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Abstract. In this paper we introduce variable resoultion 4—k meshes, a powerful structure for the representation
of geometric objects at multiple levels of detail. It combines most properties of other related descriptions with
several advantages, such as more flexibility and greater expressive power.

The main unique feature of the 4~k mesh structure lies in its variable resolution capability, which is crucial
for adaptive computation. We also give an overview of the different methods for constructing the hierarchical
4—k mesh representation, as well as the basic algorithms necessary to incorporate it in modeling and graphics

applications.
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1 Introduction

Hierarchical structures are the embodiment of fundamental
abstraction mechanisms that allow us to deal with complex-
ity. For this reason, such structures are an integral part of
many tools in practically every area of human activity.

Hierarchies reflect dependency relations between en-
tities at different levels. The specific nature of these rela-
tionships is determined by the application area, and by the
problem to be solved.

In Geometric Modeling and Computer Graphics, hier-
archical structures are often used to represent objects with
multiple levels of detail. This type of hierarchy makes it
possible to process the object at different resolutions. Thus,
hierarchical structures are essential for most algorithms that
require adapted computations. A typical example is the
visualization of 3D polygonal surfaces, where the size of
polygonal facets should be proportional to the projected
area on the screen.

The importance of multiple levels of detail representa-
tions has motivated the development of hierarchical struc-
tures which, in one way or another, support that capability.

In this paper, we present the hierarchical 4—k mesh
structure. It combines most properties of other multiple
level of detail representations and offers several advantages.

2 Basic Concepts

This section gives some definitions and basic notions that
are used throughout the paper.

A mesh is a cell complex, K = (V, E, F'), where V,
E and F are respectively sets of vertices v; € V, edges
(vi,v;) € E, and faces (v, v;, ... ,u) € F. The complex
K provides a topological structure for the decomposition
of two dimensional domains.

A geometric realization of the mesh K is created, by
associating to each vertex v; € V, a coordinate value,
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p(v;) € R*. Whenn = 2, K is a planar mesh and when
n = 3, K is a surface in 3D.

A mesh is called conforming when faces that are spa-
tially adjacent share exactly edges and vertices on common
boundaries.

The 1-neighborhood N, (v) of a vertex v consists of
the set of vertices that share a face with v. The valence (or
degree) of a vertex, v, is the number of edges incident in v.

The mesh structure is related to the types of 1-
neighborhoods in the mesh. In a regular mesh, the valence
of all vertices is the same, while in an irregular mesh the va-
lence may differ from vertex to vertex in an arbitrary way.

The size of a mesh, denoted by | K|, is the number of
faces in the set F' of K.

The resolution of a uniform mesh is the number of ver-
tices per unit length. The resolution of an irregular mesh
can be determined locally from the length of its edges.

Two meshes K, and K,, are compatible, if there is
a subset of faces F,, € K,,, that when the corresponding
subset of faces in K, is replaced by F',, the result is a con-
forming mesh. Correspondence in this case means spatial
overlap.

A mesh hierarchy, H, is a sequence of meshes, H =
(Kj)j=1,... n—1, such that the size of the mesh K; increases
monotonically with the index j. Furthermore, there is a
dependency relation between faces at two subsequent levels
7 and j + 1, whose supports overlap.

Based on these dependency relations, it is possible to
construct a hierarchical structure that defines the increas-
ing sequence of meshes H (it is also possible to define the
reverse of the hierarchy, which is the sequence in reverse
order, where the mesh size is decreasing).

A mesh hierarchy is usually constructed by local mod-
ifications that either refine or simplify some initial mesh.
Thus, one can start with a coarse mesh and subdivide it by
applying a refinement operator; or, alternatively, one can



start with a fine mesh and coarsify it by applying a simpli-
fication operator. Figure 1 shows a scheme of this process.

~— Refinement —
Koy K, K,
+— Simplification «—

Figure 1: Mesh hierarchy and construction mechanisms.

Note that the modification operator provides the de-
pendency relations necessary to build a hierarchical struc-
ture encoding the mesh hierarchy.

The nature of these operators and the method by which
they are applied determines the properties of the hierarchy.

Here, we distinguish between hierarchical structures
of two kinds: non-adaptive and adaptive.

Non-adaptive hierarchical structure: defines only one
mesh hierarchy. Examples of this kind of structure are mul-
tiresolution and progressive meshes.

In a multiresolution mesh, the modifications are ap-
plied in parallel to a set of independent regions that com-
pletely cover the mesh. Each step of this process changes
the mesh resolution globally. The corresponding hierarchi-
cal data structure is a tree. A multiresolution structure is
usually constructed using refinement [10].

In a progressive mesh, the modifications are applied
sequentially to only one region of the mesh at time. Each
step of the process changes the mesh resolution locally. The
corresponding data structure is a list. The progressive struc-
ture is usually constructed using simplification [5].

Adaptive hierarchical structure: defines a family of mesh
hierarchies. One example of this kind of structure is a vari-
able resolution mesh.

In a variable resolution mesh, local modifications are
applied to a set of independent regions, in such a way that
the boundary of each region remains unchanged. Note that
this set of regions may not cover the mesh completely. Be-
cause of the boundary constraint, there is no interference
between local modifications at each level, which can be
applied independently of each other. The above property
makes it possible to generate many sequences of meshes us-
ing permutations of independent local modifications. The
corresponding data structure is a directed acyclic graph
(DAG), that encodes dependencies across levels. A variable
resolution mesh can be constructed either by refinement or
simplification [9)].
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3 Variable Resolution Triangulations

This section defines more precisely some basic notions con-
cerning adaptive hierarchical structures.

The idea of a variable resolution triangulation was in-
troduced independently by Puppo [8] and De Berg et al. [2].
Subsequently, Puppo developed an extensive theoretical
framework for general variable resolution structures, which
he called Multi-Triangulations. This section summarizes
these concepts.

As mentioned above, hierarchical mesh structures are
based on local modifications. In the variable resolution set-
ting, it is necessary to employ a restricted class of local
modifications: the ones that are minimally compatible.

A minimally compatible local modification, W (K),
to a sub-mesh K; C K of amesh K = (V,E,F), is a
substitution of K; by W(Kj;) in K, such that:

1. The boundary edges of K; are not altered (except
when they also belong to the boundary of the mesh
K)

2. The interior edges of K are replaced by new edges.

The sub-meshes K; and W (K;) are, respectively, the
pre-image and image of the modification operator W.

Compatibility is enforced by condition (1). Since the
boundary K; does not change, the new sub-mesh W (K;)
is compatible with K; and the modification operator pro-
duces a conforming mesh.

Minimality is addressed by condition (2). Since the
interior of K; changes completely, there is minimal redun-
dancy between the sub-meshes K; and W (K;).

The modification operator W is called increasing if
|[W(K;)| > |K;|. This means that W is a refinement oper-
ator. Similarly, W is called decreasing if |W (K;)| < |K;|.
In this case, it is a simplification operator.

A compatible sequence of meshes, (Ky, K1, ... ,Kp),
is generated by the application of a sequence of mod-
ifications (W, Ws,,... ,Wy_1), starting with an initial

mesh Kj,.  This produces the sequence of meshes
(K(), WI(Kl), Ceey Wn—l (Kn—l)), where

Kj=W;o1(Wj-2(--- Wi (K1))) 49
forj > 0.

Note that, given an intermediate mesh, K,,, and two
independent modifications W; and W, that are compatible
with K, we can apply either one of them to K,,, in order
to produce a new mesh K,y = W;(Kj) or Kjpyy =
W[(Kl), with Kj,K[ C K-

The purpose of a variable resolution structure is to en-
code all possible mesh hierarchies that can be generated
from a sequence of modifications (W;);=1,... n—1. In order
to achieve this goal, we need to distinguish between depen-
dent and independent modifications.



A variable resolution mesh, V. = (Ko, W, <) is de-
fined by an initial mesh Ko, a set of minimally compati-
ble local modifications W = {W1,Ws,,... ,W,_1},anda
partial order relation < on W, that satisfies the following
conditions:

o Dependency: W; < W, if and only if there is a face
f € F;in the pre-image K; of W, that belongs to
the image W;(K;) of W;. In other words, precedence
is determined by compatibility of dependent modifica-
tions.

e Non-redundancy: f € F; of W;(K;) implies that f ¢
F; of W;(Kj) for all j # 4. In other words, there are
no duplicate faces.

The partial order relations can be described by a di-
rected acyclic graph (DAG), where the nodes are associated
with modifications W;, and there is an arc from W; to W;
whenever W; is the successor of W; according to the partial
order relation <.

We construct a lattice representation of a variable res-
olution mesh by adding a source and a drain to the DAG.

In this representation, each face f is referenced by ex-
actly two nodes. It appears in the image and in the pre-
image of a modification. The node having f in its pre-
image is called successor of f, and the node having f in its
image is called predecessor of f.

The source node is associated with a constructor of the
initial mesh Ky, and the drain node is associated with the
application of all modifications W;, ¢ = 1,... ,n — 1, to
Ky, that produces the final mesh K,,. Appropriate arcs are
added to and from these two special nodes.

A cut of a DAG consists of a set of nodes disconnect-
ing it. A front in a lattice is a cut which contains exactly
one arc for each path from the source to the drain.

Figure 6 shows an illustration of the representation of
a variable resolution 4-k mesh and a cut in it.

4 Hierarchical 4-k Meshes

This section describes a hierarchical structure to encode the
family of mesh hierarchies, which we call variable resolu-
tion 4—k meshes. This mesh is a special case of the variable
resolution triangulation, defined in Section 3. Because of
its particular nature, it has unique desirable properties not
available in other general hierarchical structures.

A variable resolution 4—k mesh is a hierarchical struc-
ture that contains at each level approximately half of its ver-
tices of valence 4 and other vertices of arbitrary valence k.

The 4—k mesh is built from a restricted set of local
modifications defined on a cluster of two triangular faces.
These two modifications are:

i. Internal edge split: the edge shared by two adjacent
faces is subdivided, and the two faces are replaced by
four faces. See Figure 2.
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Figure 2: Internal edge split.

ii. Internal edge swap: The edge shared by two adjacent
faces is replaced by another edge linking the opposite
vertices in each face. See Figure 3

Figure 3: Internal edge swap.

Note that, for a planar mesh, these modifications make
sense only if the two-face cluster is convex. Also note that
modification (i) is a binary subdivision refinement applied
to adjacent faces. The inverse of (i) is an edge collapse. It
can be shown that these operations are sufficient to make
any topology preserving transformation to a mesh [6].

Another important observation is that both (i) and (ii)
are edge-based modifications. We exploit this fact to design
data structures for representing variable resolution meshes.

The description combines edge and face elements.
Modifications of type (i) are associated with an edge that
splits or collapses. The edge points out to the two faces
sharing it. Additionally, a face points out to its parent and
two children.

This representation is illustrated in Figure 4.

/\ 1 /_\
1.0
fa.0 \ | , -/(
fa.l '/_ \ 2
N~ " N —

Figure 4: Edge-face 4-8 variable resolution structures

The specification of these data structures in pseudo-C
is given below. A face is represented by the structure:

Face {

Hedge* edgel3];

Face* parent, children[2];
}



where we adopt the convention that the split edge of a face
isedge(0]. (ie. split_edge(f) :=f.e[0]). When
a face is bisected its edges are cyclically shifted so that
split_edge(£) f.e[0].

A edge is represented using an augmented half-edge
data structure, where a pointer to the subdivided face
(fbase) is included:

Hedge (
Vertex* point;
Hedge* mate;
Face* fbase;
}

These two data structures provide a compact way to
encode the variable resolution 4—k mesh, as well as its in-
verse. They also make possible the efficient implementation
of all relevant operations.

For example, the pre-image of a refinement W (e) is

Set pre_image_w(Hedge e)
{
return make_set (e. fbase,

}
The image of a refinement W (e) is

Set image_w(Hedge e)

{
return make_set (e.fbase.children0],
e.fbase.children([1],
e.mate.fbase.children{0],
e.mate.fbase.children(1]);
}

The successor refinement of a face f is

Hedge* successor_f (Face f)
{

return split_edge(f);
}

The predecessor refinement of a face f is

Hedge* predecessor_f (Face f)
{

return split_edge(f.parent) ;
}

The representation of type (ii) modification, corre-
sponding to an edge swap, it uses the same data structures.
The implementation is very similar. We take advantage of
the fact the each face has only one child in the context of
this operation. Thus, we set £.children[1]=NULL.

The effectiveness of a variable resolution structure can
be analyzed according to the following criteria [8]: Expres-
sive Power; Depth; and Growth Rate. The variable resolu-
tion 4-k mesh structure has all the desirable properties, as
will be shown below.

e.mate. fbase) ;
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A node of the DAG in the lattice representation of a 4~
k mesh structure has some special characteristics because
of the nature of the refinement operator W. The number
of faces in the image W;(K;) of W; is always 4, and the
number of faces in the pre-image of K; of W, is always 2.
As a consequence, a node W has exactly two incoming arcs
(the two nodes that generate the faces in the pre-image of
W), and four outgoing arcs (the four nodes that reference
one of the faces in the image of W;). This is illustrated in
Figure 5.

A

Figure 5: Node of the 4-8 DAG

In the following analysis we will consider the case of
a semi-regular 4-8 variable resolution mesh, which is based
only on edge splits. The 4-8 mesh features optimal proper-
ties among the family of 4—k meshes.

In a semi-regular 4-8 mesh, the initial mesh K has
arbitrary size, |Ko| = n. For a hierarchical structure with
m levels, at each refinement step, j = 1, m, binary subdi-
vision is applied to an independent set of two-face clusters
that completely cover the mesh. Moreover, all clusters at
subsequent levels j and j + 1 are interleaved. As a conse-
quence, there are 27 nodes in the DAG at each even level
J. The size of the refined mesh produced by applying all
modifications up to level j is 27 n.

The variable resolution structure of a regular 4-8 mesh
has the following properties:

e High expressive power: It can be shown that the num-
ber, p, of distinct meshes produced by the 4-8 struc-
ture with m levels is equal to

m 2j 2]
=23 ()
=1 k=0
As an example, for m = 6, the expression power is
p = 18446744078004584724.

Logarithmic depth: the number of levels of a 4-8
structure with ¢ = 2™ nodes is approximately [ =

log, q.

Linear Growth: the growth rate is bounded by the ratio
between the sizes of the image and pre-image of the
modifications, which in the case of internal edge split
is 2. It can be shown that the growth rate g of a 4-8
structure is bounded by g = (n + 2)/(n + 1).



5 Construction Methods

This section gives an overview of the methods used to gen-
erate a variable resolution 4—k mesh.

We remark that it is important to have a variety of con-
struction methods, so that they can be applied in distinct
modeling situations, such as free form modeling, surface
approximation, and conversion of representations.

The main categories of methods are the ones based on
refinement and simplification.

Refinement-Based Methods: are subdivided into three
types: semi-regular; quasi-regular; and irregular.

The semi-regular refinement method employs topol-
ogy based subdivision. It generalizes the regular 4-8 mesh
refinement and uses interleaved edge splits [11].

The method produces semi-regular meshes suitable
for implementing stationary subdivision schemes. Fig-
ure 7 shows various subdivision surfaces generated with
such schemes. The shape in this example is the “Stanford
Bunny”. The control polyhedron, shown in Figure 7(a), is
a coarse mesh obtained from the original data through sim-
plification [15]. The most natural scheme to implement us-
ing 4-8 semi-regular meshes is a generalization of subdivi-
sion for Box splines defined on four directional grids [11].
Figure 7(e) shows a C! subdivision surface based on the
Zwart-Powell basis. Figure 7(f) shows a C* subdivision
surface based on a degree 6 Box spline.

Because of the quadrangulated structure of semi-
regular 4-8 meshes, it is also suitable for the implementa-
tion of subdivision schemes originally designed for quadri-
lateral meshes [3, 1]. This is achieved through a decompo-
sition of primal and dual quadrilateral refinement into in-
terleaved binary subdivision steps [14]. Figure 7(c) shows
a biquadratic B-spline surface based on the Doo-Sabin
scheme. Figure 7(d) shows a bicubic B-spline surface based
on the Catmull-Clark scheme.

The quasi-regular refinement method employs geom-
etry sensitive subdivision. At each level, it covers the mesh
with two-face clusters selected using an edge length cri-
teria. This method produces a mesh that combines quasi-
regular 4-8 topology with almost uniform geometric fea-
tures [17]. The quasi-regular mesh structure allows the im-
plementation of quasi-stationary subdivision schemes. Fig-
ure 7(d) shows an example of a quasi 4-8 subdivision sur-
face.

The irregular refinement method employs adaptive
subdivision. It is based on multiresolution edge sampling.
This method produces hierarchical meshes that conform to
the shape of existing objects [13].

The irregular 4-8 mesh structure is suitable to adap-
tive surface tessellation. Because the subdivision algorithm
is very general, it can work with both parametric or implicit
surface descriptions. Figure 8 gives some examples of sur-
faces approximated by adapted irregular 4-8 meshes.
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Figures 8(a) and (b) show a torus, defined implicitly.
In Figure 8(a), we have an orthogonal projection of the base
mesh together with the 3D grid; and Figure 8(b) the polyg-
onal approximation. Figures 8(c) and (d), show the same
torus, defined parametrically. In Figure 8(c) we have the
adapted decomposition of the parameter domain; and in
Figure 8(d) the polygonal approximation. The base mesh
was simply the subdivision of the rectangle [0, 27] x [0, 27]
along its diagonal into two triangles. The algorithm has
structured the parameter domain into a 4-8 hierarchy with
three layers.

Note that the algorithm produces consistent results us-
ing either the parametric or implicit description of a surface.

Figures 8(e) and (f), show a digitized bust of Spock. In
Figure 8(f), we have an adaptive mesh which approximates
the surface within a prescribed tolerance, and in Figure 8(e),
we have the corresponding domain decomposition. The fa-
cial details are clearly visible, because the regions of high
curvature are sampled more densely than the rest of the sur-
face.

Simplification-Based Methods

Simplification-based methods construct the reverse of
an increasing variable resolution 4-k mesh. They start with
a fine mesh and coarsen it using the inverse of an edge split
operation — an edge collapse. Therefore, they produce a
decreasing hierarchical structure. For several reasons, it is
advisable to establish the convention that the canonical lat-
tice representation is an increasing structure, in which the
source is a coarse mesh and the drain is a fine mesh. In this
context, a simplification method builds the variable resolu-
tion representation “bottom-up”.

In order to perform the simplification of a mesh with
regular 4-8 connectivity, it is sufficient to apply the inter-
nal edge collapse operator that transforms a cluster of four
faces into a cluster of two faces (see [15]). Moreover, the
simplification procedure has to ensure that clusters at sub-
sequent levels are interleaved. Unfortunately, this type of
method is only practical for regular 4-8 meshes.

In the case of arbitrary meshes, it is necessary to use
also the edge swap operator. The reason is that, since an
irregular mesh does not have 4-8 connectivity, it may not
be possible to cover the mesh with clusters of four faces
sharing a degree 4 vertex v € V,. The edge swap oper-
ator is used to modify the mesh at each level, producing
the required set of four-face clusters that cover most of the
mesh [15].

Figure 9 shows an example of 4-k simplification. It
is a cow model distributed with SGI's powerflip demo.
The initial mesh, shown in Figure 9(a) contains 5800 tri-
angles. The sequence of simplified meshes at levels 3 to 7,
is shown in Figures 9(b) through (f). They contain respec-
tively, 1200, 700, 400, 300, and 200 faces.



6 Level of Detail Operations

This section considers the application of variable resolution
4-k meshes for managing level of detail of large geometric
models. It defines the relevant operations and gives some
examples.

A level of detail operation consists in extracting
a mesh K from a variable resolution structure V
(Ko, W,<). As we have seen in section 3, this mesh
K C V, corresponds to a front in the lattice representa-
tion of V, i.e., a set of arcs containing exactly one arc for
each path from the source to the drain.

The collection of all nodes which can be reached from
the source without traversing the arcs of the front, corre-
spond to modifications to the mesh that are consistent with
the partial order < and produce the extracted mesh K. See
Figure 6.

Figure 6: A front in the lattice representation.

We can abstract this level of detail operation as a geo-
metric query, @, to the variable resolution structure V.

This general query operation can be specified by the
following parameters [4].

e An adaptation function: T : K; — {0,1}, that com-
putes some measure over V to determine if a face f
produced by a modification should be accepted or not.

o A focus set: S C R®, that defines a region of interest
where 7(f) is evaluated.

The answer to the query K, is the smallest conforming
mesh such that 7(f) = 1and f N F #£ @, forall f € K.

Examples of variable resolution query operations are:
point location; region intersection; neighbor search and
adapted mesh extraction. The last one is particularly im-
portant, because it appears in many graphics applications,
such as, progressive rendering, real-time visualization and
interactive modeling.

We remark that K could be either a mesh represent-
ing the whole surface, or a sub-mesh containing just the
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elements inside the region of interest. In the first case, the
query is called globally defined and in the second case, lo-
cally defined [4].

Adaptive mesh extraction is implemented through a
selective mesh refinement procedure using the variable res-
olution structure [4, 16].

This procedure can use a non-incremental or an in-
cremental algorithm. The non-incremental algorithm is a
specialization to 4-k meshes of the algorithms described in
[8] for general variable resolution structures. It starts with
an initial front that contains all the arcs leaving the source
node, and gradually advances the front, in a top-down fash-
ion, based on the evaluation of the adaptation function and
intersection with the focus set.

The incremental algorithm uses an existing front, and
updates it, moving the front up or down if necessary, ac-
cording to the adaptation function.

We remark that the variable resolution structure guar-
antees that an extracted mesh is consistent by construction.

Another nice feature of this framework is that, the
mesh extraction procedure is independent of the query spec-
ification. As a consequence, it is straightforward to incor-
porate it in completely different application domains. This
gives a lot of flexibility from the systems design point of
view.

In that context, what distinguishes two adapted mesh
extraction operations is the nature of the adaptation func-
tion. Some common types of applications are related to:
shape approximation; view dependent geometry, etc.

The practical performance of level of detail operations
is highly influenced by the properties of the underlying
structure, as noted by Puppo [8].

Next, we demonstrate the capabilities of the 4—k mesh
structure in the context variable resolution queries.

Figure 10 exhibits few examples of adapted mesh ex-
traction, using a variety of adaptation functions, as well
as, variable resolution meshes constructed using different
methods.

Figures 10(a) and (b) show two meshes representing a
“saddle” surface that was defined parametrically. The vari-
able resolution structure was constructed using adaptive re-
finement. The adaptation criteria used in Figure 10(a) was
triangle size. In Figure 10(b) the criteria was intersection
with a rectangular region in the parametric domain.

Figures 10(c) and (d) show two versions of the “Stan-
ford Bunny”. The one in Figure 10(c) was constructed us-
ing the C* Box-spline subdivision scheme; and the one
in Figure 10(d) was constructed using simplification. The
adaptation criteria is the same for both models: it is a linear
ramp in the horizontal direction determining triangle size.

Figures 10(e) and (f) show an example of point loca-
tion using the cow model of Figure 9. In Figure 10(e) we
have the complete mesh, in which the smallest triangle was
picked by pointing at the screen. A detail of the area sur-



rounding this point is shown in Figure 10(d).

We close this section with some remarks about a use-
ful capability of the 4—k mesh structure that allows the con-
struction of a triangle strip representation of the extracted
mesh [12]. Similarly to selective refinement, this algorithm
starts with a path, defined on the coarsest mesh, and the path
is refined while traversing the variable resolution structure.
In particular, if the model has semi-regular 4-8 connectiv-
ity, it is possible to maintain a Hamiltonian path for all ex-
tracted meshes.

7 Conclusions

This section concludes the paper with a review of the results
and a discussion of future work.

A framework for variable resolution description of sur-
faces was presented. It is based on the hierarchical 4-k
mesh structure. This representation has several desirable
properties for multiresolution applications.

We described various methods for constructing the 4—
k representation that contemplate most modeling situations.

We also demonstrated the practical use of the 4—k rep-
resentation, for the implementation of level of detail opera-
tions.

Future work in this area includes: hierarchical
parametrizations; multiresolution decomposition; mesh
compression; and the development of an integrated appli-
cations framework.
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Figure 7: Surfaces generated by subdivision based on quasi 4~8 refinement (b), and semi-regular 4-8 refinement (c-f)
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Figure 8: Approximations using adaptive 4-8 refinement of implicit (a-b), parametric (c-d), and sampled (e-f) models.
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Figure 9: 4-k Simplification of a cow model.
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Figure 10: Adapted variable resolution 4-k mesh extraction.
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