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Abstract.

We present a method to measure reflectance and texture of surfaces in a one step process.

For later use in digital image synthesis it is mandatory to separate the gathered intensity values into these
two parts to eliminate highlighting artifacts from textures. Our image-based measurement system delivers
bidirectional reflectance distribution function (BRDF) values distributed over the surface of the material
under investigation. After fitting a reflectance model to the gathered data we estimate the modulation of
the diffuse reflectance coefficient which represents the texture. The last step analyzes the texture to get a
parameterized and compact description of the measured surface properties. These results allow us to apply
the gathered surface properties to objects with arbitrary shape and size. To keep the measurement system
simple a standard CCD camera and light source are used.
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1 Introduction

Physically-based lighting simulation needs an accurate
global illumination algorithm and a geometric descrip-
tion of the scene as well as physically-based descriptions
of the light sources and material properties [9]. Since
implementations of rendering algorithms for lighting cal-
culations are available such as the RADIANCE system
[21] and physically-based parameters are available for a
number of light sources too we concentrate our work on
measuring parameters out of real-world surfaces.

One approach to estimate material parameters would
be to use a photogoniometer and take a large number of
BRDF measurement points well distributed over the in-
coming and outgoing radiation hemisphere. Afterwards
an appropriate reflectance model can be fitted to this point-
cloud. The disadvantages of this method are the time and
cost intensive way of gathering BRDF values and the fact
that we have no information about the parameter distri-
bution over a certain region of the probe. This means
that we will get correct model parameters for only one
surface point. To extend that method for texture estima-
tion we have to apply this procedure to a lot of surface
points of the material under investigation, which makes
this method even more time and cost expensive.

Since we like to have a whole library of different
materials, which we can use for lighting simulation, we
started to implement an image-based method to measure
anisotropic reflection. The system works on digital im-
ages acquired from real surfaces and reconstructs BRDF
values. Furthermore the equipment used should be cheap
and measurement time should be reasonable. More de-
tails of the structure is given in Section 3. The measured
BRDF values are then used to estimate the modulation

of the diffuse reflectance coefficient which represents the
texture. This is possible in cause of BRDF values are dis-
tributed over the surface of the material and are not taken
only from one surface point. No preliminary knowledge
of the material or equipment is necessary only some ge-
ometric constraints as described in Section 3 has to be
fulfilled.

2 Background and Previous Work

In graphics a light-material interaction is usually defined
by the term bidirectional reflectance distribution func-
tion (fr, [st~!]). This function can be physically expressed
as ratio of reflected radiance in a given direction (6,, ¢,-)
to the incident irradiance enter the surface from the direc-
tion (6;, ¢;). Geometrical considerations and nomencla-
ture can be found in [17].
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For perfect diffuse surfaces f, is independent from
the variables 6,., ¢, 8;, ¢;. Especially for the ideal stan-
dard surface the BRDF can be defined as f; igear. The
reference material (fr standard) used has a reflectance co-
efficient (pstandard) Which is nearby constant (approx.
0.99) over the whole visual spektrum. Detailed product
specifications can be found in [4].

Considerable previous work has been done on image-
based measurement of material properties. Methods for

anisotropic reflectance without texture are introduced in [20].
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Figure 1: Overview of the method.

In [15] a BRDF measurement method of surfaces even
for the human skin is presented. A complex image ac-
quisition system including a camera, range finder, and a
robotic arm is used in [19] to reconstruct the geometry
of the object first and estimate the diffuse and specular
reflectance afterwards. The measurement system used
in [5] also uses a robotic arm to position and orient the
samples in relation to a light source and camera. Texture
information of one sample is stored in a number of im-
ages whereas different viewing and illumination orienta-
tions are used. Therefore the rendering process can utilize
view-dependent texture mapping which gives the impres-
sion of bump mapping. Recent interesting work has also
been done on recovering reflectance characteristics using
images taken from indoor and outdoor scenes by exploit-
ing inverse rendering techniques [22], [23], [14].

3 BRDF Measurement System

An overview of the concept for recovering reflectance
model parameters and texture parameters is given in Fig-
ure 1. Before we describe how to obtain the parameters
in detail we give an explanation of BRDF reconstruction.
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Figure 2: Structure of the measurement system.

Figure 2 shows the geometric configuration of light
source, camera, the reference standard, and the probe.
One restriction is that light source, camera, and stripline
between probe and reference standard must lie in one
plane and this plane must be orthogonal to the measure-
ment plane. This restriction is necessary to reconstruct
the corresponding BRDF values of the probe with the im-
age intensities gathered. To let this reconstruction work a
symmetric distribution of light source radiation is neces-
sary.

Figure 3: Image taken by a standard CCD camera show-
ing the probe (desk) on the left side and reference stan-
dard on the right.

Since no additional housing is used to protect the
probe from background lighting two images were taken
by the camera. One with the light source turned off and
the other one with the light source turned on. The BRDF
values can then be reconstructed by the following rela-
tion:

Umeasured — Ubackground: Pstandard

fr,measured =
VUstandard — Vbackgrounds T

where:
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Umeasured the measured radiance value at
the location of interest,
Ustandard the measured radiance value at
the symmetric location of the
diffuse reflectance standard,
Ubackground;  the background radiance of
the location of interest,
Ubackground, the background radiance of

the symmetric location of the
diffuse reflectance standard

After recovering absolute BRDF values fitting of the
model parameters is carried out by a least-squares method
[13] with a reasonable number of points. We use the Ward
reflectance model [20] because it is computationally in-
expensive and can be applied to a number of different

materials. A more detailed description of the structure

and the image-based BRDF measurement for anisotropic
reflection can be found in [11]). The geometrical consid-
erations for the input variables are shown in Figure 4.

y

Figure 4: Geometry of input variables for BRDF param-
eter reconstruction.

The model consists of a diffuse and a specular term,
which can be either isotropic or anisotropic:

Pd Ps

= 24, B K
Frwara T v/cos8; cos b,

K for isotropic reflectance:

P [~ tan?§/a?)
4dra?

;  incident polar angle
6. polar angle related to the camera
§  angle between vectors 7 and

shown in Figure 4

pa diffuse reflectance
ps  specular reflectance
«a  standard deviation of the surface slope

And for the anisotropic case where specular reflectance
depends on the orientation of the probe the parameter o
splits into two parameters o, and oy, as well as the addi-
tional variable ¢ is necessary.

exp [~ tan? §(cos? p/a2 + sin® ¢/a?)]
Aoz oy

K =

The wavelength dependence is eliminated for conve-
nience. Due to our imaging device we use the RGB triple
for representing color. Figures 5 and 6 show examples
of measured BRDF values of one vertical image scanline
and the corresponding reconstructed BRDF characteris-
tics. Because there is no texture information included in
the calculated values this curve is much smoother than
the original measured data.

Since specular reflectance is mostly a global mate-
rial characteristic we take the assumption that the model
parameters for the specular term (p;, a, ) do not change
for the whole surface. On the other hand this means that
the local variation of the measured BRDF values can be
expressed as variation of the diffuse reflectance coeffi-
cient pg. The next section gives a complete explanation
on how to separate specular reflectance and the texture

~ information.

4 Texture Analysis and Synthesis
4.1 Image Textures

One of the advantages of our measurement method is that
we have knowledge about the BRDF value distribution
over the surface. For the reflectance model used the dif-
fuse and specular reflectance terms can easily be sepa-
rated. Therefore we estimate these parameters using a
least-squares solution, as in [11}, and can extract the tex-
ture of the surface out of an image without specular arti-
facts.
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Figure 5: Desk BRDF characteristics (see Figure 3 for

reference).
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Figure 6: Marble BRDF characteristics.

Each of Figure 5 and 6 shows three curves. To verify
the BRDF model fitting one curve shows the measured
BRDF values and the second one represents the result
of the reconstructed model. Additionally the last curve
shows the modulation of p;. The texture information can
then be expressed as difference of measured BRDF val-
ues and reconstructed specular term:

ps )

Tr(fr,'measu’r‘ed - K
Vcos 8; cos b,

Using the convention defined in Section 2 pg texture

Pd. texture =

is defined as the modulation of the total diffuse reflectance.

Values given in the diagrams are taken from one vertical
scanline nearby the centerline to demonstrate that the sep-
aration of diffuse and specular term works even in regions
with strong specular highlights.

Figure 7: Image texture with subtracted specular compo-
nent. Original image can be found in Figure 3.

The results for the whole image are shown in Fig-
ure 7. What we can see is that the intensity is uniform

almost in every region of the image and most of the ra-
diometric distortions coming from the CCD camera are
corrected too. The reddish appearance of the original im-
age is suppressed but in regions with high or low intensi-
ties artifacts due to saturation of the camera in one hand
and discretization on the other hand still remain. These
problems are discussed in detail in Section 5. Further-
more white markers appear in texture regions where their
aren’t any markers in the original image. The reason is
that at these regions no reference data taken from sym-
metric points on the standard material are available. For
the parametric texture analysis described in the following
section we leave such regions out.

4.2 Parameterized Textures

It was our aim to measure material properties and to get
a compact description which can be reused for objects
with arbitrary shape and unlimited spatial extent. For the
reflectance model the first and second conditions are ful-
filled. The four parameters pg, ps, @z, 0y describe a wide
range of materials even with anisotropic reflectivity and
the resulting model does not imply any restriction to sur-
face shape or extent. This is not the case for image tex-
tures. Two limitations are inherent in the used represen-
tation. One is the geometric resolution which is given
by the resolution of the CCD camera and the second is
the spatial extent which is also restricted by the camera’s
field-of-view. Simple tiling would not be a solution for
photorealism applications. So we introduce parameter-
ized or so-called procedural textures [7] to our method.
This yields to overcome the presented restrictions and ad-
ditionally leads to a very compact description. Another
advantage of using parameter estimation even for the tex-
ture is that the artifacts coming from the data acquisition
like saturation and discretization effects and also noise
can be reduced.

A completely automatic pyramid based approach that
requires only a digital image as input is developed by
David Heeger et al. [10]. Since this prerequisite fits per-
fectly our measurement method and the fact that various
textures can be analyzed we use this algorithm for the last
step in our system. The only important thing we have to
reconsider is which filters to use for building the pyramid.

The algorithm introduces two concepts to analyze
and synthesize a digital image, image pyramids [3] and
histogram matching. We start with a representative re-
gion (Figure 9) out of the measured texture (Figure 7).
The basic idea behind image pyramids is to extract co-
efficients out of images for different frequency bands.
Thus filtering and resampling processes are used to build
up all image pyramid levels. Heeger proposes to use ei-
ther a Laplacian or a steerable pyramid [18]. The Lapla-
cian pyramid uses a low- and a high-pass filter for fre-
quency analysis and the steerable pyramid additionally
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four band-pass filters. This makes the Laplacian pyramid
more compact than the other one which can be a critical
point for large digital images. In our case we are inter-
ested in accurate parameter extraction of digital images
of limited size. Therefore we decided to use the steer-
able pyramid since the orientation information of struc-
tures within the texture is better represented in the four
band-pass filters. The filters are designed to separate the
input signal into four different orientation bands. The
cumulative distribution function (CDF) of each of this
frequency- and orientation-subbands of all pyramid lev-
els are now the parametric representation of the material
texture.

Figure 8: Synthetic image texture, parameters taken from
texture analysis of image in Figure 7

Synthesis of textures with arbitrary resolution is car-
ried out by matching the CDF of the subbands in the
pyramid levels of an initial noise image with the CDF ex-
tracted in the analysis step. We refer this step to histogram-
matching. Since this histogram-matching operation does
not produce an exact and unique solution several itera-
tions are necessary. Synthetic images (i.e. Figure 8) pre-
sented here are generated with three iterations of histogram-
matching.

5 Results

The images presented are generated by the use of a SOW
quartz lamp, an SGI Indy workstation with additional CCD
camera and a reference target (barium sulfate coated). A
discussion of the achieved results as well as principle lim-
itations of the method are given in the next two subsec-
tions.

5.1 Materials under Investigation

If we roughly categorize the reflectance characteristics of
arbitrary materials into the three groups diffuse, specular-

diffuse and specular we concentrate our tests on materials
with specular-diffuse reflectivity. For materials with near
to perfect diffuse reflectivity the problem of measuring
and analyzing textures from digital images is reduced to
the analysis step since intensity increases through specu-
lar highlighting are no longer visible. And for materials
with highly specular reflectivity we do have limitations
coming from the capabilities of the imaging device (see
discussion on limitations in Section 5.2).

To demonstrate the potential of the method a mate-
rial with lower specular component (desk) and a mate-
rial with higher specular component (marble) are chosen.
The results of the BRDF model fitting is shown in Ta-
ble 1. Results of the texture analysis and synthesis steps
are documented within the next pictures.

[(Material [ pa [ ps | az | o |
desk 0.676 | 0.039 | 0.137 | 0.150
marble 0.348 | 0.013 | 0.041 | 0.056

Table 1: BRDF model parameters for materials

5.1.1 Desk

In Figure 5 we can see that the fitting process of mea-
sured BRDF values delivers plausible results. We can
verify this visually through comparison of measured val-
ues (rough curve) with calculated values (smooth curve)
shown in the diagram. The BRDF values are generated
out of the corresponding input images (see Figure 3). To
verify the ability to generate textures with arbitrary as-
pect ratio and spatial extent a number of synthesized tex-
tures with the same input parameters are presented in Fig-
ure 10. The parameters are taken from analysis of texture
region shown in Figure 9. This also demonstrates the ca-
pability to represent seamless textures.

Figure 9: Selected region for texture analysis.

5.1.2 Marble

Due to the higher specularity of the marble probe and
the low dynamic range of the used CCD camera more
color distortions compared to the desk probe appear in
the middle of the image shown in Figure 12. Additionally
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Figure 10: Texture synthesis with different resolution and
aspect ratios; parameters taken from analysis of image in
Figure 9.

texture information get lost in cause of saturation of the
camera. All other regions seem to be equally illuminated
as we expect if someone removes the specular reflectivity
from a surface. The BRDF model parameter verification
again can be realized in Figure 6.

Figure 11: Image taken by a standard CCD camera show-
ing the probe (desk) on the left side and reference stan-
dard on the right.

For the analysis and synthesis of a selected region
one limitation can slightly be noticed in Figure 13. The
image, which is geometrically scaled by a factor of two,
seems to be a little bit blurred compared to the input im-
age. This comes from the property of the used steerable
pyramid that sharp regular structures are not well repre-
sented. The next subsection will discuss this limitation as
well as others coming from the imaging device, used re-
flectance model, and geometric constraints of the BRDF

Figure 12: Image texture with subtracted specular com-
ponent. Original image can be found in Figure 11.

measurement system.

Figure 13: Synthetic image texture, paramcters taken
from texture analysis of image in Figure 12.

5.2 Limitations

It was our intention to build a measurement system which
is not time and cost intensive. These restrictions and
properties of the used texture analysis and synthests led
to some limitations inherent in the method which will be
explained in detail in the following paragraphs. Some of
them could be eliminated as proposed in Section 6.

5.2.1 Specular Reflection

Looking at the equipment the symmetry constraint for the
radiation distribution of the light source holds even for
our simple quartz lamp.

The second important component, the CCD camera,
is the major drawback in the system especially for highly
specular materials. This kind of cameras have a limited
dynamic range which is based on the physical effect they
use for image acquisition. Highly specular and textured
materials deliver images with high-intensive spots and
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low-intensive textures. An image capturing device with
high dynamic range or a software solutions to extend the
dynamic range of standard CCD cameras, as introduced
in [6] are necessary if we would measure this kind of ma-
terials.

Another restriction for measuring highly specular ma-
terials comes from the used reflectance model which is
not well suited for this case. This limitation can be elimi-
nated since our method allows to exchange the reflectance
model with no additional effort. Recent work is published
on compact metallic reflectance models in [16].

Additionally there are some materials where not only
the diffuse but also the specular reflectance coefficient
varies over the surface.

5.2.2 Surface Geometry Figure 14: Image texture with subtracted specular
component. A typical example where texture analy-

We exploit the symmetry of our measurement structure . L .
P y y sis/synthesis will fail

to gather BRDF reference points. At the current state this
works only if the material under investigation has a planar
surface.

5.2.3 Surface Roughness

We suppose that the variation of the measured BRDF val-
ues represent the modulation of the diffuse reflectance
coefficient. If we measure materials with a macroscopic
surface roughness additional shading and shadowing ef-
fects influence the resulting digital image. In this case the
extracted texture parameters do not represent the texture
of the probe. The result is a mixture of texture, shading,
and shadowing effects from surface bumps.

Figure 15: Synthetic image texture, parameters taken
from texture analysis of image in Figure 14

tions. These restrictions are limited specular components
for the reflectance model parameter fitting and irregular-
ity and inhomogenity for the texture analysis.

5.24 Structured Textures Future work will be done to overcome some of the

Figure 14 shows an example of a texture where analysis 1/mitations described in Section 5:
and synthesis will fail. The synthesized texture in Fig-
ure 15 exposes the expected color impression but the reg-
ular structures get lost. This comes from the property
that the steerable pyramid based algorithm cannot repre-
sent regular structures with high frequency content over
a wide area.

e Improvement of the image acquisition process: i.e.
employment of modern CMOS cameras with high
dynamic ranges (= 10%) and integration of tech-
niques presented in [6].

e Implementation of further reflectance models even

for metallic materials [16], [12].
6 Conclusions and Future Work :
o Invent new texture analysis algorithms as introduced
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