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Abstract. In this paper we introduce a new mesh refinement method for subdivision surfaces. It generates a semi-
regular 4-direction hierarchical structure from control meshes representing 2D manifolds of arbitrary topology. The
main advantage of this structure is that it allows the extraction of conforming variable-resolution meshes based on
spatially varying adaptation functions. We also present a smoothing method designed to work in conjunction with
our semi-regular refinement. It produces generalized four direction Box spline surfaces of class C. Together
the refinement and smoothing operators result in a subdivision scheme that is very effective in multiresolution

applications.

Keywords: subdivision schemes, four-directional grids, Laves tilings, quincunx lattice, refinement, smoothing.

1 Introduction

Subdivision surfaces generalize classical spline surfaces.
As such, they overcome some limitations of splines and of-
fer several advantages over them, including: the ability to
model surfaces of arbitrary topology; as well as, the combi-
nation of global smoothness with control of local features,
such as creases and corners. They also integrate very nat-
urally a continuous model with a discrete representation,
leading to simple and efficient algorithms.

For the above reasons, subdivision surfaces received
considerable attention from the research community in re-
cent years. As a consequence, the field developed rapidly
and reached a mature stage. Now, that the theoretical
foundations have been established, the main emphasis has
shifted towards the application area.

In that respect, perhaps the most important feature of
subdivision surfaces to practical applications is its intrin-
sic multiresolution structure. This property is essential to
the scalability of large modeling and visualization systems.
Multiresolution also makes it possible the use of adap-
tive solutions, resulting in more accurate and efficient al-
gorithms.

Adaptivity can only be fully exploited if the multires-
olution structure supports variable level of detail across the
domain of interest. We call this type of structure a variable
resolution mesh.

Current subdivision schemes are based on uniform re-
finement methods that cannot produce a variable resolution
mesh. This fact restricts the adaptation capabilities of sub-
division surfaces and, in order, to overcome the problem,
ad-hoc solutions are often employed.

In this paper, we introduce a new refinement method
that generates a variable resolution mesh structure for sub-
division surfaces. We also present a smoothing method de-
signed to take advantage of the characteristics of the hier-
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archical mesh structure. These refinement and smoothing
methods are combined to define a subdivision scheme that
is very effective in multiresolution applications.

2 Refinement and Mesh Hierarchies

Mesh refinement methods are usually based on regular
tilings. That is, tessellations of the plane composed by reg-
ular n-gons.

The basic idea is to start with an initial uniform tes-
sellation, and then, apply repeatedly some refinement rule,
such that, at every step, a finer tessellation, similar under
scaling to the original, is produced.

There are only three types of plane tilings formed by
tiles that are congruent to a single regular polygon [4]. They
correspond to uniform tessellations generated, respectively
by squares, equilateral triangles and regular hexagons. The
most common ones are the triangle and quadrilateral tessel-
lations. Figure 1 shows these tilings.

Figure 1: Uniform triangle and quadrilateral tilings.

Note that the above tilings have the desired property:
it is possible to subdivide the tiles obtaining a new tiling
made by similar elements of smaller size.

A planar mesh that is homeomorphic to a regular tiling
is called a regular mesh. Since there is a 1-1 mapping be-
tween vertices, edges and faces of a regular mesh and those
of the corresponding tiling, it follows that refinement meth-
ods also apply to regular meshes.



The refinement procedure introduces new vertices,
edges and faces to create a finer mesh from a coarse one.
The local neighborhood structure of the mesh is invariant by
regular refinement. Therefore, the valence of new vertices
is the same as the valence of vertices of the initial mesh.

There are two main strategies for refinement: in a pri-
mal refinement, the old mesh is a subset of the new mesh.
New faces are constructed through subdivision of old ones,
in which edges are divided and reconnected. In a dual re-
finement, new faces are constructed by inserting new ver-
tices in the the interior of old faces and connecting these
vertices. The old mesh is discarded. The refinement rule
is conveniently described by a diagram, called refinement
template.

The principles of regular planar refinement can be gen-
eralized for tilings of 2D manifolds. The generalization
consists simply in applying the refinement method to an ini-
tial mesh that tessellates the manifold.

The main difference is that, in general, it is not pos-
sible to tessellate a manifold of arbitrary topology using a
regular mesh. In such cases, the initial mesh will contain
vertices of arbitrary valence, and it is called an irregular
mesh. Vertices with the same valence as in a regular mesh
are known as regular vertices, while vertices with other va-
lences are known as extraordinary vertices.

Since the refinement process, as we have seen, creates
only ordinary vertices, in a refined mesh, the only extraor-
dinary vertices are the ones inherited from the initial mesh.
As the mesh is refined, these vertices will be isolated, sur-
rounded only by vertices with regular valence. For this rea-
son, such meshes are called semi-regular.

A refinement method generates a sequence of meshes
with increasing resolution. This sequence is called a mul-
tiresolution mesh and can be represented by a hierarchical
data structure, such as a tree. For primal refinement, an n-
ary tree of faces is the natural representation, since every
face is decomposed into n subfaces. For dual refinement,
the best choice is an n-ary tree of vertices.

We remark that the multiresolution structure generated
by refining regular triangle and quadrilateral meshes do not
allow the transition between faces of different resolutions
while maintaining the topological consistency of the mesh.
This is particularly clear in the case of primal refinement,
because at every step all edges are subdivided. Therefore,
the subdivision of one face has to be propagated to all other
faces at the same level of resolution.

In order to overcome this deficiency, meshes with
faces at different resolution have to be modified by a post-
process that fixes topological inconsistencies. The usual so-
lution is to enforce a restricted hierarchical structure, such
that, adjacent faces differ, at most, by one level. When
there is a difference in resolution across an edge, the face
at the lowest level is subdivided to re-establish consistency.
Figure 2 illustrates this procedure for a quadrilateral mesh.
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Note that, faces of a different type (i.e. triangles) had to be
introduced.

Figure 2: Post-process to fix topological inconsistencies.
3 Adaptive Tilings

The analysis in the previous section motivates us to look for
a hierarchical mesh structure that supports variable resolu-
tion and can be generated by refinement. This quest leads
us to a larger class of tilings: the monohedral tilings with
regular vertices, also known as Laves tilings, named after
the crystatlographer Fritz Laves, who studied them [4].

In a monohedral tiling, every tile is congruent to one
fixed tile, called prototile. This means that all faces in the
tessellation have the same shape and size.

A vertex, v, of a tiling is called regular if the angle
between each consecutive pair of edges that are incident in
v is equal to 27 /d, where d is the valence of v.

There are eleven tilings that satisfy these two condi-
tions. We classify these tilings by listing the degree of the
vertices of their prototile in cyclic order. Thus, they are
named using the following notation [dy, ... ,dx], where d;
is the valence of vertex v;. We also use superscripts to indi-
cate repetition of symbols.

The Laves tilings have the property that we want — they
are refinable and more general than regular tilings. As it
was expected, regular triangle, quadrilateral and hexagonal
tilings also belong to this class. They are, respectively, the
Laves tilings of type [6°], [4*] and [3°].

Only certain types of Laves tilings can be used to gen-
erate hierarchical meshes that support non-uniform variable
resolution. These are the Laves tilings of type [4.82] and
[4.6.12] They are both composed of right triangles: in the
first, the prototile is an isosceles triangle; while in the sec-
ond, it is a 30-60 triangle. Figure 3 shows these two tilings.

Figure 3: Laves tilings [4.8%] and [4.6.12]

We have chosen the [4.8%] instead of the [4.6.12] tiling,
for two main reasons: its vertices have lower valence; and,
as we shall see, it allows a better transition between differ-
ent resolution levels.



It is worth noting that the [4.8?] tiling forms a triangu-
lated quadrangulation. Thus, it gives, at the same time, the
advantages of triangular and quadrilateral tessellations.

The basic structure in a [4.8?] tiling is a pair of trian-
gles forming a square block divided along one of its diago-
nals. We call this structure a basic block. Note that, splitting
the internal edge of one basic block causes the subdivision
of its two triangles, without affecting any of the neighbors.
This procedure is illustrated in Figure 4 (left). Consider
now, the refined block formed by four triangles. Splitting
one of its external edges, causes the subdivision of just one
triangle. Since the refinement was on the boundary of the
block, it does not affect the other three triangles. But, it
affects the neighbor block sharing that edge, and forces the
subdivision of one of its triangles. This is shown in Fig-
ure 4 (right).

—_—————

Figure 4: Refinement of a basic square block.

The above mechanism for refining internal-external
edges of a basic block, makes it possible to build tessella-
tions with different resolution levels. This is the key prop-
erty of [4.82] tilings, related to variable level of detail.

It is important to realize that refining the boundary of a
block depends on the refinement of its interior. This depen-
dency propagates across the tessellation, ensuring a gradual
transition between resolution levels. In fact, it results in a
restricted quad-tree structure. Figure 5 shows an example
of constrained resolution propagation.

Figure 5: Transition between resolution levels.

In summary, the [4.82] tiling has, not only the adap-
tation property that we were looking for. This makes it
the perfect choice as the underlying structure for a mul-
tiresolution mesh. Indeed, this structure is known by the
GIS community as hierarchy of right triangles [9]. It has
been used very successfully for rendering terrain models by
Lindstrom et al. [7], Kirkpatrick et al.[3], and Duchaineau
el al. [2].
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4 Regular 4-8 Meshes

A regular 4-8 mesh is a cell complex that is homeomor-
phic to a [4.8?] Laves tiling. By definition, every face has
one vertex of valence 4 and two vertices of valence 8. The
4-8 mesh has edges of two types: 8-8 edges, linking two
vertices of valence 8; and 4-8 edges, linking one vertex of
valence 4 to one vertex of valence 8.

Now, we would like to devise a refinement proce-
dure based just on topological information. Observe that,
edges of type 8—8 occur only as the diagonal edges of basic
blocks. This follows directly from the regularity condition.

Using the observation above, we specify a binary sub-
division procedure:

1. Split all edges of type 8-8, by inserting a split vertex.

2. Subdivide all faces into two subfaces, by linking the
degree 4 vertex to the split vertex of the opposite edge.

Note that, in order to produce a self-similar mesh, bi-
nary subdivision has to be applied twice !. For this reason,
the regular 4-8 refinement is defined as a double step of
binary subdivision. This is illustrated in Figure 6.

- —

(a) step 1 (b) step 2

Figure 6: Two binary subdivision steps of regular 4-8 re-
finement.

Note also that, because the 4-8 mesh is a triangulated
quadrangulation, the double subdivision step performs pri-
mal refinement on triangular faces, as well as, a cyclic pri-
mal and dual refinement on quadrilateral blocks (see Fig-
ure 7).

Figure 7: Primal and dual refinement of quadrilateral
blocks.

! Applying just one subdivision step results in a mesh that when rotated
by 45 degrees is self-similar to the original.



It is remarkable that two steps of 4-8 refinement are
equivalent to Catmull-Clark subdivision of quadrilateral
blocks at level 7, and, at the same time, to Doo-Sabin sub-
division of quadrilateral blocks at level j + 1. This fact
will be exploited in Section 6 for the design of a smoothing
operator.

The regular 4-8 refinement procedure relies on the
special topological structure of the mesh. In order to make
it widely applicable, particularly for the representation of
2D manifolds, it is necessary to extend it to accept arbitrary
initial meshes. This will be discussed in the next section.

5 Semi-Regular 4-8 Refinement

The generalization of regular 4-8 refinement exploits the
fact that subdivision operates on quadrilateral blocks. Thus,
our strategy is to take a triangulation as input, and, in a pre-
processing step, construct a block structure that can be han-
dled by regular refinement. We call the complete procedure,
semi-regular 4-8 refinement, and the mesh produced under
its action, semi-regular 4-8 mesh.

The main problem consists in transforming an arbi-
trary initial mesh into a triangulated quadrangulation, mak-
ing just few modifications to the mesh.

Our solution is based on the fact that applying one
step of Catmull-Clark subdivision to an arbitrary tessella-
tion, produces a mesh containing only four-sided faces [6].
Figure 8 shows an example.

1
.

Figure 8: Example of Catmull-Clark subdivision first step.

Since this result is valid, in particular, for generic tri-
angulations, we could just use Catmull-Clark subdivision
as our pre-processing step. Nonetheless, we pursue a dif-
ferent strategy that minimizes changes to the original mesh,
produces well shaped faces, and avoids increasing vertex
valences.

First, we select a set of two-face clusters, @, that cov-
ers most of the mesh. At the same time, we identify the
remaining triangle faces, T = Q. Then, we apply one step
of Catmull-Clark subdivision to T'U(Q, but treating the two-
face clusters in @, as quadrilateral faces.

The complete pre-processing method is summarized
below:

1. Find an independent set of two-face clusters, and iden-
tify the remaining isolated triangle faces;
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2. Perform a hybrid binary subdivision step, and mark the
resulting quadrilateral blocks.

3. Perform one step of regular 4-8 binary subdivision.

We actually use the machinery developed in the previ-
ous section for regular 4-8 refinement to perform Catmull-
Clark subdivision (note that, together (2) and (3) are equiv-
alent to one step of Catmull-Clark).

To implement pass (1) we select clusters based on edge
length. This heuristic guarantees that we obtain convex
quadrilateral blocks in case of planar meshes. The pseudo-
code is shown in Algorithm 1

Algorithm 1: find_clusters (K = {V, E, F})
sort_edges (E)
store e € E in priority queue @
while Q # 0 do
get e from Q
if e not marked then
mark_cluster (e)

The routine sort_edges, sorts edges by decreasing
length and radially around each vertex. The routine
mark_cluster(e) marks an edge e and the edges sharing a
face with e. Marking ensures that we obtain an independent
set of two-face clusters.

In general, it is not possible to cover the whole mesh
with these two-face clusters. There will be a few isolated
triangular faces remaining.

The purpose of the hybrid subdivision step in pass (2)
is to make these isolated triangular faces compatible with
the two-face clusters, such that, after subdivision we get a
quadrangulation that covers the whole mesh.

The hybrid subdivision procedure applies distinct re-
finement rules to two-face clusters and isolated triangles.
Two-face clusters are subdivided in the regular way through
binary subdivision. Isolated triangles are subdivided us-
ing barycentric subdivision: three new faces are created
by linking the barycenter to each old vertex of the triangle.
Figure 9 illustrates hybrid refinement.

0% 4

Figure 9: Hybrid refinement.

After the pre-processing, two-face clusters subdivide
into four basic blocks, and isolated triangles subdivide into
three basic blocks. The union of these blocks covers the
mesh, providing the desired triangulated quadrangulation
structure (see Figure 10).



Figure 10: Quadrangulated triangulation.

As aresult of the pre-process step, the valence of every
interior vertex will be even, while the valence of boundary
vertices will be odd. Valences may increase, at most, from
n to 2n. This upper bound occurs mostly in the case of
lower valence vertices. Because of geometric reasons, va-
lences greater than 8 tend to change very little. The net
effect is an equalization of vertex valence over the mesh.
This is, in part, a consequence of the longest edge criteria
used in (1) for selecting two-face clusters [10].

In practice, for interior vertices with valence n, we
have observed the following behavior:

e n = 3 — new valence 6;

e 4 <n < 8—new valence §;

e n > &, odd — new valence n + 1;
e 1 > 8 even — new valence n.

The behavior for boundary vertices is similar.

6 The Four Directional Grid and the ZP Element

4-8 meshes are closely related to the four directional grid,
well known in the theory of Box splines [1]

A Box spline is generated by convolutions of the char-
acteristic function of the unit partition, along a prescribed
set of directions. They are smooth piecewise polynomial
functions with compact support. They are refinable, and
their translates form a basis. Box spline basis are usually
specified by a set of direction vectors.

Box spline functions can be used to create surfaces that
are defined parametrically by a functiong : U C R*> — R3.
In this setting, a box spline surface is specified by con-
trol points ¢,, € R® that are associated with grid points
(u,v) € Z2 of the domain U.

The simplest smooth Box spline over a four directional
grid is the Zwart-Powell function [13], (also known as the
ZP element). It is associated wit the set of vectors D =
{e1,€2,e1+e2,e1—€3}, wheree; = (1,0) and ey = (0, 1).
Or, in matrix form

101
D‘(011

4)

The construction of the ZP element is as follows: we
start with the characteristic function of the unit square,
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given by (é 1). Then we perform convolution: first in

the direction (1, 1), and next in the direction (1, —1). This
construction is shown in figure 11.

(@)

®
Figure 11: Construction of the Zwart-Powell element

The functions are piecewise quadratic, with C* conti-
nuity across grid lines. Figure 12 shows a plot of the Zwart-
Powell function, as well as, its support on the underlying
four directional grid.

Figure 12: Zwart-Powell function

Using refinement we express the Zwart-Powell func-
tion on a coarse grid as a linear combination of, scaled and
translated, functions on a finer grid. This two-scale relation
can be computed from the generating function, S(z1, z2),
associated with the induced subdivision scheme (See [12]).
2

The generating function for subdividing the ZP ele-
ment is

S(z1,22) = %(1 +22)(1 4+ 22)(1+ 2122)(1 + 21/23)
1

Expanding this equation, we obtain the coefficients
of the two-scale relation. They are the coefficients of the
monomials of S(z1,22), where the weight at grid point
(u,v) is the coefficient of 2{'23.

2A generating function is a Laurent polynomial specifying the transfer
function of a discrete convolution operator [11]



The coefficients of the subdivision formula, non-
normalized by the factor i, are shown below:
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As the grid is refined, values at grid points of the finer
grid are calculated as linear combinations of values at grid
points of the coarse grid. The ZP Box spline uses dual
refinement, and subdivision employs the following update
scheme for values ¢ at the vertices of each quadrilateral
block

c c

3 2 gt gt

c ot

o [e]

where the control point cé“ at level j + 1 is computed by

Q" =5d+ 3 + 379

DN =
=
] =

and similarly, for the other control points.

The above equation defines a smoothing rule that is
conveniently represented by a mask (or stencil) indicating
the computation. Figure 13 shows the mask for the control
point ¢y (the other masks, for ¢;, ¢2 and c3, are versions of
this mask rotated by 90, 180 and 270 degrees, respectively).

0
1
4

N —— A

Figure 13: Mask for ¢ using dual quad-mesh refinement of
the ZP subdivision scheme.

The fact that, as we have seen in Section 5, regular 4-8
refinement consists of two binary subdivision steps, allows
us to factor the smoothing operator into simpler rules. We
employ the mask shown in Figure 14, that performs the av-
eraging of two values, and is the simplest convolution filter.

1L 1L
2 2

Figure 14: Averaging mask.

The factored subdivision scheme is as follows: At
level j, the grid is refined in the horizontal and vertical di-
rections. The values at new grid points are the average of
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their two neighbors. At level j + 1, the grid is refined in the
two diagonal directions. The values at new grid points are
the averages of the two opposite vertices. See Figure 15.
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Figure 15: Hybrid refinement.

Note that, convolution in a particular direction corre-
sponds to one factor of the generating function S(zy, 22) in
equation (1).

Due to the dual nature of refinement, values of old grid
points are not used after two refinement steps. For this
reason, at every double step, old points are updated to be
the average of the surrounding four new grid points (e.g.
they become the centroid of the newly created quadrilateral
blocks). See Figure 16.

Figure 16: Updating the center of quad-blocks.

The generalization to irregular meshes is immediate
since the factorization of the subdivision scheme also ap-
plies to semi-regular 4-8 refinement. It is worth noting that,
in the case of four direction Box splines, it is not even nec-
essary to design special rules for extraordinary faces.

We remark that, the above principles were employed
by Peters and Reif to construct Zwart-Powell Box spline
surfaces using quadrilateral meshes [8]. They called the
scheme, midedge subdivision. Habib and Warren also
adopted a similar scheme in [5].

Continuity analysis showed that the limit surface is of
class C*. Unfortunately, the convergence can be uneven for
non-quadrilateral faces. It is too fast for 3-sided faces and
too slow for n-sided faces, with n > 4. (See Figure 18(b)).
Special rules can minimize this problem [8].



7 Examples and Comparisons

We now present some results of applying the methods de-
veloped in the previous sections for surface modeling. We
combine semi-regular 4-8 refinement with four direction
Box spline smoothing, to create a subdivision scheme that
generalizes the C? four directional Box spline.

Examples of surfaces produced by such scheme are
constructed. The adaptation capabilities of the multireso-
lution 4-8 mesh representation is also demonstrated.

The first example, in Figure 17, illustrates the integra-
tion of refinement and smoothing. Figure 17(a) shows an
irregular base mesh containing two extraordinary vertices
of valence 6 in its interior. Figure 17(b) depicts the mesh
after applying two times the semi-regular 4-8 refinement
operator only. Figures 17(c) shows the effect of using the
complete C! subdivision scheme — both refinement and
smoothing were applied.

The second example, in Figure 18, is a compact sur-
face of genus 0. Figure 18(a) shows the control polyhedron,
obtained by extruding a regular pentagon. Figures 18(b)
shows an approximation of the C? surface, after two levels
of subdivision.

The third example, in Figure 19, is the “Stanford
Bunny”, generated from sampling a real object. The con-
trol polyhedron, shown in Figure 19(a), was created from
a dense mesh using simplification. Figure 19(b), shows the
smoothed polygonal mesh after applying 1 step of the C*
subdivision scheme.

The last example, in Figures 20 and 20, briefly demon-
strates the power and flexibility of the 4-8 mesh structure as
a multiresolution representation. In this example, spatially-
variable threshold functions are used to extract topologi-
cally consistent approximations of the Bunny, based on var-
ious criteria. The adaptation function specifies the desired
resolution at each point of the mesh.

In Figure 20, adopted criteria was point location. The
extracted tessellation, shown in Figure 20(a) was con-
strained to exhibit highest resolution at one point on the
surface. A detail of the transition region is shown in Fig-
ure 20(b). Note that the mesh quickly adapts to the speci-
fied constraint.

In Figure 20, the threshold function varies along the
horizontal direction in two different ways. Figure 20(c)
shows a tessellation in which the resolution varies from left
to right according to a linear ramp. Figure 20(d) shows a
tessellation that was based on a step function. The mesh
has finest resolution on one side of a plane, and coarsest
resolution on the other side of the plane. Note that the mul-
tiresolution 4—8 mesh structure was able to support both the
sharp transition in Figure 20(d), as well as, the gradual tran-
sition in Figure 20(c).
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Figure 17: Semi-Regular 4-8 Refinement and four directional Box spline smoothing

(a) adapted mesh

Figure 18:

(b) transition region
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(c) linear ramp

(d) step function

Figure 20: Variable resolution tesselations based on: point location (a-b); threshold functions (c-d).
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