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Abstract. This paper presents a new scheme for analysis of linear directional components in images by us-
ing a multiresolution representation based on Gabor wavelets. A dictionary of Gabor filters with varying tuning
frequency and orientation, specifically designed in order to reduce the redundancy in the wavelet~based represen-
tation, is applied to the given image. The filter responses for different scales and orientation are analyzed by using
the Karhunen-Logve (KL) transform and Otsu’s method of thresholding. The KL transform is applied to select
the principal components of the filter responses, preserving only the most relevant directional elements appearing
at all scales. The first V principal components, thresholded by using Otsu’s method, are used to reconstruct the
magnitude and phase of the directional components of the image. In this work, Rose diagrams computed from the
phase images are used for quantitative and qualitative analysis of the oriented patterns. The proposed scheme is
applied to the analysis of asymmetry between left and right mammograms. For this purpose, a set of three features
is extracted from the Rose diagrams and used in a parametric statistical classifier. A total of 80 images from 20
normal cases, 14 asymmetric cases, and 6 distortion cases from the Mini-MIAS database were used to evaluate

the scheme using the leave—one—out methodology, resulting in an average diagnostic accuracy of 72.5%.

1 Introduction

Most of the concepts used in image processing and com-
puter vision for oriented pattern analysis have their roots
in neurophysiological studies of the mammalian visual sys-
tem. Campbell and Robson [1] proposed that the human
visual system decomposes retinal images into a number of
filtered images, each of which contains intensity variations
over a narrow range of frequency and orientation, Marcelja
[2] and Jones and Palmer [3] demonstrated that simple cells
in the primary visual cortex have receptive fields that are re-
stricted to small regions of space and are highly structured,
and that their behavior corresponds to local measurements
of frequency.

According to Daugman [4], [S], one suitable model
of the two—dimensional (2-D) receptive field profiles mea-
sured experimentally in mammalian cortical simple cells is
the parameterized family of 2-D Gabor filters. Jones and
Palmer [3] and Daugman [4] showed that a majority of cor-
tical cells have 2-D receptive field profiles that can be well
fit, in the sense of a statistical test, by members of the fam-
ily of 2-D Gabor elementary functions. Another important
characteristic of Gabor filters is their optimal joint resolu-
tion in both space and frequency, which suggests that Gabor
filters are appropriate operators for tasks requiring simul-
taneous measurement in the two domains [6]. Except for
the optimal joint resolution possessed by the Gabor func-
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tions, the difference of Gaussian (DOG) and difference of
offset Gaussian (DOOG) filters used by Malik and Perona
[7] have similar properties.

Gabor filters have been presented in several works on
image processing [6], [8], [9]; however, most of these works
are related to texture segmentation and analysis. Rolston
and Rangayyan [10] proposed methods for analysis of di-
rectional linear components in images using multiresolu-
tion Gabor filters.

Inspired by the studies mentioned above, we propose a
new scheme based on a Gabor wavelet approach to analyze
directional components of images. The method is used to
detect asymmetry in the fibro—glandular discs of left and
right mammograms.

2 Construction of Gabor Wavelets

A 2-D Gabor function is a Gaussian modulated by a sinu-
soid. It is a nonorthogonal wavelet, and can be specified by
the frequency of the sinusoid W and the standard deviations
of the Gaussian o, and g, as
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Despite this simple form, there is no standard and pre-
cise definition of a 2-D Gabor function, with several vari-
ations appearing in the literature [11],[8),[9]. In this work,
we use the version of the Gabor wavelets proposed by Man-
junath and Ma [12]. The Gabor wavelets in this representa-
tion are obtained by dilation and rotation of g(z, y) as above
by using the generating function

a>1, m,n = integers,
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Imn(Z,y) = a""g(a',y'"),

z' = a"™(zcosf + ysinb) ,

Yy =a"™(~zsind + ycosh) ,

where § = nn /K with m and n indicating the scale and
orientation, respectively. K is the total number of orienta-
tions desired. The scale factor a~™ in Equation 2 is meant
to ensure that the energy is independent of m. Examples of
Gabor wavelets are shown in Figure 1.
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Figure 1: Examples of Gabor wavelets in the spatial domain
with four orientations (6 = 09, 45°, 90°, and 135°) and
one scale (o0; = 5 and o, = 16 pixels). The size of each
wavelet image shown is 121 x 121 pixels.

Equation 1 can be written in the frequency domain as

1[u=W)?2 (v-W)?
Gluv) = Mmooy ¥ {~5 [ a2 T a2 ’
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where 0, = 52— and 0, = 57—. The design strategy is

used to project the filters so as to ensure that the half-peak
magnitude supports of the filter responses in the frequency
spectrum touch one another, as shown in Figure 2. Existing
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methods in the literature use either complex-valued Gabor
filters [11) or pairs of Gabor filters with quadrature-phase
relationship [6]. In this work, the representation uses real-
valued filters oriented over a range of 180° only, as opposed
to the full 360° range commonly described in the litera-
ture. Since the Gabor filters are used to extract meaningful
features from real images (and hence with Hermitian fre-
quency response [13]), the response to the even-symmetric
filter component will remain unchanged for filters oriented
180° out of phase and the odd-symmetric component will
be negated. Thus, based upon this fact and on psychophys-
ical grounds provided by Malik and Perona [7], we ignored
half of the orientations in this work, as illustrated in Figure
2.

The proposed approach results in the following formu-
las for computing the filter parameters o, and g, :

o = (a — 1)U
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where U; and Uy, denote the lower and upper center fre-

quencies of interest. The K and S parameters are, respec-

tively, the number of orientations and the number of scales

in the desired multiresolution decomposition procedure. The
sinusoid frequency W is setequalto Uy, andm = 0,1,...,S—
1. In order to ensure that the filters do not respond to regions
with constant intensity, we have set the gain of each filter at
(u,v) = (0,0) to zero.

3 Directional Analysis

The procedure proposed for analyzing directional compo-
nents starts by computing a dictionary of Gabor filters ac-
cording to the representation described in Section 2. In the
present work, the Gabor wavelets were projected by us-
ing four scales (S = 4) and twelve directions (K = 12)
with the lower and upper center frequencies specified as
U; = 0.05 and U, = 4.5 cycles/pixel, respectively. The
filtering process was performed in the frequency domain.
The filter outputs for each orientation and the four scales

were analyzed by using the Karhunen-Loéve (KL) trans-
form [14]. The KL transform was used to select the prin-
cipal components of the filter outputs, preserving only the
most relevant directional elements present in all the scales.
Results were then combined as illustrated in Figure 3 in or-
der to allow the formation of an S-dimensional vector (%)
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Figure 2: Typical Gabor filter design in the frequency do-
main (four scales, six orientations). Each ellipse represents
the range of the corresponding filter response from 0.5 to
1.0 in squared magnitude.

for each pixel from each set of the corresponding pixels in
the filtered images (S = 4, as mentioned above, is the num-
ber of scales used in the present work).
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Figure 3: Formation of the vector T from the corresponding
pixels of the same orientation and four different scales. The
size of each image is 512 x 512 pixels.

The vectors corresponding to each position in the fil-
ter responses were used to compute the mean vector (I)
and the covariance matrix (C). The eigenvalues and eigen-
vectors of the covariance matrix were then computed and
arranged in descending order in a matrix A so that the first
row of A is the eigenvector corresponding to the largest
eigenvalue, and the last row is the eigenvector correspond-
ing to the smallest eigenvalue. The first N principal compo-
nents corresponding to 95% of the total variance were then
selected and used to represent the oriented components in
each specific orientation. The principal components were
computed as § = A(F — i). Analysis of the variance was
performed by evaluating the eigenvalues of the matrix A.
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The KL method is optimal in the sense that it minimizes
the mean squared error between the vectors Z and their re-
sulting approximations g [14]. The result of application of
the KL transform to all orientations, as described above, is
a set of K images, where K is the number of orientations.

Since the Gabor wavelets are nonorthogonal functions,
they do not have a perfect reconstruction condition. This
fact results in a small amount of out-of-band energy inter-
fering with the reconstruction, which is translated into arti-
facts in the reconstructed image. In order to eliminate these
artifacts, the images resulting from the KL transform were
thresholded by using the maximum of Otsu’s threshold val-
ues [15] computed for the K images. Otsu’s method is a
nonparametric technique for automatic threshold selection,
and selects an optimal threshold value which maximizes the
separability of the resultant classes.

Finally, the phase and magnitude images were com-
posed by vector summation of the K filtered images [13].

4 Analysis of Asymmetry in Mammograms

Asymmetry between the left and right mammograms is an
important sign used by radiologists to diagnose breast can-
cer [16]. Analysis of asymmetry can provide clues about
the presence of early signs of tumors (parenchymal distor-
tion, small asymmetric bright spots and contrast, etc.) that
are not evaluated by other methods [17]. Several works
have been presented in the literature addressing this prob-
lem [18], [19], [17], [20], [21]. Most of them applying
some type of alignment of the breast images before per-
forming asymmetry analysis. However, alignment proce-
dures applied to mammograms have to confront many diffi-
cult problems such as the natural asymmetry of the breasts,
absence of good corresponding points between the left and
right breast images to perform matching, and distortions in-
herent to breast imaging.

A systematic anatomical approach was proposed by
Lau and Bischof [18] and Miller and Astley [17], in which
asymmetry comparison of the corresponding anatomical re-
gions between the left and right breast images was per-
formed in terms of shape, texture, and density. Lau and
Bischof also proposed a directional feature to quantify ori-
ented patterns. In the present work, we intend to concen-
trate upon disturbance in the normally symmetrical flow of
structures in the breast.

4.1 Selection of the region of interest (ROI)

Figures 4 and 5 show the two pairs of images from the Mini-
MIAS database [22] used in this work for illustration of
the directional analysis procedure. Figures 4(a) and (b) are,
respectively, the images mdb087 and mdb088 classified as
a normal case. Figures 5(a) and (b) are the images mdb117
and mdb118 classified as an architectural distortion case.
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Figure 4: Images mdb087 and mdb088 of a normal case.
(a) and (b) Original images. (c) and (d) Fibro—glandular
disc segmented and enlarged. Histogram equalization was
applied to enhance the global contrast of each ROL The left
ROI image (c) is flipped (mirrored) for easier comparison.

In this work, we use only the fibro—glandular disc as
the ROl in order to compute the directional components,
due to the fact that most of the directional components such
as connective tissues and ligaments occur in this specific
region of the breast. The fibro—glandular disc is commonly
localized near the nipple, and spreads through the interior
of the breast until near the chest wall. Radiologists have
noted that developing cancers are more often associated
with glandular tissue than with fat [23]. When a tumor
occurs in the fibro—glandular disc region of the breast, the
natural directional flow of the tissues converging to the nip-
ple changes locally in terms of orientation. Thus, a careful
analysis of the directional components in the fibro—glandular
disc can provide important information to radiologists.

In order to segment the fibro—glandular disc, we use a
method that we have proposed [24] based upon the infor-
mation in the gray-level intensity distribution to estimate a
statistical model representing the fat and glandular tissues
in the image. The statistical method used is the maximum-—
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Figure 5: Images mdb117 and mdb118 of a case with archi-
tectural distortion. (a) and (b) Original images. (c) and (d)
Fibro-glandular disc segmented and enlarged. Histogram
equalization was applied to enhance the global contrast of
each ROI. The left ROI image (c) is flipped (mirrored) for
easier comparison.

likelihood method with the probability density function rep-
resented by a Gaussian—mixture model. The parameters of
the model are estimated by using the Expectation Maxi-
mization algorithm.

4.2 Feature extraction

In order to characterize asymmetry in mammograms, we
use three features of directional distribution obtained from
a Rose diagram that represents the difference between the
Rose diagrams computed for the left and right mammo-
grams. The Rose diagram or angle histogram is a graph-
ical representation of directional information. In this repre-
sentation, the area of each angle bin is proportional to the
amount of information present in that specific direction.
The areas covered by each Rose diagram (left and right)
were computed, and the maximum value used to normal-
ize each angle bin of the Rose diagrams. This normaliza-
tion permits a direct comparison of the left-breast and right-



breast Rose diagrams. The features used in the present work
are described below.

a) Entropy (H) is used to represent the scatter of the
directional components in an image. If the image is com-
posed of directional components with a uniform distribu-
tion, the entropy value will be maximum; on the other hand,
if the image is composed of directional components ori-
ented in a very narrow angle band, the entropy value will
be small. The entropy measure is computed as

N
H= —inlogzxi s (5)

i=1
where NV is the number of angle bins in the Rose diagram
(V = 12 in the present work) and z; is the ratio of the area
of the directional components in the direction ¢ to the total
area represented by the Rose diagram.

b) The first-order angular moment (A{;) or mean ori-

entation (#) of an angular distribution is defined as

N
M, = Zeiﬂ'fi )
=1

where 8; is the central angle of the i**angle band.

¢) The second-order central moment (M) is a mea-
sure of the angular dispersion or variance computed with
respect to the mean orientation as

6

N
M2 = 2(01 - 5)2.’1:,' . (7)
i=1

4.3 Pattern classification

Classification of the normal and asymmetric cases was con-
ducted by using the Bayesian linear classifier [25]. The
Gaussian distribution was assumed in order to model the
probability density function (p.d.f), and the parameters of
the model (mean vector Iz and covariance matrix ¥ ) were
estimated by using the training samples. The prior prob-
abilities of normal and asymmetric classes were assumed
to be equal (P, = P, = 0.5), and the covariance ma-
trix 3 was calculated in a pooled manner by averaging the
covariance matrices of the normal and symmetric classes
(Z =(Xi+X;)/2) . Thus, the statistical decision is made
as

f@lw) 2, f(@he;)

®)

_ 1 rai,-
f@w) =exp[-5F-m) @ -m)], O
where w; and w; represent, respectively, the normal and
asymmetric classes, and f(Z|w;) is the p.d.f. of the feature
vector T in the class w;.
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The leave—one—out methodology [25] was used to es-
timate the classification accuracy since the number of sam-
ples used in this work is relatively small.

5 Results

The directional analysis scheme proposed was applied to
80 images (20 normal cases, 14 asymmetry cases, and 6 ar-
chitectural distortion cases) from the Mini~-MIAS database
[22). All images were medio-lateral oblique views with 200
um sampling interval and 8-bit gray—~level quantization.

Although the Gabor filters were implemented to pro-
vide good computing performance, the filtering process in-
volves the computation of S x K Fast Fourier Transforms
(FFT) and S x K inverse FFTs, where S and K are, re-
spectively, the number of scales and orientations used in
the filters. In the present work, S = 4 and K = 12, and all
the filters were initially created in the spatial domain. Pro-
cessing an image with a resolution of 512 x 512 pixels (size
of the ROI) on a 450 MHz Pentium processor with 184 MB
of memory took about 20 minutes.

Figure 6 shows the principal components obtained by
applying the KL transform to the filter outputs for orien-
tation 135° and four scales. It can be seen that the rele-
vant information is concentrated in the first two principal
components. This is evident based on the evaluation of the
eigenvalues, listed in the caption of Figure 6. In this exam-
ple, only the first two principal components were used to
represent the oriented components in the 135 orientation,
since their eigenvalues add to 99.11% (> 95% ) of the total
variance.

After thresholding the filtered images with Otsu’s meth-
od, in order to eliminate the effects of spectral leakage,
the magnitude and phase images were composed by vector
summation, as illustrated in Figures 7 and 8.

Figures 7(a)-(d) show the magnitude and phase images
for the normal case in Figure 4. From the phase images, it
is readily seen that the left and right views have almost the
same dominant orientation. Some artifacts may be noticed
in the chest wall region, caused by the gray—level transitions
(see Figures 4(c) and (d)); the artifacts need to be removed
in future works. The Rose diagrams in Figures 7(e) and (f)
show the distribution of the tissues in the fibro—glandular
disc of both the left and right views. An inspection of the
Rose diagrams shows that the results obtained are in good
agreement with visual analysis of the filtered results in Fig-
ures 7(c) and (d), and the corresponding ROIs in Figures
4(c) and (d). The most relevant global anguiar information
indicated in the Rose diagrams are very similar.

The results of the filtering process for the architectural
distortion case along with the respective Rose diagrams are
shown in Figure 8. By analyzing the magnitude and phases
images we can notice a modification of the tissue pattern
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Figure 6: The images (a), (b), (c) and (d) are, respectively,
the 1st, 2nd, 3rd, and 4th components resulting from the
KL transform applied to the filter responses with orientation
135¢ to the ROI of the image mdb117 shown in Figure 5(c).
The eigenvalues of the four components above are: A; =
11.810541, A, = 1.395799, A3 = 0.104770, and Ay =
0.012854.

caused by the presence of a high-density region. An im-
portant characteristic of the Gabor filters may be seen in
the result: the filters do not respond to regions with nearly
uniform intensity, i.e., to regions without directional infor-
mation. This is an important point and should be used in
future works to detect asymmetric dense regions. In the
present example, the global distribution of the tissue flow
pattern is readily seen by comparison of the Rose diagrams.

The Rose diagrams in Figures 7 and 8 present a strong
visual association with the directional components of the
phase images obtained with the proposed method, and may
be used by radiologists as an aid in mammogram interpre-
tation.

Since we have used a small number of features, we ap-
plied an exhaustive combination approach in order to select
the best set of features. The selection was conducted based
on the classification results obtained by using the leave—
one-out method. Preliminary results of the directional anal-

(c) (d)

Figure 7: Results obtained for the the normal case in Figure
4. (a) and (b) magnitude images. (c) and (d) phase images.
(e) and (f) Rose diagrams of the (c) and (d), respectively.
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Figure 8: Results obtained for the the architectural distor-
tion case in Figure 5. (a) and (b) magnitude images. (c) and
(d) phase images. (e) and (f) Rose diagrams of the (c) and
(d), respectively.
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ysis procedure applied to differentiate pairs of normal mam-
mograms from pairs of mammograms with asymmetry and
architectural distortion by using the first-order angular mo-
ment (M,) and the entropy (H) features indicate that 80%
of the asymmetric and distortion cases, and 65% of the nor-
mal cases were correctly classified. The global rate of cor-
rect classification was 72.5%.

6 Discussion and Conclusions

The directional analysis procedure has proven to be an ef-
fective method for characterization of linear oriented com-
ponents of images. Although the KL transform has been
used to extract the most important components over the
scales, the problem of automatic selection of the number
of scales and orientation angles based on some optimality
criterion needs to be solved. Further investigations should
also be conduced to determine a more effective set of fea-
tures for characterization of directional information.

The classification results are encouraging, considering
the small number of features (first—order angular moment
and entropy) used in this work to differentiate normal and
asymmetric mammograms. We believe that further opti-
mization of the directional analysis procedure along with
an extensive investigation of new features can improve the
results significantly. A more complete approach for the
analysis of asymmetry must take into account other impor-
tant characteristics, such as the shape of the fibro—glandular
disc, asymmetric brightness, and texture differences. Fea-
tures should also be investigated for measurement of local
asymmetry. The method proposed in this work may even-
tually be applied to mammograms taken at different times
in a screening program to detect interval cancer.
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