An Estimation Theoretic Approach to 3-D Image Interpolation
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Abstract. This paper presents a new approach to image 3-D interpolation using Bayesian
estimation theory. Two methods are presented, depending on the used a priori information. The
approach is applied to interpolate X-Ray images from the solar atmosphere taken at different
depths, as well as RMN tomographic images of a tomato.

1. Introduction

In several applications, it is necessary to perform
3-D interpolation between 2-D sets of data, as a
preliminary step for visualization, manipulation
and analysis of 3-D scenes. In tomographic
procedures, for example, one often needs to
interpolate between 2-D slices. The objective of
this paper is to develop new methods for 3-D
interpolation based on Bayesian estimation theory.

In general, interpolation techniques can be
divided into two categories [1],[2],[3]: scene-
based and object-based interpolation. In the first
case, the density values of the interpolated scene
are directly determined from the density values of
the given scene. In the second case, some
information from an object extracted from the
given scene is used to guide the interpolation
process.

The simplest of the scene-based methods is
the nearest-neighbor [4]. It assigns the pixel to
the value of the nearest pixel. For 1-D problems,
the linear interpolation between neighboring
pixels is frequently used. For 2-D problems, the
bilinear inepolation consists in first interpolating
linearly along the rows of the image and then
interpolating along the columns, or vice-versa.
Although each operation is linear, the sequential
application results in a surface which is non-linear
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[4]. Higher order polynomials, are often used.
Cubic splines, B-splines, modified cubic splines
are examples of these techniques. B-splines were
used by Ribeiro and Cruvinel [5] to obtain
intermediate planes in tomographic
reconstruction.  Modified cubic splines were
examined in tomography by Herman et al [6].
Among the statistically based methods, one could
mention the method of kriging, originally
developed in Geostatistics [7]. Mascarenhas et al
[8] and Zaniboni and Mascarenhas [9] developed
a 2-D statistically based interpolation method as a
preliminary step for image data fusion of
multispectral images

The first object-based method was the
shape-based interpolation method originally
proposed by Raya and Udupa [10] for binary input
scenes. The objective is to interpolate structures,
instead of images, using their information,
expressed in the form of distances to boundaries.
This method was subsequently improved by
Herman et al [11], who analysed several
techniques based on the concept of chamfer
distances. Goshtasby et al [12] proposed another
object-based interpolation method, which was
improved by Traina et al [13]. It consists of the
application of two steps: a matching phase , which
defines the corresponcence between points of each
pair of images. For the second step, the latter



authors used the Delaunay triangulation. Other
methods for object-based interpolation were
proposed by Chen et al [14] and Higgins et al[ 15]

Although object-based interpolation methods

are able to obtain improved results, as compared
to scene interpolation methods, they tend to be
more computationally intensive. Our method
could be considered a scene-based 3-D
interpolation method, but the interpolation method
depends statistically on the observed scenes and
on an observed a priori intermediate image or on a
statistical a priori model , if the first situation is
not feasible.

2. Description of the Proposed Method

The objective of the method is to interpolate an
intermediate image half-way between a pair of
observed images. .The final objective would be to
continue the procedure, by interpolating more
planes and being able to perform a 3-D
visualization process. However, the first
interpolation contains all the features of the
proposed method.

The pixels of the observed images are
considered sets of observed random variables,
Likewise, the pixels to be estimated on the
interpolated image are also considered random
variables. This framework is therefore based on a
Bayesian approach for 3-D interpolation

The interpolation is locally based: pixel
values on small neighborhoods on the top and
bottom images are observed (3X3, 5X5 or 7X7)
and the pixel located on the position
corresponding to the center of those
neighborhoods on the image to be interpolated is
estimated, based on those values.

Under the Bayesian approach, it is necessary
to have not only statistical infornation about the
observations, but also the statistical dependence of
the pixel random variables to be estimated on the
observed pixel random variables over the two
images (top and bottom) and a priori statistical
information about the pixels to be interpolated.

Two different methods were used to provide
this information: a) when sufficiently large
observed images were available (see the remark
below about the estimation problems that were
faced) and an a priori image of the same size was
also available for the interpolated image, then all
the parameters of the estimation procedure were
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estimated; b) when the previous situation was not
feasible, either because the observed images were
not large enough, or because there was not an
available a priori image for the interpolated
image, then the a priori statistical information
had to be partially postulated.

For method a), the statistical information
about the observations is provided by the
estimated expected values of each observed
image, given by the sample mean over the whole
image and by the covariance matrix Cxx of the
observed values over the neighborhood,
lexicographically ordered by columns, rows and
images, estimated by its sample value over the
whole observed images. The sample mean values
are subtracted from the observed images and the
sample mean of the estimated image is added at
the end of the estimation process. The covariance
matrix Cxx is 18X18 for a 3X3 neighborhood in
each of the two observed images. For a 5X5
neighborhood, Cxx is 50X50 and, for 7X7, Cxx is
98X98. This increase on the size of the covariance
matrix and the subsequent dimensionality of the
parameter estimation problem demands an
increase on the amount of observed data [16]. We
were able to use the version of the method that
depends on the estimation of the covariance
matrix Cxx only for the smallest neighborhood
(3X3) and the largest available observed images
(256X256). For smaller images and/or larger
neighborhoods, the estimates of Cxx displayed
negative or complex conjugate eigenvalues,
precluding the estimation of Cxx to be a valid
positive —definite covariance matrix.

The statistical information about the
dependence of the random variable that describes
the central pixel to be estimated on the observed
random variables over the local neighborhoods on
the two images is obtained by the sample
covariances (18 for a 3X3 neighborhood, for
example) obtained over the whole images.

The statistical a priori information about the
image to be estimated was obtained through the
sample mean and sample variance over the whole
a priori available image.

For method b) we had to postulate several
statistical parameters, instead of estimating them.
The sample mean values, the sample variance
values of the observed images, as well as the
sample covariance value between corresponding
pixels in the two observed images could be
obtained. However, the covariance between other



observed random variables in the two images had
to be defined. We adopted a covariance estructure
that was separable in the spatial and the spectral
domains. Spatial correlation coefficients of .95 in
the vertical and horizontal directions were chosen,
as often done in the literature.

The dependence between the random
variable to be estimated and the observed values
was chosen according to the folowing procedure:
the covariance structure was suposed to be
separable in the spatial and the vertical domains.
The 2-D correlation coefficients on the horizontal
and the vertical domains were selected to be either
.95 or 1.0. In this last case, we postulated that all
observed random variables over the window had
the same correlation with the random variable to
be estimated. The 3-D correlation coefficient
between the estimated pixel and the corresponding
pixels on the observed images was selected to be
the square root of the estimated correlation
coefficient between the observed images (for the
cases that we observed, this value was positive,
when estimated over the whole images)

The a priori information about the
interpolated image with method b) was specified
by the mean value of the image ( assumed to be
the arithmetic mean of the sample mean values of
the observed images) and the variance, asumed to
be the geometric mean of the variances of the
observed images

Observe that even if the observed images do
not provide enough sample values for the
estimation of the large number of parameters of
the covariance matrix Cxy, it is still possible to
estimate other  parameters like covariances
between the estimated pixel and the observed
pixels, expected value and variance of the a priori
image, if this image is available This procedure
would reduce the amount of hypotheses that have
to be made about the statistical model. However,
for this work the interpolation was performed
according to methods a) and b) only. For the next
future, we are planning to generate interpolated
images, by using the estimation procedures
described in this paragraph and compare them
with the images generated by methods a) and b)

3. The Linear Mean Square Interpolator

We adopted the mean square error as a criterion to
derive the local interpolator. It is a well known
result in estimation theory that, if the estimator is
constrained to be linear, the mean square error is
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minimized by applying the orthogonality principle
[17].

Let X denote the column vector of observed
random variables over the two neighborhoods on
the top and bottom images. For example, for 3X3
neighborhoods, the dimension of X will be 18.
Assume that we have already removed the mean
values of the observed images. Therefore, we can
consider that X is a zero mean random vector.
Denote by Y the scalar random variable to be
estimated on the interpolated image, on the center
of the neighborhood. According to the
orthogonality principle, the =~ LMMSE (linear
minimum mean square error) estimator for Y
based on the observed vector X is given by:

Y=a'X

where

a" = kyx.(Kxx)"!
kyx=E[YX"]
and

Kxx = E[XX']

The values for kyx and Kxx are obtained in
different ways, depending on whether we are
using method a) or b), as was explained
previously. If we use method a), then the expected
values are estimated by the sample values over the
whole observed images.

The resulting scalar random variable Y has
zero mean. To complete the estimation process,
we have to add to the estimated Y its mean value.

The resulting mean square error is obtained
by:

MSE = var(Y) - kyx.(Kxx)" (kyx)"

The reduction of the MSE from the variance
of Y is due to the correlation that exists between
the observed vector X and the random variable to
be estimated Y.

4. Interpolation of the Solar Images

The X-Ray images of the solar atmosphere were
obtained by the Japanese satellite Yohkoh,
launched on August 30", 1991, with the objective
to follow the solar atmosphere explosions, which
are the cause of serious perturbations on terrestrial
communications. We used a set of two 128X128



images at two different depths on the solar
atmosphere, without any intermediate image, that
could serve as a priori image on the interpolation
process. The size of the images were not enough
to get positive definite estimates of the correlation
matrix Kxx, even for the smallest window (3X3).
Therefore, we used method b) for the interpolation
process.

The observed images are displayed below.

Figure 1 — Solar Image A
Sample Mean Value of A: 43.00

Figure 2 — Solar Image B
Sample MeanValue of B: 39.17

The interpolated images using method b),
with spatial correlation coefficients .95 and 1.0 ,
as described above, are displayed below:

Figure 3-Interpolated Solar Image:p =0.95
Sample Mean Value of Figure 3: 41.25
A Priori Mean Value: 41.09
Theoretical MSE: 648.22

A Priori Variance: 1360.0

Figure 4 — Interpolated Solar Image: p = 1.0
Sample Mean Value of Figure 4: 41.27
A Priori Mean Value: 41.09
Theoretical MSE: 573.34
A Priori Variance: 1360.0

5. Interpolation of Magnetic Resonance
Images

The NMR agricultural images were obtained by
means of a 2T super conducting magnet from
Varian, model Inova 400MHz. Two images of
tomatoes, both with 256X256 pixels and
resolution of 1 mm’ were taken using a spin-echo
based pulse sequence. Pulse sequence parameters
were 15ms TE (Time of Echo), 200 ms TR (Time
of Repetition) and approximately 100mm field of



view (FOV) in x and y direction. The observed
images are displayed below.

Figure 7 — Intermediate a priori Image
Sample Mean Value of Figure 7: 49.78
Sample Variance of Figure 7: 5737.8

Figure 5 — Top RMN Image of the Tomato (A) Figure 8 below displays the result of the
Sample Mean Value of A: 49.18 application of method a), with a 3X3
neighborhood

Figure 6: Bottom RMN Image of the Tomato (B)

Sample Mean Value of B: 53.34 Figure 8 — Interpolated Image (method a) — 3X3

neighborhood
Sample Mean of Figure 8: 50.53
When an a priori intermediate image was A Priori Mean Value: 49.78
used (see Figure 7 below), we used method a), Theoretical MSE: 1432.3
with a 3X3 neighborhood. As stated above, larger Experimental MSE: 1522.9
neighborhoods did not allow a satisfactory A Priori Variance: 5737.8

estimation of the covariance matrix Cxx

The experimental MSE was calculated by
taking the sample mean value of the square error
between the intermediate a priori image and the
interpolated image.
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When no intermediate a priori image was
used, then method b) was chosen and the results
for p = .95 and 1.0 are displayed below, in Figures
9 and 10, respectively.

Figure 9 — Interpol. Image (method b) — p = .95
Sample Mean Value of Figure 9: 52.06
A Priori Mean Value: 51.26
Theoretical MSE: 936.38
A Priori Variance: 5764,1

|
Figure 10 — Interpol. Image (method b) - p = 1.0
Sample Mean of Figure 10: 52.14
A Priori Mean Value: 51.26
Theoretical MSE: 428.54
A Priori Variance: 5764,1

6. Conclusions

The visual results presented by the interpolated
images are reasonable: with method a) (tomato
image), the interpolated image is a blend of the a
priori intermediate image and the observed top
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and bottom images; with method b) (solar and
tomato images), the interpolated image is a blend
of the observed top and bottom images.

With method b), the images interpolated with
p = .95 are sharper than with p = 1.0, for both
images.

From the quantitative point of view, the
results are also coherent: 1) the sample mean
values of the interpolated images are close to the a
priori mean values; 2) the theoretical MSE are
lower than the a priort variance; 3) the
experimental MSE in method a) is lower than the
a priori variance and somewhat higher than the
theoretical MSE.

We intend to continue the work by
interpolating more images between the top and
bottom ones , in order to perform a 3-D
visualization of the data structure. Also, we plan
to develop the hybrid method of estimation, when
there is not enough data to estimate the covariance
matrix of the observations, but an intermediate a
priori image is available. Further investigation on
the covariance estimation procedure with limited
sample data would be useful in our problem. We
are also studying methods to cope with
discontinuities between blocks of data with
spatially adaptive interpolation methods.
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