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Abstract — The 3D Reconstruction problem from a single endoscope image of a smooth object is studied in
the context of the Shape from Shading methods and considering a single light source at the camera projection
center. Based on a curve expansion Shape from Shading algorithm, a spherical projection model for the endoscope
camera and a dichromatic model for the surface reflectance, an approach to solve practical problems, namely the
endoscope image distortion and the removal of the image specular reflection component, is presented. Results
obtained from application of this approach to synthetic and real images are presented.
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1 Introduction

Geometrical data reconstruction from images is an important
problem in Computer Vision. The recovered geometry
information can be used to manipulate and visualize the real
object in a virtual environment. For medical applications, such as
endoscope imagery, 3D reconstruction can be used to produce
better visualization, improve measurement or study, for example,
the evolution of tumors. The common endoscope is based on a
single camera and one single light source, suggesting the use of
the Shape from Shading (SFS) technique as the most convenient
approach to 3D reconstruction of surfaces imaged using this
equipment.

The SFS problem consists of the solution of the image
irradiance equation as introduced by Horn [1975). The three
main approaches proposed in the literature to solve the SFS
problem are based on optimization, curve expansion and local
analysis. These approaches are discussed, for example, in
[Pentland 1984], (Lee and Rosenfeld 1985], [Zheng and
Chellappa 1991] and {S4ra 1995} for local analysis methods,
[Zheng and Chellappa 1991], [Horn 1990], [Ikeuchi and Horn
1981}, [Szeliski 1991] and [Lai and Vemuri 1997] for
optimization based methods and [Kimmel and Bruckstein 1995a}
and [Horn 1975] for curve expansion based methods.

Okatani and Deguchi [1997] based on the fact that the light
source is very close to the camera on the endoscope head,
assumed the endoscope imaging model to be composed by a light
source at the projection center and proposed an approach based
on curve expansion for the reconstruction of endoscope images.
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There are some important conditions found in practice that
are not considered in the Okatani-Deguchi [1997] model. One
such condition follows from the fact that the endoscope camera
must be very close to the object of interest, demanding small
focal distance lenses (wide-angle or fisheye lenses) that results
in a strong radial image distortion. Other problem relevant to
endoscope image reconstruction by SFS is the usual
assumption of a Lambertian surface, that may result in errors
since surfaces often considered in endoscope images do not
present the Lambertian reflectance characteristic.

Considering these conditions, this paper proposes to
include in Okatani-Deguchi [1997] model a solution to them. A
spherical projection model is assumed to model the camera.
The image distortion parameter, determined using a set of
calibration images, is included in the SFS solution. Concerning
the Lambertian surface assumption, a dichromatic model is
used to remove the specular reflection component present in
the image, in order to obtain a Lambertian surface equivalent
image.

The paper is organized as follows: in Section 2 the Shape
from Shading problem solution based on curve expansion is
reviewed; in Section 3 the dichromatic model and the removal
of the specular component from the image is presented; in
Section 4 the endoscope camera model is presented and
discussed; in Section 5, the adjustment of Okatani and Deguchi
[1997] model for the proposed approach is considered; in
Section 6 the results obtained from the application of this
approach to real and synthetic images are presented and,
finally, the conclusions are presented in Section 7.



2 The Shape from Shading Algorithm

The Okatani and Deguchi [1997] algorithm, that will be used for
the implementation proposed in this paper, is an adjustment of
the Kimmel and Bruckstein [1995a] algorithm and supposes that
an initial curve of constant depth is known (initial guess) and the
remaining constant depth curves, covering all the image plane,
are determined by the expansion of the initial curve.

The curve expansion process is described by a time-based
differential equation system in which the depth variable is
proportional to time. According to Kimmel and Bruckstein
[1995a], in the case of a Lambertian surface, orthographic
projection and light source direction perpendicular to the image
plane, for a constant depth curve represented in the parametric

form C(z)= {Vs,(x(s), y(s))}, the expansion equations can
be written as
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where E(x,y) is the image intensity or irradiance and the
variable subscript represents the partial derivative.

The curve expansion equation system (1) can be rewritten as

C .= F-n 2)
where 7 is the curve normal vector and F is the curve normal
speed given by

E
V1-E?

Numerical instability and topological problems can be
observed in this formulation unless a rediscretization scheme is
applied to the expanding curve at each iteration. To overcome
the numerical instability and topological problems arising from
the solution of an equation system such as the one described by
equations (1), Kimmel and Bruckstein [1995a] employed the
numerical method presented by Osher and Sethian [1988] in
which the expanding curve is represented by an implicit function.

o(x, y,1)

represents a curve for which ¢(x, y,#) =0 in the points (x, y)

F= A3).

For this numerical method, the function
belonging to the curve of constant depth C(t) . The objective is
the expansion of an initial curve represented by ¢(x, y,0) =0

in a way that ®(x, y,) =0 represents the curve C(f) at any
time f. If the light source direction is taken parallel to the Z
axis, the expansion equation is represented by

0, = F(x,y){0,” +0,’

The numerical method solution for curve expansion is
implemented by an iterative algorithm. Initially the iteration

).
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index variable 71, for which ¢ =n - Az, is made equal to zero

and the initial function ¢" (equation 4) is evolved in order to

obtain ¢"*'. For the pixels where ¢"-0""' <0, the time

value corresponding to the index variable n is assigned to the
pixel depth variable. In the sequence, R is incremented and the
above procedure is repeated until depth values have been
assigned to all the pixels in the image.

In order to solve equation (4) an initial function must be
provided. A conic function centered in a singular point can be
considered as initial function. Another usual approach is the
application of a threshold to the intensity image to obtain this
initial function.

For this algorithm, depending on the configuration of
singular points, the obtained solution is strongly influenced by
the selected singular point. Knowing singular point depths or
the surface topology, a global solution can be obtained by
merging local solutions obtained for each singular point.
Kimmel and Bruckstein [1995b] and Shimshoni et al. [1996]
propose an extension to the Kimmel and Bruckstein {1995a]
algorithm in order to obtain a global solution. Also, an
approach for a global solution for the case of many singular
points whose depths are known is found in Oliensis and Dupuis
[1994].

For the endoscope case Okatani and Deguchi [1997],
based on Kimmel and Bruckstein {1995a] and considering the
light source and the camera projection center at the same
position and near to the surface, modeled the endoscope image
formation process through the equation

G(cos0)
2

E(x,y)=p ®)

where E(x,y) is the image intensity or irradiance, p is the

surface albedo, O is the angle between the surface normal and
the observer direction (coincident with the light source
direction in this case), r is the distance between the projection
center and the corresponding point on the surface and the
function G(cos0) is considered to adjust the reflectance map
for the case of a non-Lambertian surface.

Differently from [Kimmel and Bruckstein 1995a], where
the z coordinate representation is considered, Okatani and
Deguchi [1997] represented the constant depth curves by the
distance from the surface point to the projection center,
expressed by the equation

r(x,y)=\/x2 + y2 +z°.

Given this representation for the constant depth curves,
the equation (4) was rewritten by Okatani and Deguchi [1997]
resulting in



_ G (rzE(x, y)/p) .
Z,t \/l —(G'[ (tzE(x, y)/p)?
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where Z,, is the focal length.

%,
(6)

3

The dichromatic model as described by [Tominaga 1991},
[Tominaga 1998] and [Tian and Tsui 1997] is based on the fact
that some surfaces can be modeled by the superposition of two
layers: one composed of the true surface material, namely the
body layer, whose reflectance is assumed Lambertian, and the
other, made of materials such as resin, wax or oil, forming the
interface layer between the body layer and the atmosphere, being
the latter determinant of the specular reflection. Intuitively, the
reflection due to the body layer and the interface layer can be
considered dependent on the body material color and the light
color, respectively. Letting A be the wavelength or the index to
a base function defined over the wavelength domain, E(A) the

Removal of Specular Reflection

incident light intensity, S,(A) the reflectance due to the

interface layer, S, (L) the reflectance of the body layer and 0
the variable describing all the geometric dependencies of the
scene, the reflected light intensity Y(0,A) is given by the
equation

Y(8,%) = ¢, ()S, WEMN) + ¢, (0)S, WER)

where ¢;(0) and c,(0) are constants dependent on the

reflectance maps of the interface and the surface body layer,
respectively.

According to Tominaga [1991], who employed the
dichromatic model for object identification, plastic, paints, china,
vinyl, tile, fruit, leaves and woods can be described by this
model, while materials such as papers, metal and cloth do not
comply with the model.

As observed in Section 1, usually the SFS algorithm
assumes the surface reflectance to be Lambertian. An equivalent
Lambertian surface image can be obtained from the image of a
surface that by hypothesis fulfills the dichromatic reflection
model characteristics using the procedure presented in the
sequence.

Let [I YA ]T be the vector representing the three color
components of a pixel R, G and B, [kd,,kdg,kdb]r be the
the body

the vector representing the interface reflection

vector representing reflection coefficients and

[ks, ks ks, ]T
coefficients. For white light, £ = [l,l,l]T . If the body reflection

is assumed to be Lambertian, then ¢, (8) = cosG, where G is

the angle between the light source direction and the surface
normal.

From the dichromatic model,

I, kd, ks,
y=|1,|=|kd ks, [CB] ®).
c
1, | |kd, ks, |-’

. . T
It is possible to choose a vector [a,,az,a3]

perpendicular to [ks, ks, ks, ]T , 5o that
aks, +aks, +asks, =0 ).

Multiplying the lines of equation (8) by the components of
[a,,a2 ,ay ]1 results

al, akd, aks,
c

a,l, | =|a,kd, a,ks, [ B:| (10).
c

a,l, akd, aks, |-’

From equation (10)

al, +a,], +a,l, =(akd, +a,kd, +askd,)c, +
(aks, +a,ks, +asks,)c,

and replacing the last term by equation (9)

al, +a,l, +a,, =(akd, +a,kd, +a;kd,)c,.

It is observed from the last equation that given the vector
[al,az,aJr [ks,,ksg,ks,,]r, the
coefficient ¢, (0) is proportional to a,l, +a,I, +a,l,.
The knowledge of [kd,,kd . -kd, ]T results in the exact

determination of ¢, (9) However, it is difficult to find this
vector in the present context and an appropriate choice for

perpendicular  to

[al,az,a}]r among those perpendicular vectors to

[ksr,ksg Jks, ]T must be made.

Considering [ks,,ksg,ksb] =[1 1 1], ie, the
interface reflection color is the same of the light source,
[a,,az,a3]=[1 -1 0] can be used. Therefore, an
equivalent Lambertian reflection image can be obtained from
the original image by the difference I, —1, or any other

linear combination for which a, +a, +a; =0.

4

In order to correct the image distortion a model based on a
spherical projection followed by an orthographic projection is
considered. As shown in figure I, an image point (I'’) is
obtained by projecting a 3D space point (I) on a spherical

Radial distortion correction
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surface of radius f with origin at the image projection center
(O) and then projecting the obtained point on the spherical
surface (I') onto the image plane considering the parallel
projection model. This model maps the 3D space into a circle
with radius f whose boundary corresponds to the 180° field of

vision.

Figure 1 — The camera spherical projection model.

Let (u,v) be the coordinates in the distorted image,
(x,y,2) the point coordinates measured in the 3D space
coordinate system with origin at the projection center and the
Z axis coincident with the camera optical axis, and r the
distance between the projection center and the point (X,y,Z).

From the triangles in figure 1, the following relations can be
obtained:

r(u,v) = \/x(u,v)2 + y(u,v): + z(u, v)? 11
2w -1
z(u,v) =—————r(u,v) 12)
f
x(u,v) = 2u,v) u
2oyt =y
(13).
z(u,v)-v
y(u,v) = 2 2 2
-y -y

It can be observed from the equations (11) to (13), that any
of the variables z(u,v), r(u,v), x(u,v) or y(u,v) carries

all the depth information and one can be derived from the others.
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Therefore, the reconstruction solution can be expressed in any
of these variables.

Given the x(u,v) and y(u,v) variables from the

spherical projection, a warping transformation can be used to
map these variables to equivalent perspective images. The
warping equations can be determined applying the spherical
projection model to a planar object parallel to the image plane

(depth Z constant and equal to the focal distance ( Z,;) for the
perspective projection).

2, U 'V

pi pi
xX= Y= (14)
\/fz__uz_vz \/fz_uz_vz
The warping inverse transformation is
. x .
u=—d S (1s)

\/;I,i2+x2+y2 Ve, Y

Including Camera Distortion Parameters in Okatani
and Deguchi Model

In the context of this paper, the specular reflection component,
as discussed in Section 3, is removed from the image by using
the dichromatic model and the assumption of a Lambertian
surface can be considered for the SFS problem solution. For
the condition of a Lambertian surface, the function G(cos )

5

in equation (5) is reduced to c0s 8.

To include the camera distortion parameter into the
solution presented in equation (6) the derivatives of the implicit
function ¢ described in Section 2 and computed for the
perspective image must be rewritten for the case of spherical
projection model adopted for the endoscope camera or the
distorted coordinates converted to the perspective model.

The transformation from the distorted image to the
equivalent perspective image is given by

Jdu ov
= =

wo-l% BHe]
dy Ody

where the 2 x 2 matrix in equation (16) is the jacobian matrix
for the warping equations (15).
Equation (16) can be written in expanded form as
¢X = ux¢u + v1¢l’ (17)
¢.\‘ = u)_(l)u + v.\‘q)v

The derivatives in equation (17) are given by



_ f

’ w/z,,,-2+x2+y2
Xf (2, + x4y,
_ f

¥ / 2 2 2
Zp +x +Yy

where f is the distortion parameter (radius of the spherical

2 -4
u —xzf.(zp,. +x2+y7)7,

u

¥

v, (18)

v =y f(z, +xt Y7,

projection surface).
The curve expansion equation under these conditions and
considering  Z,; =] (scale factor) and p=1 (normalized

intensity image) is given by
-tE,v)
o, = :

_\/l—t"EZ

\/(xz +y +1) [(x2 +10,” +2xy0,0, +(y* + 1)¢).2]

6  Results

In order to verify the applicability of this approach to the
reconstruction of endoscope images, tests were made using real
and synthetic images. Initially, for real images, the camera
distortion parameter is determined using two alternative
calibration procedures.

The first calibration procedure was conducted by printing
on paper an image composed by concentric circumferences and
positioning the endoscope head perpendicularly to the paper at a
distance A above the center of the circumferences (see figure 2).
In this procedure, each circumference corresponds to a value of

O determined by the relation 0. = tan ™' (r/ h).

Figure 2 — Arrangement for camera calibration.

A circumference with radius r=h corresponds to a 45°
angle (OL). Knowing the values for (#,V) from the image and
the corresponding OL, the distortion parameter f is determined
by the equation

Yu? +v? = f -seno.

derived from the analysis of the triangles in figure 1.

19)

A good estimation for f can be obtained using the

estimator
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(20)

for many experimental values for the tuple (u,. Vi O )

Another approach to calibration, better than the former for
the context where the correct positioning of the endoscope is
not possible, can be conducted by printing a regular square grid
on paper, acquiring its corresponding endoscope image and
applying to the captured image the warping transformation
(equations 15) considering multiple values of f . The camera

distortion parameter is assigned according to the value f

considered in the transformed image that by visual judgement
presents the straightest lines. See example in figure 3.

(b)

Figure 3- Result of the calibration using warping
transformation (a) Original distorted image. (b)
Best corrected image.

To verify the applicability of the dichromatic model for
specular reflection removal, tests were made in real and
synthetic images. In figure 4 results of the specular reflection
removal algorithm are presented for a synthetic ray traced
image, an endoscope image and the scanned image of a resin
object. The biack regions around the specular points in these

(b)

(@) (®")

Figure 4 Specular reflection component
removal. Original and processed images: (a)
Synthetic image (b) Endoscope image. (c) Scanned
image of a resin object.



images are due to intensity saturation and consist of pixels whose
red, green or blue intensities are above the saturation threshold.
The clear region in image (4b’) corresponds to the change of
albedo in the surface due to the presence of bile.

The results of a SFS reconstruction for synthetic images and
a real endoscope image are presented in figure 5 and in figure 6,
respectively.

(c2)

(a2)

Figure 5 — Results from the SFS algorithm for
synthetic images. (a) Original images (b) Original
geometry. (c) Reconstructed surface using the curve
expansion algorithm.

7

The SES problem is often qualified as an ill-posed problem in the
literature and its solution is considered a difficult task. Most of
the approaches to solve the SFS problem result in a system of
non-linear differential partial equations usually susceptible to
numerical instability. The curve expansion technique employed
in this paper is an alternative method to solve this kind of system
of equations, demanding the determination of singular points,
which can be difficult and inconvenient in many applications.

Conclusion

Despite the absence of a numerical error measurement
evaluation, the quality of the obtained SFS reconstructed
surfaces for the considered endoscope images is subjectively
considered good.

Considering the removal of specular reflection in color
images, the obtained results are satisfactory for synthetic images
and for images of surfaces compliant with the dichromatic
model. The application of the dichromatic model to surfaces
usually considered for endoscope images demands further
measurements and the validation of the results by endoscopy
professionals.

It should be noted that endoscope images are difficult to be
processed automatically. Some relevant problems include the
interreflection, intensity saturation, specular reflection, non-rigid
movement of digestive tract walls, difficulty to set the endoscope
in the appropriate position and variability of the albedo in the
digestive tract due to gastric aging, presence of blood vessels and
presence of digestive liquids.
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(b)

©
Figure 6 — Reconstruction of a real endoscope
image. (a) Original endoscope image. (b)
Rendered image (ray traced) for the

reconstructed surface triangular mesh. (c¢) Depth
map as function of image coordinates z(u,v).
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