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Abstract.

The Distance Transform (DT) is a morphological erosion of the binary image by a given structuring

function, that dictates the distance metric in the transformation. There are many known algorithms and structuring

function decompositions to efficiently implement a morphological erosion.

Most of the erosion algorithms

are classified as parallel, sequential raster (and anti-raster), and propagation. Based on these classification and
decomposition, we review and classified most of the DT algorithms reported in the literature. As a result of this
study, we have contributed not only to better classify and understand the diversity of the DT algorithms in the
literature, but also to create a collection of efficient erosion algorithms suitable to different computer architectures.

Keywords ~ Mathematical morphology, image processing, gray-scale morphology, algorithms, distance
transformation, erosion, structuring function decomposition.

1 Introduction

The Distance Transformation (DT) is one of the classical
operators in image processing and can be defined as fol-
lows. Given a binary image with values {0, k}, where k #
0 represents the object and 0 represents the background,
the DT returns gray-scale image, where the value of each
pixel represents the minimum distance to the background.
In spite of this definition be simple, there are several DT al-
gorithms, however they share common concepts that allow
their classification. We can implement the DT exploring
the different kinds of metric: City-Block, Chessboard, Oc-
tagonal, Chamfer and Euclidean [Bor86]. We classify the
DT algorithms in three categories depending on the order in
which the pixels are scanned [SM92]: parallel; raster and
anti-raster order [RP66, Bor86]; and propagation [Vin92].

The main goal of this work is to model the DT algo-
rithms as an erosion as introduced by Shih and Mitchell
[SM92]. Thus, for each kind of erosion implementation,
parallel, sequential and propagation, and for each kind of
the structuring function decomposition, it is possible to clas-
sify most of the algorithms reported in the literature.

Vincent [Vin92] made a classification of the DT, how-
ever he did not analyze the fact that the DT algorithms are
morphological erosions. Rosenfeld and Pfaltz [RP66] de-
fined a first sequential algorithm for the DT. We rewrite of
the original form of this algorithm as a sequential erosion.
Barrera and Hirata [BHJ97] rewrote the reconstruction al-
gorithm using queue. They used the queue algorithm for the
dilation through the border concept. We also use this bor-
der concept to define algorithms of DT using propagation
erosions.
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The structure of this article is the following: in the next
section we present some basic concepts about mathematical
morphology, metric and DT using erosion. In the third sec-
tion a classification of the erosion algorithm is presented.
Then, we introduce a classification for DT in the section
four. Finally, in section five we describe the conclusion and
future directions.

2 Basic concepts

In this section we introduce some necessary basic concepts
for this work. In the first subsection we describe the mathe-
matical morphology, the second subsection we define some
metric spaces and the third subsection we define DT
through the morphological erosion.

2.1 Mathematical morphology

An elegant form to solve image processing problems is the
utilization of a consistent theoretical base. One of these the-
ories is the mathematical morphology, created in the 60’s
by Jean Serra and George Matheron at the Ecole Nationale
Superiéure des Mines of Paris, in Fontainebleau, France. In
this theory, we do transformations between lattices, which
are called of the morphological operator. In the mathemat-
ical morphology, we have four classes of basic operators:
dilations, erosions, anti—dilations and anti~erosions, which
are called elementary lattice operators. Banon and Bar-
rera [BB93] proved that all of the morphological operators
can be obtained from combinations of these elementary lat-
tice operators, together with the union and intersection op-
erations. Besides, when the lattices own a sup-generating



family, these operators can be characterized by structuring
functions.

Let Z be the integer numbers set, E C Z? the do-
main of the image and K = [0, k] C Z an integer numbers
interval representing the possible gray-scale of the image.
The translation invariant erosion operator in gray-scale, €y, :
KE — KE (KE, it reads set of the functions of E in K),
is defined as [Ser82, SM92]:

eo(f)(z) = min{f(y)-bly —2) : y € (B +2) NE}, (1)

where f € KB,z € E, B € P(Z%) (P(E) is the
set of the parts of E and B is called structuring element),
B+z ={y+z, y € B} (translation of Bby z) and bis a
structuring function defined on B with b: B — Z. When
the b elements are all zeros, b is called flat structuring func-
tion, otherwise, non-flat. Let v € Z be, we define t — t—v
in K by

0-v =0 ift<kandt—v <O0;
t-v=t-v ift<kand0<t—v<k;
t—v==k ift<kandt—v>k;
t—v==k YveZ.

Using this erosion operator we can obtain the DT, as
we will see in the section 2.3.

2.2 Metric

Letz andy € Z2. d(z,y) is a distance between z and y, if:
@) d(z,y) = d(y, z);
() d(z,y) 2 0;

(iii) d(z,z) =0.

If 2v and v, below, also are satisfied, then d it is a met-
ric.

(iv) d(z,y) =0<=z=y;
v) d(xvy) < d(]"’ z) + d(zvy)'

Some kinds of metric for d(z, y), where z = (z1,z2) €
Z? andy = (y1,y2) € Z2, are presented as follows:

City-Block: dy(z,y) = |1 — y1| + |72 — v2[;
Chessboard: dg(z,y) = max{|z1 — 1], |z2 — y2|};

Euclidean: dg(z,y) = \ﬁm - 1) + (22 — y2)*.

In our studies we work with the gray-scale as being a
subset of the integer numbers Z. For the Euclidean metric,
we work with the squared Euclidean distance (dg)? € Z,
to stay with integer images.
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We define distance function of a pixel x to a set X, as:
d(z, X) = min{d(z,y) : y € X}.

The distance function (denoted ¥ 4(f) or simply DT)
is defined as:

Ya(f)(z) =d(z,{y € E: f(y) =0}),

that attributes for each pixel of the object the minimum dis-
tance value to the background.

2.3 DT using erosions

Shih and Mitchell were the first to show that the DT can be
obtained by the morphological erosion using a structuring

function bg applied to a gray-scale image f of values 0 and
k:

a(f) = v (f)

The radius of bg and the value k£ must be larger than the
largest distance of the object in f. The origin of b is zero
with decreasing negative values from the origin. The shape
of b depends on the metric used in the DT.

A further requirement of this DT operator is the idem-
potency, i.e., if we apply the erosion by bg again, the result
remains the same:

€bs (€06 (f)) = ebe (f)-

For example, . the Figure 1 show bg for the metric
City-Block, Chessboard, Octagonal and square of the Eu-
clidean', considering that the origin is in boldface and that
the largest distance in the resultant image is 2.

In Figure 2b is the illustration of the erosion of the bi-
nary image f (Figure 2a) by bg, using the Euclidean metric.
As the largest distance inside the object is 2, it is enough to
work with b, of the Figure 1d.

3 Erosion efficient algorithms

The direct application of the erosion by a structuring func-
tion of size proportional to the larger object of an image is
inefficient. It is possible to decompose the structuring func-
tion bg to obtain faster implementation.

There are two main classes of algorithms in the image
processing literature since the decade of 60. The paral-
lel algorithms (or iterative) and the sequential algorithms
(or recursive). Inspired mainly on the works of Rosenfeld
and Pfaltz [RP66, RP68], Shih and Mitchell [SM92], Vin-
cent [Vin92] and Barrera and Hirata [BHJ97], we propose
a classification for the erosion and for DT algorithms.

'We are working with the squared Euclidean metric to keep the gray-
scale values as integers.
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Figure 1: Kinds of metric for structuring function bg:
(a) City-Block, (b) Chessboard, (c) Octagonal and (d) Eu-
clidean.

3.1 Parallel erosion

In the parallel algorithms, the pixels are processed indepen-
dently of the sweeping order in the image, depending just
on the pixels values of the input image f and of the neigh-
borhood b.

Below is a pseudo-code of the parallel erosion:

Function g = eroPar(f,b)
for all z € E in parallel

g9(z) = min{f(y) ~b(y ~z): y € (B+z)NE}

This pseudo-code is simple, however it is slow if we
work directly with bg. To justify this affirmation, consider
the next definitions:

Let B; € P(E)and b; : B; = Z, wherei = 1,.. .k,
then we define the gray-scale Minkowski Addiction of b; by
b; [Ser82, SM92], as: Vx € B; @ B;,

(bs ® b) (@) = max{bi(y) + bz —y) : y € (B; +2)},

where j = 1,.. .k, Ev',v ={z € E: —z € B;} (reflection
of B;) and B;® Bj is the Set Minkowski Addiction? (binary
images).

We can generalize the Minkowski addiction in gray-
scale, doing:

bG :bl®®bk,
where {b;,---,by} are the elements that decompose b¢.
When exists a b such that,
bg=b® - Db,
e —

k times

ZNote that we use the same symbol for Minkowski addiction over bi-
nary images (represented by capital letters) and over gray-scale images
(represented by minuscule letters).
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Figure 2: (a) Input image f and (b) DT = e (f).

then we just write bg = kb.
An erosion property is [Ser82, SM92]:

b () = €b (- (€6, (F)) ) )

We can notice that it is more efficient to work with
the decomposition of bg in the parallel erosion. This also
applies for the raster and propagation erosions, as we will
see in the next sections.

For example, let b; be of dimension 3 x 3 and f of
dimension n x n. Then e, (f) requires (3k — 1)?>n? mem-
ory accesses, while 3, (- -+ (€p, (f)) - - -) requires 9kn? ac-
cesses. The value k is, in the worse case, the value of the
diagonal of the rectangle E.

Figure 3a, b and c, show the structuring functions ex-
amples, when b; are all equal in the decomposition of bg =
kb for the metrics City-Block, Chessboard and Octagonal,
respectively.

Other kinds of decompositions for bg are related to
Chamfer 3-4 and Chamfer 5-7-11 metric, shown in Figures
4a and 4b, respectively [Bor86]. The Chamfer metric was
created to approximate the Euclidean metric.

Huang and Mitchell [HM94] have shown that the Eu-
clidean metric function structuring bg can be decomposed
in distinct 3 x 3, b; (see Figure 5).
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Figure 3: Elementary structuring function used in the de-
compositions of the metrics: (a) City-Block, (b) Chessboard
and (c) Octagonal.
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Figure 4: Elementary structuring function used in the de-
compositions of the metrics: (a) Chamfer 3-4 and (b)
Chamfer 5-7-11.

3.2 Sequential raster erosion

Unlike the parallel algorithm, in the sequential case, as the
pixel are processed, the new computed pixel, rather than the
original value, is used in processing any succeeding pixels
which have it as neighbor.

The sequential algorithms are classified based on the
order of the pixel accesses of the input image. The two most
common orders are raster (and anti-raster) and propagation.
For the sequential erosion, we call sequential raster ero-
sion and propagation erosion corresponding to these type
of pixel accesses.

Consider an image f with domain E of dimensions
m x n = |E|. A pixel in E is denoted by the ordered pair
(3,j),where0<i<m—-land0<j<n-1

We define a sweeping in f in the raster order as a visit
to the pixels of f from left to right and of the top to bot-
tom, i.e., {(0:0)7 (O’ 1)7 T (O:n— 1)a (170)? (11 1)7 T
(1,n-1),---,(m-1,0),(m-1,1),---(m—1,n—-1)}. We
call this sequence S* = {0,---,mn — 1}. The sweeping
in the anti-raster order in f is accomplished in the inverse
direction (of the right to left and of the bottom to top), i.e.,
{m-1,n-1),(m-1,n-2),---,(m—-1,0),---,(0,n—
1),(0,n = 2),---,(0,0)}. We call this sequence of S~ =
{mn -1,---,0}.

There is a bijector function £t : E — S, defined for
+(i,j) = in + j, where (i,j) € E and n is the width.
An inverse of ¢+ is given by (£¥)~1(r) = (|r/n],r%n),
where r € ST, |r/n] is the integer division and r%n is the
rest of the division r by n, respectively.
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Figure 5: (bg); variable as the Equation 2.

Given B € P(E), let B* (B™) be a neighborhood for
the raster order (anti-raster). Considering the center of B
as the center of an axis of Cartesian coordinate (4, j) € E,
where 7 is the abscissa (in downward position) and j is the
ordinate (in rightward position), we have: B¥ = {(i,j) €
B /j < Oorif j = 0theni < 0}. Similarly B~ =
{(¢,7) € B/ j > 0orif j = 0theni > 0}. Note that
Bt @ B~ = B. This means that any structuring function
can be decomposed in its raster and anti-raster structuring
element.

Similarly the same decomposition can be applied to
the function b: b* : B¥ - Z and b~ : B~ — Z. An
example of this decomposition is shown in Figure 6.

4 ]-31-4 4(0-31-4

31013 300 0] -3

4 1-3]|-4 41 -3]-4
bs-4 b;-4 bs_4

Figure 6: Decomposition of b3_4 in b3_, and b;_,.

Let 52} (f) be the sequential erosion in the raster order,
as defined in the Equation 1, however placing the partial
results in the own function f. Being more precise: for z €
E in the raster order,

&5+ ()(z) = min{e/, (f)(y)~b(y — z) :
y € (BT +z)NnE}.

3)

Similarly, we define €,_ (f)(z), as being the sequential ero-
sion of f in the anti-raster order as: for z € E in the anti—
raster order,

ey (f)(x) = min{e,_ (f)(y)—bly — 2) :
y€ (B” +z)NnE}

C))

An important result, from Rosenfeld and Pfaltz [RP66],
says that if we apply a sequential operator with local neigh-
borhood on an image f it is equivalent to apply a sequence
of |E| parallel operators with the same local neighborhood
over f.

An application of this result, doing restrictions in b,
see Figure 7, where 2p < ¢ < p < 0 [Bor86],is: forz € E
in the raster order,

€2-+ (f) = emno+ (f)
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Figure 7: Decomposition b for the equality 5.

Similarly, for z € E in the anti—raster order,

€p-(f) = €mns- (f)-

We can also obtain a parallel operator through sequen-
tial operators without changing the implementation, for ex-
ample: Let k > mn,

Ebg = Ekb = Eg(btab~) =

Exptaks- = Exs- (Erpr () = g,2 (652 (F)), (%)

where f € [0, k]E.

So if there is b such that b = kb then the erosion by
be can be implemented by the sequential raster and anti-
raster algorithm:

Function eroSeq(f,b) {f isinput and output parameter}
for all z € E in the raster order

f(z) = min{f(y) — by —x) : y € (B~ +2)NE}
for all x € E in the anti—raster order

f(z) =min{f(y) —b(y —z) : y € (B* +2)NE}

3.3 Propagation erosion

The general idea of the propagation algorithms is to process
. only the pixels that can be modified by the operator. These
pixels coordinates are usually stored in a set and are called
front or border of f.

Let f € KE and B € P(Z?) with origin. The prop-
agation border f of the erosion by b € Z? is the subset 3 f,
[BHJ97], where

Ofs={reE:Jye€ B+z, fly) > flz)-blz~y)}

Thus, the propagation erosion of the f by b € ZPB is
defined as: Vz € E,

min{ f(2)~b(z — ) :
z€(B+y)Nafs} and

f(@),

Below is a pseudo-code that returns the border of f
using the neighborhood defined by the structuring function
b. This border is placed in the set 3 f5.

ey (N)y) =

otherwise.
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Function 8f, = front(f,b)
forallz € E ‘
Ofsy ={z:3y € (B+2z)NE, f(y) > f(z)-bz -y}

Below is the code for the propagation erosion, using
two sets, 3f, and Jgp. At the same time as the erosion in
calculated, the new border, dgs, is also calculated.

Function {g, 8gs] = eroPro(f,b,0f,)
{g and Ogs are output parameters}
g=1
forallz € 0f,
forally € (B+=z)NE
ifg(y) > f(z) ~ bz —y)
9(y) = fz) — bz —y);
set_in(0gs,y);

where set_in(dgs, y) is the function to insert y into the set
ng.

This algorithm is very efficient for the situation where
the erosion is iterated as it is the case of the DT and the
morphological reconstruction operator.

As with the case of parallel erosion, the decomposi-
tion of by using the equation 2 is also valid for propagation
erosion.

4 Classification of the main DT algorithms

Based on the three implementation of the erosion: parallel,
raster and propagation, the main DT algorithms are rewrit-
ten using the framework described in the previous section.

4.1 Parallel DT

Bellow is the pseudo-code of the parallel DT, using the de-
composition of bg in by, by, - - -, by, based on the Equation
2:

Function g = distPar(f by, -
foreachb;,i =1,,---k

g = eroPar(f,b;);

f =g

2 bic)

The first parallel DT algorithm was introduced by
Rosenfeld and Pfaltz and published in 1968 [RP68]. Other
work that implement the DT in parallel is of Borgefors
[Bor86]. In both of them, the input image assumes zero and
infinite values. The algorithm is described below:

mo__ : -1 H HH
vy = (k,l?ég}ask(vgk’j“ + ¢(k,1)), until stability, (6)
where v} is the pixel value at position (i, j) of the image

in the iteration m, (k,!) is the position in the mask, and
c(k, 1) is the mask value at (k, 1) (c(0,0) = 0).



We can notice that the Equations 1 and 2 are equiv-
alent to 6 resulting in the same DT, considering b = b; =
—mask,i = 1,---, k. This conclusion is described in more
detail in Shih and Mitchell [SM92]. '

To better analyze these two equations consider z
(3,5) and y = (i + k, j + 1). Thus the Equation 6 would be
v™(z) = min{v™ (y)~b(y — z) : y € B + z}, where
z € E. Note that, making +° = f and v! = &;(f), we have
the erosion definition of Equation 1.

4.2 Sequential raster DT

Below is the pseudo-code of the sequential raster DT, using
the decomposition of b in kb. Note that it is not possible
to use a decomposition with different b;, as in the parallel
case:

Function g = distSeq(f,b)
eroSeq(f,b);
g=1£

The first sequential raster DT algorithm was also re-
ported by Rosenfeld and Pfaltz and published in 1966
[RP66]. In their algorithm, the input image contains only
values zero and one, and the set of pixels with value zero is
nonempty. The algorithm is,

0, ifai;=0,

min(a;—1,; + 1,0:j-1+1), if

filaiy;) =4 (5,5) #(@1,Dandai; =1,
’ @)
m+n, if
(3,7)=(Q,1) andai; =1, and
faai;) = min(asj, aivr,; + 1,05541 + 1),

where a; ; is the pixel value at position (7, ) in an image
with m rows and n columns. The values a; ; outside the
image are not defined. f; is applied in the raster order
and, over the result, f2 is applied in the anti-raster order.
This DT uses the City-Block metric. If @;,; = 1, the al-
gorithm makes fi(a;,1) = m + n, that is the largest dis-
tance in the image. This algorithm step could be elimi-
nated if we assume the input image with values zero and
0o. Besides, the first line could also be eliminated if we
include the first line in the min function. Thus, f;(a; ;) =
min(a;j,ai-1,; + 1,4 -1 + 1) could substitute the step
/1 of the above algorithm.

Making b* and b~ the City-Block raster and anti-raster
order function decomposition, respectively, with center in
the value zero in boldface, as shown in Figure 8, we can
rewrite the Equation 7 as:

fi(ai;) = min{a;; — b3 g, ai-1,j — b, g,ai5-1 — b3 4},
fa(ai;) = min{a: ; — bg g, @it+1,; — b7 g, @ij+1 — by 1}
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Figure 8: City-Block raster b} and anti-raster b; decompo-
sitions.

If z = (¢,5) and f(z) = a;;, then fi{a:;) =
6;; (f)(z) and fa(a;;) = €,_(f)(z), as defined in the
Equations 3 and 4, respectively. Rosenfeld and Pfaltz algo-
rithm is then equivalent to our sequential raster DT distSeq
[RP66]. Borgefors has also implemented a sequential algo-
rithm for DT in [Bor86], which is also similar to distSeq.

4.3 Propagation DT

Vincent [Vin92] implement a propagation DT. His algo-
rithm based on the queue data structure is presented below:

Function distVinc(f, B)
{f is input (f € {0, 1}*) and output parameter}
forallz € E
if fr)=1andIy € (B+z)NE: f(y) =0
FIFQ_add(z);
fl)=12
while FIFO_empty() = false
z = FIFO. first();
forally e (B+z)NE
if fly) =1
fy) = flz)y+1;
FIFO_add(y);

where FIFO_add(z), FIFO.empty() and FIFO_
first() are the primitive of queue manipulation that adds
an element z in a queue, verifies if the queue is empty and
return the first queued element, respectively.

This algorithm can be rewritten as follows.

Function dist Auz(f, B)
{f is input (f € {0, k}¥) and output parameter}
forallz € E
forally e (B+z)NE
if f(y) > f(z) +1
FIFO_add(z);
break;
while FIFO_empty() = false
z = FIFO. first();
forally e (B+z)NE
if f(y) > f(z) +1
fly) = f(z) +1;
FIFO_add(y);



The first for all places in the queue all of the border
points of the image f. This loop can be substituted by the
function front, which places the border points in the set
Ofp as in the code of the algorithm dist Pro shown below.
In the while loop, all the border points (from the queue)
are used to compute the erosion of their neighbor pixels
and at the same time a new border point is computed and
inserted into the queue. This process is a particular case of
the eroPro algorithm of the previous section, considering
a non-flat structuring function. It is not necessary to use the
queue, but two sets, being swapped at each iteration.

Below is the pseudo-code of the propagation DT, that
is the Vincent algorithm generalization:

Function f = distPro(f,b)
afs = front(f,b);
while f, # 0

[f» afb] = eroPro(f, by 6fb);

5 Conclusion

In this work we have presented a new classification of the
Distance Transformation (DT), inspired in the morphologi-
cal erosions by structuring functions. We mapped the main
DT algorithms reported in the literature using morpholog-
ical erosions. We have highlighted the structuring func-
tions decomposition used in the parallel, sequential raster
and propagation erosion algorithms. Table 1 summarizes
classification of the main DT algorithms, in parallel, raster
and propagation algorithms; and their structuring function
decomposition by, bg, bo, bz _4,b5_7_31 and bg.

When it is possible to decompose the structuring func-
tions and these decompositions satisfy some conditions, the
sequential raster algorithms present better computational
performance.

In the future, we will study the coding of the Euclidean
DT and of other operators, for example, the morphologi-
cal reconstruction, exploring the different algorithms pre-
sented in this work. We will study further the composition
of generic structuring functions in the sequential raster al-
gorithm.
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DT Parallel | Raster | Propagation || by | bg | bo | bs_4 | bs—7_11 | bE
[RP66]) X X
[RP68] X
[Bor86] X X X1 X X X X X
[SM92] X X | X X X X
[Vin92] X X X
[HM94] X X

Table 1: Classification of DT algorithms and their structuring function decompositions.
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