Interactive Visualization over the WWW

ALEXANDRE DONIZETI ALVES
MARIA CRISTINA FERREIRA DE OLIVEIRA
ROSANE MINGHIM
LU1s GUSTAVO NONATO

Departamento de Ciéncias de Computagio e Estatistica
ICMC/USP - Sao Carlos
Caixa Postal 668
13560-970, Sdo Carlos - SP, Brazil
{adalves, cristina, rminghim, gnonato} @icmc.sc.usp.br

Abstract. In this paper we discuss several approaches for providing visualization solutions over the WWW
exploiting available technology for programming Web-based applications. An implementation that supports
interactive visualization of user data through a set of JAVA applets that interface with the Visualization Toolkit
is presented, and its advantages and limitations are discussed. Such an implementation provides a general
framework for providing high-quality visualization resources on the WWW.

1 Introduction

The WWW has revolutionized the way people access
information and established itself as a media for
cooperation among spatially distributed researchers. It
certainly has the potential to change the manner by which
visualization applications may be developed, distributed
and used, and provides a rich and flexible media to make
the connection amongst application, data, information and
users [9]. For example, data sets may be kept by those
persons that generate them (the editors) while other people
may conveniently access them over the Internet using a
standard Web browser. Such a working model ensures that
receivers will always get access to up to date data (as long
as the producers keep them so) [13], and fosters
collaboration amongst spatially distributed collaborating
groups.

Despite its potential, this media has not yet been
extensively exploited due to a number of practical reasons.
Many of them are related to the limitations of the available
technology that make it difficult to attend typical demands
of visualization users. These include, for example,
interactive rates for visualizing large data sets and
complex models, simple access, ease of use, portability,
acceptable transmission rates over a wide area network.

In this paper we discuss how current technology for
programming Web applications may be employed for
providing interactive visualization resources on the Web.
We review some approaches described in the literature
and some practical solutions that may be found on the
Web itself. We also describe an implementation based on

0-7695-0878-2/00 $10.00 © 2000 IEEE

259

one of the solutions presented, which ensures interactive
remote access to some classical visualization algorithms.
A discussion on the advantages and limitations of the
solution provided is also presented. Finally, we present
some final remarks and perspectives for further research
on distributed Web environments for visualization.

2 Approaches for Visualization over the WWW

In this section we discuss how available technologies may
be exploited to produce Web-based visualization tools.
We describe possible scenarios for creating visualization
resources, and illustrate some approaches described in the
literature to produce Web-based visualizations, pointing
out to their strengths and limitations.

A reference model for Scientific Visualization has
been proposed by Upson et al [12]. It treats the
visualization process as a pipeline in which a data source
is fed, filtered, mapped and rendered to produce a final
image, as illustrated in Figure 1. This model is useful to
analyze possible scenarios for visualization on the Web, as
described by Wood et al. [13]: data sets are produced by
someone (the editor), images are presented to observers,
but execution of the intermediate processes may be placed
either with the observer at the client or on the server side,
with the editor.

M R

Edit

or - Observer
F — Filtering, M - Mapping, R - Rendering

Figure 1 Visualization pipeline.

A common situation is to create the visualization as
an image or animation displayed in a standard graphical
format. This solution allows no user interaction with the
visualization models. All-the intermediate steps (F, M and
R) are executed at the server, and the observer is limited to
seeing the result. HTML documents containing images and
animations exemplify such a scenario. CGI forms
embedded in HTML pages may be used to give the
observer some control over the process of generating an
animation sequence at the server. As soon as the client
submits the form, the server calls its CGI script with the
parameters defined. However, this is a limited approach
for data visualization, as images/animations are slow to
download and the observer has no chance of manipulating
them. Even if some control is provided to the observer for
defining visualization parameters, he cannot interact with
the visualization models created. This solution may also
overload the server if too many requests are sent.

Alternatively, the editor may create the visualization
as a 3D model that can be manipulated at the client, which
is possible using VRML, for example. In this case, stages
F and M are still executed by the editor, but R is placed at
the client. The observer still cannot manipulate the
parameters used to produce the visualization models, but
can interact with them using an appropriate browser/plug-
in. A limited set of exploration strategies and geometric
transformations may be applied to the model, and
interaction occurs at reasonable rates, as rendering is done
locally. This solution has been adopted by Brodlie et al.
[3] in their implementation of a virtual environment for
surgical training. A different scenario is to place on the
observer the responsibility for generating the
visualizations from given data. That means executing all
stages F, M and R using visualization software at the
client. Data sets may have to undergo some pre-
processing, as there are no established standards.

In the scenarios described, the task of generating
visualization models is either left entirely with the editor
or entirely with the observer. The former approach limits
the possibilities of interaction on the part of the
visualization users, and the second places a too heavy
burden on these users, as few low-cost systems are
available and their use demands training and specific and
usually costly hardware platforms. A compromise solution
would be the share the responsibility: the editor at the
server offers processing power and a basic visualization
structure for the data, and the observer at the client has a
set of options for controlling the visualization process by
defining relevant parameters for producing the
visualization models and for interacting with them. The R
stage runs at the client, and the F and M stages are

260

determined at the server, but may be controlled from the
client.

Jern [5] defines the terms ‘thin’ client and ‘fat’ client
in the context of visualization on the Web: the former
requires minimum local software and acts just as an
interface for a visualization application accessible from a
Web server. Typical web browsers do not support visual
interaction executed at the client side, and therefore, user
interaction with the application is highly dependent of
network transmission rates. A more effective solution for
highly interactive applications such as data visualization
would be to split the visualization process amongst client
and server. A ‘fat’ client is one that supports local
execution of graphical interfaces at the client by means of
local software.

One solution for distributed visualization that fits into
the ‘compromise’ scenario is described by Ang et al. [1].
They developed a volume visualization tool targeted at
general-purpose hardware platforms, and integrated them
into the Mosaic browser as a visualization service. The
tool, named VIS, uses a pool of graphical workstations to
generate 3D models from volume data, distributing the
task amongst the available hardware. To allow distribution
of information to remote clients they extended Mosaic to
support volume data and defined a communication
protocol amongst VIS and Mosaic. This allows the
embedding of interactive volume visualization operations
into HTML documents. From the browser, remote clients
may request the execution of visualization tasks that are
forwarded to the VIS environment, and the result is
returned at the HTML document.

Another work that fits into the same scenario,
although it is not targeted at the Web, is by Liu et al [6],
who implemented and interactive distributed visualization
system named Discover (Distributed Interactive Scientific
Computing and Visualization Environment). Their system
adopts a client-server architecture, and comprises a virtual
host that includes one or more PCs, and a pool of
processors that provide this host with the required
computing power. The system offers functions for both
client and servers, although the client services include only
basic manipulation operations. It is a system oriented
towards clinical applications that supports cooperative
visualizations, with users positioned at different clients
being able to interact with a ‘single’ visualization window.

In the current stage of the technology for
programming Web applications, JAVA applets that may
downloaded and executed at the client also provide a
suitable solution for creating applications that fit into the
‘compromise’ scenario. JAVA applets may overcome
some of the current limitations associated to interactive

applications on the Web using ‘thin’ clients, although they
still show dependency of network rates. The JAVA
language has been conceived to run at a variety of
hardware platforms with no need for recompilation and
with good reliability. With the upcoming of JAVA 3D API
[11] improved performance for 3D graphics will also be
assured by direct connection with graphics hardware.

An alternative approach for accessing graphics
hardware is to use the INI (Java Native Interface)
mechanism, which allows direct calls to C or C++
routines. Thus, an existing visualization library such as
VTK - the Visualization Toolkit [10] — can be accessed
from within a JAVA environment (this is the approach
adopted in the solution described in Section 3). JNI also
allows critical functions to be implemented in C or C++
for improved performance. The major limitation of using
JNI and native code is that it sacrifices portability to some
extent. For example, to run JAVA applications that use
VTK the client must download the native support. JAVA
3D enables applets with 3D graphics to be written purely
in JAVA with no performance penalty. In that case, a
toolkit such as VTK could be rewritten in JAVA and used
for creating visualization applets.

Michaels and Bailey [8] describe a scientific
visualization tool implemented as a JAVA applet that uses
only the JAVA AWT - Abstract Windowing Toolkit —
API [4] for 3D graphics. It has been developed with the
goals of being completely platform independent, being
easy to use, offering a basic set of 3D visualization
functionality for users to analyze their own data sets and
good interactivity. Users have to upload their data set into
the server, and then can apply basic volume visualization
techniques such as surface extraction, cutting planes, point
clouds, and elevation plots. They can also interact with the
resulting visualization models at reasonable rates. That has
been made possible by careful implementation,
simplifications introduced in some visualization
algorithms, and a limited set of rendering options, e.g. flat
shading only. This solution also fits into the scenario in
which part of the work is executed at the client, although
the set of functionalities available is defined at the server.
In Section 5 this tool, called VizWiz, is compared to our
own JAVA based solution, described in the following
section.

3 Animplementation

Our solution, called VisWeb, also uses JAVA applets to
offer visualization resources on the Web and fits into the
same scenario of the solutions described at the end of
Section 2. A description of the environment and of some
issues related to its implementation are provided in this
section.

261

Because applets are downloaded from a remote site,
several security restrictions are imposed, and one of them
is that they can not read or write files into the local host.
This poses a severe limitation for a visualization
application that must access local data set files in order to
be useful. Another restriction is that an applet is not
allowed to access native code in the client machine. That
posed an additional problem for the solution we had in
mind, as it was our intention to use an available
visualization library, written in C++, to run the
visualization algorithms, as discussed in the following.

Digital signatures provide a mechanism for loosening
security restrictions on JAVA applets [7]. Signatures may
be created using specific tools targeted at the Netscape
browser or at the Microsoft browser, and require a
certificate emitted by a Certification Authority.
Alternatively, in JAVA 1.2 enables programmers to
establish different security levels for an applet, defining
exactly what it is allowed to do. Although JAVA 1.2 is
currently not supported by either Netscape or Microsoft
browsers, the JAVA Plug-in from Sun allows designers to
specify an external Java Virtual Machine to support
applets written in this version of the language. These
facilities, in addition to the availability of JAVA Swing,
which extends the AWT API and incorporates it into the
JFC - Java Foundation Classes —, have been decisive for
our choice of adopting JAVA 1.2 as our development
platform. The interface components of Swing provide
better facilities for handling events and for selecting
appearance and behavior than previous versions of the
language. In this approach the server provides the applets,
and processing is entirely allocated to the client, who also
holds the data sets, as illustrated in Figure 2.

Client

Server

Figure 2 Architeture of the VisWeb environment.

The JAVA applets making up the VisWeb
visualization environment interface with the VTK toolkit

to implement a set of basic scalar and vector volume
visualization techniques. VTK [10] is an extensible object-
oriented toolkit that implements a rich set of visualization
classes and data structures. It has been written in C++, and
its classes may be accessed from programs in C++,
TCL/TK or JAVA. VTK uses the API OpenGL for
handling the 3D graphics rendering pipeline, i.e.,
illumination, projection, clipping and scan conversion of
graphics models.

As shown in Figure 2, VTK runs on the client.
Therefore, clients must have the appropriate VTK libraries
for the JAVA applets of VisWeb to execute a visualization.
Namely, files vtkdil.dll, vtkjava.dll, and vik.jar must be
available, assuming that the client is running the
environment on a Windows platform. A permission file to
enable the server to access the client’s local file system
must also be present. In our case, we provide the
appropriate permission and certificate files, which may be
downloaded by the clients. The certificate ensures that the
client will grant local file system access only to those
applets signed by this certificate.

In this solution, all the visualization functions are
implemented using the VTK classes, and all the rendering
work embedded in such algorithms is handled by VTK and
OpenGL. The JAVA front end only provides widgets for
handling events at the user interface level, and activates
the suitable VTK classes using the JAVA binding of VTK.
The currently available version of VisWeb runs on
Windows platforms, and uses VTK 3.1 and Java 1.2.2.

4 Functionality of the Visualization Applet

In this section we shall describe the functionality of the
visualization tools offered in VisWeb, which comprises
three modules: a surface extraction module, a direct
volumetric rendering module, and a vector field
visualization module. Such a description is illustrated with
some interface windows and visualizations obtained from
the system. Both the surface extraction and direct volume
rendering (DVR) modules deal with volumetric scalar
data, whereas the vector visualization module handles
volumetric vector fields. Data sets currently supported are
structured grids with regular geometry and topology
(represented by instances of the VTK class
vtkStructuredPoints). Figure 3 depicts the main page
displayed when VisWeb is invoked. The user is presented a
window where s/he can select the idiom (English or
Portuguese), and the screen resolution is automatically set
up. The same window gives access to the main
visualization modules of VisWeb.

suahzation oves the Weh Miciosoll inteinet Explaser

s Vissallzation oves the Weh

Vllweb is 8 web based visualization environment that interfaces with the
- VTK (version 3.1) to provide a set of scientific data visushization
algorithms. T¢ pn)wdss a graphical user interface written in JAVA (version 1.2),

¥isWeb is camprised of three independent modules, each one writtan s 8 JAVA
applet and implementing different visualization resources:

@ -
5 Dire Renderi
@ Vegtor Visyalizotivn
Both the Surface Extraction and the Direct Volume Rendenng modules handle
volumetric scalar data sets, and the Vector Visualization module handles votumetric

vector fields. Supparted data sets are structured grids with reqular topology and
geometry, described in the VTK file format.

The YTk and Java Copyright.

atidon O Afins Support:

o

Figure 3 Main page of VisWeb.

In the surface extraction module, level surfaces are
extracted from the scalar data through the Marching Cubes
technique as implemented in VTK in its class
vtkContourFilter. Figure 4 (at the end of the paper) shows
the main interface window for this module as seen from
the Netscape browser. Multiple level surfaces can be
visualized simultaneously and the interface allows the user
to specify isosurface values and also to associate a color
and opacity to each surface, as illustrated in Figure 5.
Interactive tools such as object selection, cutting planes
and animations are also supported. The bigger window
shows the visualization working area, which depicts the
external and internal isosurfaces obtained from a scalar
data set that describes a model of a tooth.

&3 Define Isosurfaces

Figure 5 Interface for isosurface definition.

The direct volumetric rendering module enables
visualization of volumetric scalar data sets employing the
ray casting technique, also available from the VTK toolkit.
Figure 6 (at the end of the paper) shows the main interface
for this module. The user can choose between visualizing
the whole volume data or, alternatively, s/he can specify
volume sub-regions. If suitable color and opacity transfer
functions are assigned to data, i.e., data classification is
appropriate, direct volume rendering makes possible to
visualize details of the volume that would be difficult to
observe through surface extraction. To facilitate the data
classification process the user can interactively define a
color mapping scheme and assign intensity and opacity
ranges to data intervals.

Figure 7 depicts the interface for defining a custom
transfer function for color and opacity mappings. The
parameters shown are those used to define the volume
visualization depicted in Figure 6. As in the surface
extraction module, it is possible to define cutting planes
through the volume and to animate a sequence of them.
Figure 8 shows several volume images generated in this
module from the same data set, which describes a tooth
model.

Define Opacities [Custom Table] [=1o]]

~HRANRS

Al P

Fine Mas 117240

v

i

Einal

et
i

Fiat oo

! iaiopas [
820
050

Figure 7 Interface for data classification in the
DVR module of the visualization applet.

The interaction options using the mouse supported by
a conventional VTK window remain operational in the
visualization area of the applet. Thus, user interaction is
this window is similar to interaction in a conventional
VTK window. Facilities include mouse interaction for the
user to rotate, zoom and translate the models, as well as
keyboard options to reset the viewpoint, using the same
controls employed in VTK. For scalar visualization, the
interface also enables observation of visualization models

263

at variable levels of detail during interaction. This
optimizes the amount of detail rendered in a scene while
the user is continually interacting with the model (as in
Figure 8d). After interaction is stopped a more detailed
rendering is displayed, thus ensuring the speeding up of
the interaction and overall visualization times.

Figure 8 DVR volume visualization of teeth
data. (a) whole volume; (b) and (c) user defined
sub-volumes; (d) sub-volume with coarse level
of detail for rapid interaction.

The third module provided takes as input a structured
data file describing a three-dimensional vector field and
produces a glyph-based visualization using line segments.
The main interface for this module is shown in Figure 9 (at
the end of the paper). The visualization work area in the
bigger window depicts a view of vector data from a
magnetic field around a neuron cell model. The user can
interactively specify parameters such as the vector
sampling factor for controlling the number of glyphs
displayed, mapping vector magnitude values using a
rainbow color scale, and others (Figure 10). A more
detailed description on the functionality and the
implementation of the visualization applet may be
obtained from Alves [2].

5 Discussion

The solution implemented in VisWeb, of providing
visualization facilities embedded into a JAVA applet that
accesses VTK, has both advantages and limitations. An
obvious advantage is that the visualization framework
provided by VTK is directly available. Our current
implementation can be easily extended to incorporate
additional visualization techniques, as long as a suitable
interface for parameter definition is provided.
Alternatively, the same framework may be employed to
provide solutions targeted at specific application domains.

Some restrictions are imposed on the client, which
may be taken as a limitation. The client must have some
files installed to enable execution of the visualizations, in
addition to the JAVA Plug-in. It must also grant (limited)
access to its file system by accepting the security options
defined in the permission file and certificate delivered
with the system.

L Sampling

Maximun number of peints;

h this ;}uimz

. Scalefacton

Figure 10 Interface for setting glyph-based
vector visualization parameters.

Accessing client file systems was not possible some
years ago, and Michaels and Bailey [8], in their
implementation of VizWiz, work around the problem by
getting the clients to upload their data file at the server for
access by the visualization applet. This is not a feasible
solution in a production context, however, as it places a
huge load on the server. Moreover, potential users will
most often get stuck with network problems or unbearable
delays. Additionally VizWiz has a much more restricted
set of visualization techniques, as all of the available ones
had to be implemented from scratch using the less than
suitable AWT APIL.

6

Providing visualization resources on the Web opens up a
number of possibilities for cooperation, teaching and
training. It ensures world-wide accessibility at a very low-
cost. With our implementation, it is clear that available
technology can be exploited to create sophisticated
interactive visualization environments to be accessed on
the Web. Such environments can go much further than
manipulating VRML worlds in which realism is greatly
sacrificed.

Conclusions and Further Work

We intend to extend our current tool to provide an
integrated environment targeted at the manipulation of

264

teeth models as part of the Virtual Dentistry project under
development at ICMC. The VisWeb system will soon be
available for public remote access by potential
visualization users and collaborators for further testing,
including a version for Linux-based client platforms.

Additional facilities could be incorporated into the
environment that go beyond just increasing its
visualization functionality. For example, visualization
parameters set during a visualization session could be
saved for later use by the same user or by others. In the
first case, such information could be saved at the client, in
the latter it could be saved at the server and associated to
the corresponding data file. Such a facility would provide
basic support for cooperation amongst distributed
visualization users, and other functionality could be added
with this goal in mind. The ability to save the
configuration parameters used in a visualization session
could also provide valuable feedback to visualization
designers about the difficulties faced by visualization
users.

Acknowledgements

We wish to acknowledge Mike Goetz and Andy Day, from
the School of Information Systems, UEA, UK, for the data
used to generate the teeth images; and Dr. Luciano da
Fontoura Costa and members of his Cybernetic Vision
Research Group, IFSC, for the neuron vector data. We
also wish to acknowledge the funding of FAPESP and
CNPq, Brazil.

References

[1] C.S. Ang, D.C. Martin, M.D. Doyle, “Integrated
control of distributed volume visualization through the
World Wide Web”, Proc. IEEFE Visualization’94, oct. 17-
21, Washington D.C., 13-20.

[2] A.D. Alves, Visualization over the WWW: Study and
Implementation of a System, M.Sc. dissertation, ICMC-
USP, August 2000 (in Portuguese).

[3] K. Brodlie, N. El-Khalili, Y. Li, “Using Web-Based
Computer Graphics to Teach Surgery”, Computers &
Graphics 24(1), 2000, 157-161.

[4] J. Gosling and F. Yellin, The Java Team. “Java API
documentation”, Sun Microsystems,
http://java.sun.com/products/jdk/1.0.2/api/

[5] M. Jern, “Information Visualization on the Web”,
Proc. IEEE 1998 Int. Conf. on Information Visualization,
jul. 29-31, London, UK, 2-7.

[6] P.W. Liu, L.S. Chen, S.C. Chen, J.P. Chen, F.Y. Lin,
S.S. Hwang, “Distributed computing: new power for

scientific visualization”, IEEE Computer Graphics and
Applications 16(3), 1996, 42-51.

[7] G. McGraw and E. Felten, Securing Java, John Wiley
& Sons, Inc., 1999.

[8] C. Michaels and M. Bailey. VizWiz: a Java applet for
interactive 3D scientific visualization on the Web. Proc.
IEEFE Visualization’97, oct. 19-24, Phoenix, AZ, 261-267.
[9] R.M. Rohrer and E. Swing, “Web-Based information
visualization”, I[EEE Computer Graphics and Applications
17(4), 1997, 52-59.

[10] W.J. Schroeder, K. Martin, and B Lorensen, The
Visualization Toolkit — an object-oriented approach to 3D
graphics, 2™ edition, Prentice-Hall, 1998.

tp://wwwr.icme. sc.usp.br/~ adalves/S urfaceE straction, html

[11] H. Sowizral, K. Rushforth, and M. Deering, The Java
3D API specification, Addison-Wesley, 1997.

[12] C. Upson, T.A. Faulhaber Jr., D. Kamins, D.
Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, A.V. Dam,
“The Application Visualization System: a computational
environment for scientific visualization”, IEEE Computer
Graphics and Applications 9(4), 1989, 30-42.

[13]]. Wood, K. Brodlie, and H. Wright, H.
“Visualization over the World Wide Web and its
application to environmental data”, Proc. IEEE
Visualization’96, oct. 27-nov 1%, San Francisco, CA, 81-
86.

Figure 4 Interface for the surface extraction module of the visualization applet as seen in the Netscape browser.

Figure 6 Interface of the Direct Volume Rendering module.

Figure 9 Interface for the vector visualization module of the visualization applet as seen in the Explorer browser.

266

