A Control Theory Approach for Real-time Animation of Artificial Agents *

FERNANDO WAGNER DA SILVA! Luiz M. GARCIAZ, RICARDO C. FARIAS®, ANTONIO A. F. OLIVEIRA!,

1 Universidade Federal do Rio de Janeiro (LCG/UFRJ)
CP 68511, 21945-970, Rio de Janeiro, RJ, Brasil
(nando,oliveira)@lcg.ufr).br
? Laboratoire d’ Analyse et d’ Architecture des Systemes (LAAS/CNRS)
7, Avenue du Colonel Roche, 31077 Toulouse France
Imgarcia@1laas.fr
3 State University of New York at Stony Brook (AMS/SUNYSB)
Stony Brook, NY - 11794-3600
rfarias@ams.sunysb.edu

Abstract.

We propose basic mechanisms in support to autonomous, artificial animated agents. We use an

approach based on robotics control theory, dealing with physics constraints and dynamics and kinematics issues
providing a well structured way to control the agent resources. We validate the mechanisms by presenting three
computer animated platforms with different structures (sensors, actuators, and dynamics) which have used them.
As a practical result, our animated agents are able to perform different tasks on the top of the same control structure.

1 Introduction

An aspect noted on existing architectures for simulation of
artificial animated agents ([7, 1, 2] and others) is that the
agent’s pose and perceptual state are generally attached to a
geometric model, consequently arbitrated. This turns the
agents into simple task executors without any antonomy
for decision or reaction capability. Also, the agent’s move-
ments are notedly disorganized and irregular and its behav-
ior unrealistic. In this work we present a new concept, a
general model for computer animation of artificial agents
and the basic mechanisms in support to it. The model sup-
ports sensing capabilities and deals with physics constraints
and dynamics and kinematics issues. In the adopted philos-
ophy, the agent’s processes do not deal with the construc-
tion of a geometric model, in order to represent the envi-
ronment. From simulated sensory information (the “sen-
sory buffer”), by reducing and abstracting data the agent
system computes a “‘perceptual buffer”, which is joined to
other type of information like the agent’s pose and func-
tional state to define the current “perceptual state”. So, the
agent system can make decisions and act mainly based on
the information contained in this perceptual state. A key
aspect in computer animation is to produce movements that
are smooth and natural over time. This can be guaranteed
by using the control-theory approach introduced here and
by considering physics constraints and the dynamics and
kinematics aspects of motion.

In our context, artificial animated agents can be simply
understood as devices that imitate living beings. The main
characteristic of an animated agent is its real-time sensing,
perhaps planning, and acting (or sometimes directly react-

*This work is supported by LAAS/CNRS France and by CNPq Brazil

0-7695-0878-2/00 $10.00 © 2000 IEEE

ing) capability. Such being is a dynamic entity, which learns
in some automated way and reacts to stimuli performing re-
lated actions as feedback. We tested the developed tools by
using three different purpose artificial animated agents. The
first agent (Roger-the-Crab) simulates a crab-like robot
with two cameras and two arms. The main task devoted
to Roger is to learn attention control and categorization be-
haviors as a feedback to environmental stimuli. The second
agent simulates a multi-link, a snake-like agent that, instead
of crawling on the ground, uses its two bidirectional end-
effectors to progress. The third agent is a virtual human de-
nominated affectively “The-Human”. It uses information
contained in its perceptual state and previously recorded,
captured motion data to progress.

By looking the results of the experiments and demon-
strattons performed, we could see that this approach con-
tributes with some improvements. First, it is easier for a
virtual agent to react, choosing actions based on its own
perception of the scene rather than by using directly a ge-
ometric model. Second, the system deals with less data,
what substantially improves its performance. Third, by us-
ing a control theory approach, and considering physics con-
straints as gravity and inertia and dynamics and kinematics
issues, we approximate simulation and reality. Our agents
behave more naturally. Finally, the resulting architecture
allows one to deal with dynamic environments in a more
efficient way, providing real-time feedback to an eventual
stimuli change. The agent maps the information contained
in its perceptual state in actions, retrieving the motion pa-
rameters necessary to perform it. So, the main advantage
of using such architecture is to allow the agent to act au-
tonomously to perform its animated behavior (imitate living
beings or robot agents).

2 Scene Representation and Sensing Simulation

In general, by following existent methodologies we can re-
late geometric models with simulation and real agent plat-
forms in two opposite ways. While in real platforms roboti-
cists have tried to make complete scene models from per-
ception then to plan (or reason) and act based on that model,
in simulation a geometric model of a scene is previously
given to a virtual agent which tries to directly act based on
the model information. In this work, we use a simple world
representation, which is mapped to local sensory informa-
tion when the system is operating. Besides our represen-
tation is not a standard geometric model as voxels, trian-
gulations or.meshes representations, we note that the last
could also be used here indexed in a certain way. Sens-
ing simulation from our world representation resulting in
a local perceived set of information is the main reason of
the success of our approach. This substantially improves
the system performance, since it deals with less data. Sim-
ulated sensors like cameras, collision detectors, and other
that allows to obtain haptics (including proprioceptive and
tactile) information are used here. Note that this approach,
besides allowing our agents to perform their behaviors in
real-time, also introduces a more natural way to perform
computer animation, perhaps closer to biological models.
We use Computer Graphics techniques to calculate a local
sensory buffer from the global environment representation.
So, the result would be a simulated retina, which then can be
accessed by the agent. Also, based on the agent pose (con-
figuration of its links and joints) and on natural arbitrated
parameters of the environment, haptics (including proprio-
ceptive and tactile) information can be derived. The point
is that, in general, local sensory information can be fast and
easily simulated from a world representation. In this way,
simulated platforms can approximate real platforms and lo-
cal simulated sensory information rather than simplified,
partial, or even complete world representations can be used
by simulated agents to plan, reason, or to react in real-time.
In this way, the system architecture proposed in this work
deals with the definition and extraction of meaning features
(the perceptual buffer) from the local sensory information
derived from those representations. The philosophy intro-
duced in this work is a first step in this direction. Note that
in the case of a robot platform, cameras, sonars, infra-red
range detectors, force/torque and other sensors would pro-
vide such sensory information.

3 Agent Modeling

To animate general articulated agents, a computational
model must be employed to correctly represent its main
structure, allowing a robust control of the animation pa-
rameters over time. Our agent model consists of a skeleton
formed by links and joints organized hierarchically. Links
are geometric segments of the structure that are allowed to
move. Joints are the geometric constraints used to connect
the links, allowing relative movements (also known as De-

212

gree of Freedom, DOF) between the segments of the struc-
ture. This structure may assume any level of realism de-
pending on the application. This description is adequate to
be used in most animation systems available today, since it
reflects the structure of a general articulated figure.

As our agents’ resources are dynamical systems, we
must model the inertial parameters of their world before do-
ing anything with them. This involves computing the influ-
ence of gravity and inertia on the system motion. Our agents
live in a world with gravitational forces acting in the nega-
tive Z direction (down vertical). The equations of motion
for a general n degrees of freedom open chain mechanism
can be written as:

=M@ +V(0,0)+G(H) (1
The term M () is a positive definite and symmetric (so al-
ways invertible) matrix of inertia. The vector V (#, 9’) in-
corporates all terms which depend on velocity (centrifugal
and Coriolis forces). The vector GG(f) contains the gravity
forces component. The angular acceleration vector in the
instant ¢ can be computed from Equation 1 as:

0'(ty=M"Y(r—V -G-F) @)
The term F represents any miscellaneous external force
(contact loads, friction, etc). Note that real robots are phys-
ical devices which perform this computation in analog, but
in general the above motion Equations (1,2) can be used to
simulate the mechanism. Given suitable initial state vari-
ables, the state of the system can be predicted for all simu-
lation steps in future time. Once the above parameters are
computed, we can use a simple Euler integrator to update
the positions and velocities of the creature’s manipulator.
As the type of joints of all agent resources is revolute, in the
instant ¢ + At we have:

0 erae =0 +0" At
Oryar =0 + b o At

2

(3

By using the above formulation, the forward-model,
a highly non-linear and coupled system, shown in Figure
1 is obtained. To put the agents working, we still need
to linearize and de-couple. This involves considering the
kinematics of the resources, the implementation of a feed-
back controller, and the empirical verification of the result-
ing second-order, closed-loop response. The incorporation
of this feedback controller produces a dynamical system
with feed-forward compensation, shown schematically in
Figure 2. The inertial gains K, and K, introduced in the
controllers are determined iteratively. Finally, to complete
the motion simulation, we reparameterize the update trans-
forms that describe position of the agent’s manipulators or
the state of each joint and link. We define a matrix 7; for
each link ¢ of an agent resource, which represents the ho-
mogeneous (3D) transform (rotation plus translation) to be
applied in order to transport the world frame coordinates to

Robot

Figure 2: Feed-forward linear and decoupled system.

a link extremity. At each time that the controllers of a re-
source operate, these matrices are updated by using the cur-
rent angular positioning (¢;) of the links. Forward kinemat-
ics for a given link (joint) 7 can be simply calculated by mul-
tiplying the previous links matrices recursively as T;_1T;.
This motion simulation also reparametrizes inverse kine-
matics Equations of an agent resource (given the coordi-
nates (z, y) of the end-effector, return joint angle solutions).
This is used conjunction with the current agent pose to de-
termine whether a goal is reachable as well to determine
which configuration would allow the resource to reach the
goal. The above motion simulation works very fast to com-
pute the motion parameters for each agent resource since it
can be obtained by multiplications and sums of very sim-
ple matrices. Since the motion parameters are computed,
the simple forward kinematics model can be used to update
the agent resources, considering a simulated time interval
(clock rate) and the current agent pose.

Feature Perceptual Task Control
Extraction Do (Goal Achievement)
Percepraal TTs
Buffer Task Selection
Visualization Agent Pose Functional
Interface Definition Do

Posilioning

Movement

Sensors Computation Control
PD

P
Buffer Controllers Selection

Figure 3: System Control Architecture

a N

Visualization
Pa <

Updating

Auentional

4 The Control Architecture

Figure 3 shows the main aspects of the control architecture
used to perform our animated agents. Briefly, we use a sim-
ple model, a world description that is not an inherent part of
the agent kernel system, and some computer graphics and
other direct techniques as explained above to derive sensory

213

information. Then, information from the sensory buffers are
abstracted to construct a perceptual buffer (feature maps).
The agent uses this set of features plus its pose and func-
tional state to define its perceptual state. The agent’s pose
contains information regarding the positioning and configu-
ration of its links and joints and the functional state contains
the set of high-level actions performed or to be performed
by the agent and also the state of all controllers. The per-
ceptual state can be represented as a vector containing all
type of information that would be useful for a given set
of tasks. The task controller takes into account the infor-
mation in the perceptual state to evaluate the current task
goal achievement. Based on the results of this evaluation,
it re-parameterizes the current task, allowing the agent to
choose the right set of actions to perform, or eventually it
selects a new task, if the immediate task goal is achieved.
After a task selection or reparametrization, the attentional
mechanism operates based on the current task parameters.
Based on a task dependent policy, it selects a new action. A
chosen action eventually involves shifting attentional focus
and/or performing movements of the agent’s resources. To
determine the region where to put attention, we first com-
pute salience maps from attentional feature maps extracted
from the visual information. The attentional target is sim-
ply given by the most activated region in these maps. In
case of physical movements, this implies in the definition
of a target position for each agent resource, in coordinates
of its (reachable) configuration space (C-space). To deter-
mine the best path we apply a gradient descent strategy to
solve a harmonic function defined over the C-space, regard-
ing restrictions (obstacles) of a potential map. Since differ-
ential displacements are determined in C-space coordinates,
the differential motion parameters are retrieved by using the
above Equations of motion (1, 2 and 3) and are sent trough
the servo PD (positional derivative) controllers. This effec-
tively brings the agent to a new pose and also puts a new set
of information in the sensory buffers. The agent pose and
sensory information can then be used by the visualization
interface to display the agent’s resources and its environ-
ment in a computer screen. This can be done by using a
standard rendering/visualization procedure. Then, since the
new sensory information is acquired (simulated), the pro-
cess can be re-started (feature extraction).

We remark that this low-level operating loop follows
a control theory approach, what guarantees stability and
global convergence of the creature resources (controllers)
in the achievement of an action. Note that the agent system
performs actions involving motion by decomposing it in
differential (instantaneous) sub-movements. At each time
step, a small movement is performed, followed by an update
in the agent sensory buffer consequently providing new in-
formation in the perceptual state. This produces smooth and
differentiable motion and also allows the agent to eventually
reparameterize its task goal on-line, during the execution of
an action, taking into account the changes in the percep-

tual state. We note that this approach is inherently reactive,
choosing actions based on perceptions of the world at differ-
ent temporal scales rather than by using a geometric model
as in traditional planning techniques. By using a robotics
control theory approach, we introduce more realism in the
motion animation of our agents. Also, as time is a critical
parameter for computer animation, by using this approach
we guarantee that all computations necessary to perform a
given step of motion are computed during the time interval
given by the simulated clock rate.

Figure 5: Roger’s left (top) and right (bottom) retinas.

5 The Simulator ‘“Roger-the-Crab”

Our simulated robot Roger-the-Crab has seven con-
trollers, one for the neck (pan), two for the eyes (vergence),
and two for each arm (equivalent to a shoulder and elbow)
all integrated in a single platform. Roger’s environment
can be specified and dynamically changed. Currently, we
can (on-line) include (or remove) in Roger’s room several
types of objects like circles, squares, and triangles. The ob-
ject size, intensity (color), and mass (for arm sensing sim-
ulation) can also be on-line specified and changed. Each
wall (Roger’s environment is a rectangular room) can have
a different (uniform) color, simulating an ideal background
for the objects. Visual sensing is simulated from this world
definition by using a Phong illumination model. For each
of the 256 pixels in Roger’s unidimensional retinas, seen in
Figure 5, an intensity value is calculated in function of the
radiance of the world patch corresponding to it. Following,
a Gaussian noise process simulates acquiring errors, assert-
ing a more natural retinal image. Haptics simulation is done
based on the arbitrary value attributed to each object mass.
In case Roger is grasping an object, the object mass and the
proprioceptive information relative to the arm configuration
is mapped to arm torque and velocity vectors necessary to
lift the object.

214

5.1 Simulating Roger’s Dynamics.

Roger lives in a flat world, with gravitational forces acting
in the negative Z direction (down vertical). Considering
that the eyes are embedded in a 2D framework with 1 de-
gree of freedom or one link (have you seen a crab eye?:-),
very simple formulae can be derived from Equations 1, 2
and 3. The dynamics equations used by Roger’s arm con-
trollers are a bit more complex because of the two DOFs. To
complete the motion simulation, we update the transform
matrices 7; seen above that describe position of Roger’s ma-
nipulators. In order to visualize Roger’s eye axes and their
intersection and also in some visually guided tasks, we need
to map eye goals in world coordinates (we refer to this as
forward kinematics for the eyes). We determine a location
in the horopter, the point in which the eye axes cross, by
using a simple equation for the visual gaze along the gaze
of the left eye. Inverse kinematics of an arm or eye (given
the coordinates (z, y) of the end-effector or of the horopter,
return joint angle solutions) is also formulated.

5.2 Data Reduction and Feature Abstraction

We pfomote data reduction and abstraction in order to sup-
port the construction of Roger’s perceptual state. To re-
duce data, we compute multi-resolution (MR) image rep-
resentations from Roger’s retinas. MR intensity and mo-
tion images are composed of three resolution levels of 32
pixels each, calculated by applying mean filters in the orig-
inal captured (simulated) images and on the difference be-
tween consecutive frames, representing motion. A multi-
feature (MF) representation over the MR images provides
feature abstraction. Gaussian MF are computed by convo-
luting the MR intensity images with Gaussian kernels, in
three different kernel diameters (o). Motion features are
computed by applying a first Gaussian derivative to the pre-
vious MR motion images. We also compute stereo dispar-
ity features over the responses of the second order Gaus-
sian MF. The result is a multi-resolution-multi- feature
(MRMF) representation. To promote attention behavior,
Roger computes a set of attentional feature maps from
the MRMF and gathers information from these to construct
salience maps. The most salient region in these maps will
determine the attentional target. The controllers of the
eyes/arms calculate the displacements to be applied to the
degrees of freedom of Roger by using this target. Then, the
motion parameters are retrieved using the above Equations
of motion and Roger’s PD controllers effectively produces
the movements to foveate (or to reach, in case of an arm
movement) the target. In the situation displayed in Figure
4, the left arm and the controllers of the neck and the eyes
of Roger have converged on a region containing a triangle.
The above features will be extracted from that region of in-
terest and joined to other type of information as Roger’s
pose and functional state to compose Roger’s perceptual
state. Based on the information contained in this perceptual
state and on the current state of the supervisor (controllers),

another action (generally a movement) will be performed
as a feedback to the environmental stimuli. This carries out
an attentional policy which can be understood as an strat-
egy for choosing the best actions according the current per-
ceptual state. Currently, we developed two policies for the
purpose of performing a monitoring task [4].

6 The Simulator The-Worm

In this example, we have implemented an autonomous, vir-
tual creature called The-Worm. It looks and acts like an
earth-worm and has a structure based on a hierarchy of rigid
segments connected by revolute joints, as shown in Figure
6. The initial hierarchy arrangement of The-Worm is de-
fined by the user, and may include closed-loops, multiple
branches and end-effectors (see part b of Figure 6).

internal joint
(callisivn sensor)

extemal joint

(collision sensor + "visual sysiem”)
T T T T

Figure 6: Close view at The-Worm and its internal struc-
ture.

6.1 Functional Control and Sensing.

The control cycle that manages, for each step of simula-
tion, the perception, reaction, and motion of The-Worm
is composed of a series of low-level programs. Accord-
ing to a predetermined task, which may vary from a simple
“progress on this terrain” to a more complex situation such
as “climb this stair”, decisions are taken based on the cur-
rent perceptual state. The goal achievement is constantly
evaluated by the task tontrol module and, if necessary, the
creature changes its internal hierarchical structure by using
a Dynamic Graph Rearranging (DGR) algorithm. This al-
gorithm modifies its internal hierarchical structure in real-
time according to feedback provided by its sensors. Each
time an end-effector touches the ground, the entire hierar-
chy is transformed, rearranging from the root to the end-
effectors. This makes more natural and, consequently, ef-
ficient the computation of forward and inverse kinematics
through the creature’s structure. Moreover, this allows a
precise localization of end-effectors in the structure. This
is particularly important during the process of collision de-
tection and motion planning/control. A tactile sensor, im-
plemented at each joint of The-Worm, allows it to get the
exact time that any segment touches an object or the ter-
rain. Additionally, at each end-effector, an algorithm based
on ray-casting simulates a simplified visual system. This
allows the creature to generate its sensory buffer.

6.2 Motion Computation and Control.

Each node of the hierarchy has a data structure associated
to it, which contains 3D information regarding the segment
position, the relative orientation to the neighbor segment,

215

and pointers to the attached joints. Kinematics and dynam-
ics parameters of the segment are also stored. As in Roger-
the-C'rab, after motion parameters computation, the move-
ment is simulated by propagating transformation matrices
available at each node, using a standard forward kinematics
procedure. To control the motion behavior of The-Worm,
we use an approach based on Zeltzer’s work [8]. According
to the goal defined by the attentional mechanism, the Task
Control module decomposes it into a set of small subpro-
grams. Each subprogram consists on a specific motion that
The-Worm can perform (progress, full extension and so
on) and are generated by a series of local motor programs
(LMP). Each LMP is responsible for changing a specific
rotation parameter in a joint (or set of joints). Therefore,
to perform a progression motion with a fixed step length,
a series of LMPs are called such as to modify the rota-
tion parameters at specific joints in the hierarchy. This
process is constantly supervised by the task control mod-
ule, which also uses information collected by the sensors
to evaluate the performance and necessity of changes in the
motion parameters. If necessary, the task control mod-
ule reparametrizes a current set of LMPs so that a motion
is performed in a more efficient way to complete the task.
Also, all movements of The-W orm are parametrized such
that each end-effector acts like a leg, propelling the creature
throughout the environment.

left upleg

left lowieg
left foot
right upleg
right lowleg
right foot

Figure 7: Agent topology and geometry.

7 The Virtual Human Agent (T he-H uman)

In this example (Figure 7), we have implemented an artifi-
cial animated agent similar to a human being. At the pro-
gramming level, this agent is represented by using a modi-
fied version of Zeltzer’s APJ structure [9], adapted to work
with motion captured data. Such representation allows us
to deal with motion processing techniques in a straightfor-
ward way. We use a motion capture approach as the basic
component of locomotion for our human-like agent because
this provides more realism, similarity with human motion,
and makes possible the real-time visualization. On the other
hand, captured motions act like scripts and are hard to mod-
ify in order to be adapted to different situations according to
user interaction. However, such drawback can be avoided
by using well known motion processing techniques. The
information generated by a motion capture device is com-
posed by a data set of samples, which represent the po-
sition and global orientation of a real object at uniformly

spaced time intervals. In the case of human motion capture,
the position and orientation of several joints of an actor are
recorded, generating a set of 1D signals also known as mo-
tion curves. These curves are then processed and mapped
onto a skeleton hierarchy, which will drive a virtual actor
(that is, an agent) in the computer [10]. The simulation of
sensors similar to The-Worm provides the input informa-
tion used to construct the agent perceptual state, used to
perform an autonomous navigation task. At every time-
step, the agent selects a new set of motions or reparame-
terizes the current set based on the information contained
in its perceptual state. This is task dependent and can be
learned according to the task. In the experiments performed
here, we detérmined what subset of motion is to be used at
a given time empirically, according to the task goal and to
the information currently in the perceptual state.

7.1 Motion Combination and Control

The signal-like nature of captured data suggests that it
should be treated using the paradigms of signal processing
theory [11]. Motion capture data processing has become an
important field of research in recent years [10]. The cres-
cent demand of powerful tools for motion editing has led
to the development of several techniques such as warping
[12], concatenation [13] and reparametrization [14]. We
use these tools to combine small pieces of motion such as to
generate new movements according to user interaction, in a
process that will drive the agent in the virtual world. The
set of motion processing tools used by our agent includes
several well defined operations.

Motion filtering may be used to eliminate or attenuate
specific frequencies of a motion signal. A low-pass filter
can be applied to the motion curves of the agent in order
reduce the noise introduced by the capturing process, thus
making the motion more natural and smooth. Also, special
filters can be used to create slow-motion and accelerated-
time effects in a motion sequence [14]. Motion concate-
nation is a very simple operation which is widely used in
many cornmercial applications involving avatars and user-
driven agents, such as FIFA Soccer and Virtual Fighter.
This technique consists on sequencing a number of mo-
tions, chosen from a memory-based motion library accord-
ing to user interaction, performing a smooth transition be-
tween them. This can be done by using special motion
interpolators such as spacetime [13] and physically based
constraints. Motion warping functions can be applied to
motion curves to provide local deformation. This causes
changes in the orientation and position of specific sets of
joints of the agent, changing the movement on-line. This
can be used for example, for obstacle avoidance. Motion
time-warping algorithms can be used to expand or contract
the agent motions in time. The basic goal is to deform the
motion without producing changes in the frequency con-
tents of its curves. In the expansion case, this causes a cy-
cling in the motion [15]. Similar techniques are used in soc-
cer games in order to repeat a basic motion over time (e.g.

216

a player pursuing the ball: cycling of a running motion).

8 Demonstrations and Experimental Result

We performed several demonstrations and experiments for
our agents involving attentional monitoring tasks of the en-
vironment and progressing tasks.

_—~{— Updates
— - Known
- Unknown

Number of Objects
5 5
\
.

S

Control cycles
Figure 8: Overall evaluation. The lines show the total num-
ber of objects detected in the environment (upper solid line),
number of new objects detected (middle line), and number
of already known objects detected (lower line).

v e

ER X e

[0 e e Y

Figure 9: Roger constructing attentional maps.

8.1 Experiments and Demonstrations for Roger

The experiments for Roger-the-Crab included real-time
monitoring tasks. Basically, many instances and types of
objects are placed in its room. We expect that Roger fo-
cus attention on all objects, learn their characteristics, and
incrementally construct/update its attentional maps. Figure
8 shows a global evaluation for one of the monitoring tasks
in which Roger visits all regions of its environment. This
result is a consequence of using a policy developed for at-
tention control [4], implemented on the top of the architec-
ture discussed in this paper. As a result of the attentional

policy, all regions of interest in the environment are visited
(looked at or touched by Roger). Figure 9 shows pictures
selected from an animated sequence in which Roger visits
all regions/objects in its environment. The results show that
the mechanisms described in the paper allowed Roger to
perform its animated behavior.

Figure 10: Progressing over irregular terrain.

Figure 11: Obstacle avoidance.

8.2 Demonstrations for The-Worm

Our simulated worm was tested with three different situa-
tions involving uneven terrains and obstacles. The goal of
such testings was to evaluate the creature’s skill to take rea-
sonable decisions, reacting autonomously to environmental
stimuli based on its own perception of the surrounding en-
vironment. In the first demonstration (Figure 10), a multi-
branched worm progress on irregular terrain, with a series
of peaks and valleys. In this case, the main goal was to ver-
ify if all creature’s sensors were working properly, detecting
collisions and measuring distances from the end-effectors
and several objects of the environment (thus allowing the
creature to change the phase of its oscilattors in order to
optimize its path). Figure 11 shows the use of a DGR al-
gorithm together with sensory information collected by the
creature in order to avoid an obstacle. Figure 12 shows
The-Worm climbing a stair. In this case, the Task Con-

217

trol module has used the sensory information to calculate
the correct phase components for the oscillators that drive
the creature, thus allowing a smooth stair climbing.

=

Figure 12: The-Worm climbing a stair.

8.3 Demonstrations for The-Human

‘We show an example in which our virtual human uses a mo-
tion warping operation to avoid an obstacle detected by us-
ing its perceptual state. In this case, the motion parameters
obtained by using the original information in the perceptual
state predicted a straight line walk. But, when the agent
walks over a virtual scenario with an obstacle, a collision
is expected to occur (Figure 13). Using this new perceptual
information, the agent system detects the obstacle position
and its internal motion engine can calculate the necessary
warp factor that must be applied to a group of joints such as
to avoid the collision with the obstacle (Figure 14).

Figure 13: Original retrieved data.

10

Figure 14: Agent performing motion warping.

9 Discussion, Conclusion and Future Work

‘We have introduced an useful animation approach and tools
which were successfully used by different agents to per-
form real-time autonomous tasks. The three totally differ-
ent agents described in the text could be implemented on
the top of this architecture without any significative mod-
ification of their structure. The main reasons of the suc-
cess were data reduction and the definition of meaning, ab-
stracted features, decreasing the amount of on-line com-
putations necessary. Decisions can be taken more rapidly
using the reduced set of information provided in the per-
ceptual state. Another important result was the develop-
ment of an architecture which we believe can also be used
in real platforms, decreasing the distance between simula-
tion and reality. Once we use a control theory approach
and consider physics aspects and the dynamics and kine-
matics of the agent resources, the simulated hardware can
be substituted by the real hardware without any significative
changes. Furthermore, by grounding our system in physical
parameters and specifications, we conjecture that our agents
acts with more realism, and would perform in a way that
is much similar to real animated agents behavior such as
robots, animals, or the human being. Finally, by using the
tools and architecture described in this work, we have built
as a result true computer animation laboratories (Roger-
the-Crab, The-Worm and The-Human) that could be
used for a variety of experimentations like multi-modal sen-
sory integration ([5]), learning of attention control ([4]), de-
velopment of self growing tools for pattern categorization
behavior ([3]), and the embedding of motion capture tech-
niques in a human like, virtual agent for achieving human
like behavior ([10, 6]).

‘We have chosen the tasks of monitoring and progres-
sion onto rough terrains to test the agents because the func-
tional aspects of the developed tools could be fully explored
in these tasks. Furthermore, we conjecture that an animated
agent most like a real creature has to learn the characteris-
tics of its habitat and adapt to it in order to survive. In this
way, questions relative to the current environment state can
be addressed by a simple analysis of the agent perceptual
state and of dynamical attentional maps. As an example of a
more advanced general task which involved feature extrac-
tion, attention control, motion computation, and changes in
the environment, the creature The-Worm and the virtual
agent The-Human have used the basic architecture and
tools to progress in their environments. Note that all they
need is a local perception of the environment provided by
their simple sensors.

An immediate extension of this work is to increase the
feature space and/or the set of tasks that the agents can per-
form. We can also define other tasks based on the current
feature space. Then, it would be possible to derive vari-
ous policies, each one appropriate for a given task. Fur-
thermore, we believe that tasks involving other behavioral
aspects can also be done by using the same architecture, but

218

deriving other policies. Thus, a final possibility for future
works is to derive learning policies for general tasks con-
sidering these aspects. In this way, an agent can learn and
perform tasks without strong interaction with an operator,
augmenting its autonomy.

References

[1] M. Costa and B. Feijo. An architecture for concurrent reac-
tive agents in real-time animation. Proc. of SIBGRAPI’96,
pages 281-288, 1996.
R. Farenc, N. Boulic and D. Thalmann. An informed envi-
ronment dedicated to the simulation of virtual humans in ur-
ban context. Proc. Eurographics’99, pages 309-318, 1999.
L.-M. Garcia, C. Distante, and A. Anglani. Self-growing
neural mechanisms for pattern categorization in robotics.
Submitted to ICSC Congress on Intelligent Systems and Ap-
plications (1SA 2000), December, 12-15 2000.
L. M. G. Gongalves, G. A. Giraldi, A. A. E. Oliveira, and
R. A. Grupen. Learning policies for attentional control.
IEEE Symposium on Computational Intelligence in Robotics
and Automation (CIRA ’99), November 1999.
L. M. G. Gongalves, A. A. F. Oliveira, and R. A. Grupen.
Multi-modal stereognosis. In Proc. of 11l International Con-
ference on Autonomous Agents., pages 337-338, New York,
USA, May 1999. ACM Press.
L. M. Gongalves, F. W. Silva, A. F. Oliveira, L. Velho, and
J. Gomes. Embedding a motion-capture interface in a con-
trol structure for human-like agent behavior achievement. In
Agents 2000 Workshop on "Achieving Human-Like Behav-
ior in Interactive Agents”, Barcelona, Spain, June, 2000.

K. Perlin and A. Goldberg. Improv: A system for script-
ing interactive actors in virtual worlds. In H. Rushmeier,
ed., SIGGRAPH 96, Annual Conference Series, pp 205-216.
ACM Press, Addison Wesley, aug 1996.

D. Zeltzer. Motor control techniques for figure anima-
tion. /EEE Computer Graphics and Applications, 2(9):53—
59, november 1982,

D. Zeltzer and K. Sims. A figure editor and gait controller
for task level animation. In SIGGRAPH Course Notes no. 4,
pages 164181, august 1988.

Silva, E., Velho, L., Cavalcanti, P., Gomes, J., An Archi-
tecture for Motion Capture Based Animation. In Proc. of X
Brazilian Symposium of Computer Graphics and Image Pro-
cessing (October 1997), pp. 49-56, IEEE Press.

Williams, L., Brudelin, A., Motion Signal Processing. In
Computer Graphics (SIGGRAPH’95 Proceedings) (August
1995), pp. 97-104.

Witkin, A., Popovic, Z., Motion Warping. In Computer
Graphics (SIGGRAPH'95 Proceedings) (August 1995), pp.
105~108.

Cohen, M., Rose, C., Guenter, B., Bodenheimer, B., Ef-
ficient Generation of Motion Transitions Using Spacetime
Constraints. In Computer Graphics (SIGGRAPH’96 Pro-
ceedings) (August 1996), pp. 147-154.

Silva, F.,, Velho, L., Gomes, J., Motion Reparametrization.
In EUROGRAPHICS Technical Note (short-papers proc.)
(September 1998), pp. 1.5.1-1.5.4, Springer-Verlag.

Silva, F,, Velho, L., Gomes, J. and Goldenstein, S., Motion
Cyclification by Time x Frequency Warping. In Proceed-
ings of SIBGRAPI’99, XII Brazilian Symposium of Com-
puter Graphics and Image Processing (October 1999), pp.
49-58, IEEE Press.

{2}

[3]

(4]

(5]

[6

—

[7]

(8]

[9

—

{10}

{1

(12]

[13]

[14]

(15}

