u) + v(0.00000001 * cos(4u) + 0.99999999 * sin(4u)) * sin(u),

0<s,w<2n
Traced Points Cos(8) K T K
Ye/Maek. | Wu/Andrade | Ye/Maek. Our Est. Ye/Maek. Our Estimation
(-3.466 1.618 -0.985) | 0.9999999 | 0.544909 0.569099 0.654178 | 0.518759 | -0.0000000001222 | -0.0063964385
(-3.475 1.615 -0.986) | 0.9999999 | 0.719336 0.569047 0.747620 | 0.520539 | -0.0000000000593 | -0.0052067827
(-3.4851.611 -0.987) | 0.9999999 | 0.571359 0.568970 0.474029 | 0.511158 0.0000000000399 -0.0077316070
(-3.494 1.608 -0.988) | 0.9999999 infinity 0.568898 -0.00000 0.511021 infinity -0.0072266777
Fy(u,v) = (cos(u),sin(u) — 1,v),
0<u<2nm -3.0<v<3.0,
G2(s,w) = (2cos(s) cos(w), 2 cos(s) sin(w), 2sin(s)),
0<s<2m0<w<.
Traced Points Cos(8) K T K
Ye/Maek. | Wu/Andrade | Ye/Maek. Our Est. Ye/Maek. Our Estimation
(-0.728 -0.315 1.836) | 0.1573029 | 0.939439 0.93781 0.217445 | 0.219372 0.316894 0.325097
(-0.722 -0.308 1.840) | 0.1539310 | 0.942687 0.94106 0.215500 | 0.217445 0.317005 0.324930
(-0.715 -0.301 1.843) | 0.1505841 0.945933 0.94431 0.213537 | 0.215500 0.317039 0.324695
(-0.709 -0.295 1.847) | 0.1472627 | 0.949175 0.94755 0.211556 | 0.213537 0.316992 0.324390

Fs(u,v) = (3.5 + cos(3.0u)) cos(u), (3.5 + cos(3.0u)) sin(u), v),
0<u<2r-10<v<10,
G3(s,w) = (3.5 + cos(w)) cos(s), (3.5 + cos(w)) sin(s), sin(w)),
-7 <s,w <27

Traced Points Cos(6) K T P
Ye/Maek. | Wu/Andrade | Ye/Maek. Our Est. Ye/Maek. Our Estimation
(1.880 1.988 0.645) -0.623760 | 0.485811 0.485389 0.969451 | 0.975825 0.051255 0.084414
(1.888 1.987 0.651) -0.618415 0.486647 0.486228 0.963098 0.969450 0.051480 0.083898
(1.896 1.986 0.656) -0.613077 | 0.487478 0.487061 0.956767 | 0.963097 0.051679 0.083360
(1.904 1.985 0.662) -0.607749 | 0.488303 0.487889 0.950459 | 0.956766 0.051851 0.082801

Table 3: Determination of local properties.

require higher-order derivatives, is more efficient than march-
ing along a circle. Moreover, it is worth evaluating the
trade-off of our algorithm in relation to the algorithm pro-
posed by Ye and Maekawa [14] in the context of the robust
and efficient computation of intersection curves.

In this work we restricted our comparisons to the para-
metric surfaces. The algorithm proposed by Ye and Maeka-
wa provides an exact computation of the local properties of
the intersection curve. However, for the cases where the
condition stated by Eq.(19) is not satisfied (i.e. the normal
vectors of the intersecting surfaces are almost parallel), the
computation of k, &', and 7 is numerically unstable. One
reason comes from the term rrlle' in Eqs.(14-17).

Table 3 presents the local properties of the intersection
curve determined by our algorithm and by the algorithm of
Ye and Maekawa, as we traced the intersection curve with
step size L = 0.01.

The first pair of surfaces, Fj(u,v) and G1(s,w), is
almost non-transversal (cosé ~ 1.0). In this case our al-
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gorithm was able to determine local properties of any point
of the intersection curve (Figure 3), whereas the algorithm
proposed by Ye and Maekawa could not provide correct
data for tracing it (Figure 4). The second pair, F5(u,v)
and G2(s,w) (Figure 5), and the third pair, F5(u,v) and
G3(s,w) (Figure 6), have also some non-transversal inter-
section points. Observe, however, the accuracy of Ye/Mae-
kawa technique in determining local properties for transver-
sal intersection points.

The exact representation of the intersection curve of
the first pair of surfaces and the second pair are, respec-
tively, C1 (u) and Cy(u). Note that two lists of points are
provided in the Table 1. It is because that we could not be
able to get exactly the same sequence of points by applying
two different methods for determining local curve proper-
ties. We performed our comparisons between the most clos-
est traced points.

Comparing the values in Table 1 with the values in
Table 3, we may see that, except in the neighborhood of the



Surfaces L Method #points 1it 2t 3it 4it Sit >5it
Ruled Surface/Torus | 0.1 Tangential 1371 35.59% | 0.00% 0.00% | 0.00% | 0.00% | 64.41%
Circular 1339 | 33.46% | 0.00% 0.00% | 0.00% | 0.00% | 66.54%

Polynomial | Our Estimation | 1339 | 33.01% | 0.00% 0.00% | 0.00% | 0.00% | 66.99%

Ye/Maekawa 187 2.54% 0.00% 0.00% 0.00% | 0.00% | 97.46%

Helical Our Estimation | 1339 | 32.49% | 0.00% 0.00% | 0.00% | 0.00% | 67.51%

Ye/Maekawa 655 13.97% | 0.00% 0.00% | 0.00% | 0.00% | 86.03%

Torus/Gen. Cylinder | 0.1 Tangential 1215 0.00% | 0.00% | 100.00% | 0.00% | 0.00% | 0.00%
Circular 1181 0.00% | 0.00% | 100.00% | 0.00% { 0.00% | 0.00%

Polynomial | Our Estimation | 1181 0.00% | 26.08% | 73.92% | 0.00% | 0.00% | 0.00%

Ye/Maekawa 1181 0.00% | 9433% | 5.67% | 0.00% | 0.00% | 0.00%

Helical Our Estimation | 1181 0.00% | 32.09% | 67.91% | 0.00% | 0.00% | 0.00%

Ye/Maekawa 1181 0.00% | 9433% | 5.67% | 0.00% | 0.00% | 0.00%

Sphere/Cir.Cylinder | 0.1 Tangential 1160 | 0.00% 0.0% 99.83% | 0.17% | 0.00% | 0.00%
Circular 1098 0.00% | 0.00% | 99.82% | 0.18% | 0.00% | 0.00%

Polynomial | Our Estimation | 1098 0.00% 1.09% | 98.73% | 0.18% | 0.00% | 0.00%

Ye/Maekawa 1098 0.00% | 90.16% | 9.66% | 0.18% | 0.00% | 0.00%

Helical Our Estimation | 1098 0.00% | 0.00% | 99.82% | 0.18% | 0.00% | 0.00%

Ye/Maekawa 1098 0.00% | 55.74% | 44.08% | 0.18% | 0.00% | 0.00%

Table 4: Comparisons of marching directions.

Figure 3: Tracing Ruled Surface/Torus with local properties
obtained by our technique .

non-transversal intersection point, the values computed by
the Ye algorithm is mere accurate than the ones estimated
by our algorithm.

It is expected that, in comparison with methods that
trace along curves of degree 2, polynomial and helical tech-
niques require less iterations for improving the coordinates
of the the obtained points. For illustrative purpose we present
in Table 4 the number of iterations required for tracing the
intersection of three given pairs of surfaces.

It is noticeable the superiority of the Ye algorithm in
handling transversal intersections that satisfy the condition
expressed by Eq.(19). However, when that condition is not
fulfilled, marching along curves with a contact of higher
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Figure 4: Tracing Ruled Surface/Torus with local properties
computed by Ye/Maekawa technique .

order is not possible. Our algorithm does not suffer this
shortcoming. Its simplicity favors numerical robustness. At
points in the neighborhood of the non-transversal intersec-
tion point, it is still able to estimate the local properties with
the same precision as at other points.

6 Conclusions

We presented a simple algorithm for estimating some local
curve properties and applied them to trace an intersection
curve of two parametric surfaces along curves with a con-
tact of third order.

In the cases tested, our algorithm for estimating geo-



Figure 6: Intersection Generalized Cylinder/Torus.

metric parameters has shown more robust than the Ye algo-
rithm, since it can deal with the non-transversal intersection
points that do not satisfy Eq.(19). Some examples were pro-
vided to attest this statement.

Additionally, from our numerical experiments we ob-
served that the proposed polynomial and helical marching
directions present better performance than the directions
proposed in the mentioned work — less iterations were needed
to improve the obtained point at each step. However, an ac-
curate analysis of our proposed tracing methods demands a
deeper study on topological and geometrical aspects. This
discussion will depend on: (1) transversality conditions be-
tween the intersecting surfaces and the topological nature
of the intersection curves (bifurcation points and their na-
tures, and knotted or unknotted curves for instance), and
(2) estimation for total variation of curvature and torsion,
including torsion sign discussion.
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