Multiple Correspondences in Stereo Vision
Under a Genetic Algorithm Approach
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Abstract. This paper presents a multiple point hierarchical approach to the stereo correspondence problem
in computer vision. The low-level processing employs an area-and-token hybrid method to obtain, for
distinctive points in one image, a set of points in the other image that are candidates for correspondence.
The refinement of the set of low-level correspondences obtained is performed by a high-level N-point
simultaneous correspondence process, a new constraint introduced for this problem. The high-level
processing uses a genetic algorithm approach for searching the solution space. Experimental results show

the effectiveness of the method on real world scenes.

1 Introduction

Stereopsis is the process the computes depth from two or
more images of the same scene obtained by spatially
separated cameras (Bertero et al. [3]). This process is a
preprocessing phase for computer vision tasks such as,
stereo vision (3D information) and motion analysis using
2D data (Anadan [1], Jones [9]). The main problem in
stereopsis is the correspondence process that aims at
establishing relations among images of the same scene in
order to guarantee that the images belong to the same
scene. The work presented in this paper is concerned with
the recovery of 3D depth information using two images,
which can be estimated by calculating the disparity
between the image points, as it is shown in Figure 1. The
depth information D for a point can be derived by the
expression
1b

X, +Xp

D(».XL,XR)= (D
where, x; + xg is the disparity between the corresponding
left and right points; f is the focal distance, which is a
camera characteristic; and b is the baseline, defined as the
distance between the two optical axis resulting from the
cameras arrangement (see Figure 1).

There has been a lot of research work on the
correspondence problem, but no generalized approach has
been achieved yet. Existing algorithms are based on
different  paradigms such as neural networks,
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regularization, learning strategies, and optimization
techniques. New research works have been stimulated by
the availability of new agile stereo heads with a large
number of degrees of freedom, permitting concentration
on temporal integration of salient image information under
the active vision paradigm (Jones [9]).

The different approaches to the correspondence
problem are either area- or token-based, and use similarity

metrics, such as cross-correlation, sum of squared
differences, Euclidean distance, etc. to achieve the
correspondence. They normally try to satisfy the

constraints stated by Marr [10]: point compatibility,
uniqueness of correspondence, and map continuity.

y

Figure 1 — The geometry of stereoscopy.



The solution to the correspondence problem requires
in general the choice of a reference feature in one of the
images, to be used in the correspondence process.
Although it is not unusual to find several similar features
in the other image, the constraints of the problem impose
the existence of a unique correspondence.

Area-based approaches are sensitive to illumination
changes, to occlusion (partial blocking of objects with
different depths), and to the size and shape of the window
used. Token-based approaches are less sensitive to
occlusion, but require detection and description phases,
which may be time consuming.

This paper proposes a point-wise, hybrid (area- and
token-based) approach to the correspondence problem,
using contextual (area) and structural (token) features of a
point and its neighborhood. The similarity of candidate
corresponding points to a reference point is computed
using difference, correlation, and distance metrics.

In order to cope with the problem of choosing among
a very large number of correspondences that can be found,
it is also proposed in this paper that a new constraint
should be added to the problem besides Marr's constraints:
the simultaneous correspondence of many (N) reference
points. In these regards, polygonal regions must be
matched, besides single points, as in traditional methods.
Thus, the correspondence takes place if a set of candidate
points (polygonal region) satisfies the constraints stated in
Marr [10] and the new constraint (structural coherence
constraint). The polygonal regions may not represent real
objects in the scene.

The polygonal region geometric features may vary
from one image to the other, due to occlusion and possible
excessive disparity between the images, thus increasing
the computational complexity of the problem. Moreover,
each individual reference vertex (point) may have a large
number of corresponding candidate points, which means
there may be a very large number of possible polygonal
regions that may correspond to the reference polygonal
region. However, the bigger the number of simultaneous
points, the more complex is the polygonal region. Token
complexity for the correspondence problem has already
been observed by Jones [9]. More complex geometric
features can then considerably reduce the number of
correspondence possibilities. Nevertheless, the number of
corresponding candidate polygonal regions may still be
very large, requiring a search over a huge space, for which
a genetic algorithm is proposed.

GAs have already been used in some image
processing, computer vision, and pattern recognition
problems (Bala and Wechsler [2], Tsang [15], Singh et al.
[14], Mirmehdi et al. [12]). For the stereo correspondence
probilem, Saito and Mori [13] have developed a method
employing a GA to determine the disparity map
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optimizing both the compatibility between corresponding
points and the map continuity. Chai and Ma {5] have
presented an evolutionary framework for stereo
correspondence for non-calibrated images.

It is proposed in this paper to use genetic algorithms
to the correspondence problem under a quite different and
more complex approach, in which low-level and high-level
processing are conducted.

2 The Proposed Model

2.1 Contextual and Structural Features for the low-
level correspondence process

The considered contextual features of a point are the micro
area (within a predefined window size), the macro area
(within a window n times the micro area), and the gray
level of the point. Such features provide local and global
contextual information about the point and its neighbors
and are computed for both images.

The structural features are defined as those to which
the considered point belongs. The following 8 structural
features have been proposed to be used: the vertical and
horizontal lines; the principal and secondary diagonals; the
bottom right, top right, top left, and bottom left corners,
defined within a predefined window. These features are
binary vectors obtained from differences among the gray
level of a point and its neighbors, computed through
Perceptron neural networks (Haykin [8]), with weight
insertion for each different structure. As an example, the
construction of the vertical line structure within a 3 x 3
window is shown in Figure 2. All the other binary features
are extracted using similar networks. Bigger windows
require redefinition of the neural networks for extracting
such structures.

In addition to the 8 structural features mentioned
before, two additional structures are also considered: the
pattern of differences among the central pixel and its
connected neighbors, and the predominant structure. For
the example in Figure 2, the pattern of differences is
computed as:

D =sign(12-38,11-38,41-38,40-38,37-38,10-38,11-38,10-38 )
=(0,0,1,1,0,0,0,0)

where the sign function is applied to each array element.
The second additional structural feature is computed
by applying the convolution operator to a group of basic
morphological structures and to an image window. The
mask with highest computed convolution value is called
the predominant structure. Such process can be thought of
as an energy analysis given by the convolution. For the



example in Figure 2 the predominant structure is the
highlighted one in Figure 3. Following Jones [9], the
bigger the window size and the larger the number of
structural features, the more complex the binary structures
are, thus increasing the likelihood of the uniqueness
constraint to be satisfied.
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Figure 2 - The vertical line structure in a 3 x 3 window.

Weights are inserted as shown.
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Figure 3 - Basic binary morphological structures within a
3 x 3 window.

2.2 Metrics for similarity

Considering the constraint of map continuity, that is,

disparity smoothness over the image, it is assumed that the

correspondence will take place if both the reference point

and a candidate point lie within similar macro and micro

contexts and belong to similar structures. For that purpose,

point correspondences are performed under 14 similarity

criteria:

e Non-normalized Euclidean distance between the
micro areas (ED).

e Correlation index between the micro (C,,,;.,,) areas.
Correlation index between the macro (C,uu.r) areas.

e Hamming distance between the 10 different binary
structures (Hl H2 H3 H4 H5 H6 H7 H,g Hg H[o).

¢ Absolute difference between the points' gray levels
G).
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The non-normalized Euclidean distance between the
micro areas captures illumination differences from one
image to the other, within the micro context.

Following the feature extraction phase of the process,
each candidate point / is assigned a vector of 14 similarity
measurements for the different matching criteria, together
with the point image coordinates (I, p;).

Qi=[li pi ED Cuacro Hi H2 Hy; Hy Hs Hs H7 Hg Ho Hio G Chicro)

A point i with a feature vector Q; will be chosen as
the corresponding one to a certain reference point, if its
similarity metrics show the maximum match possible.

2.3 Geometric Features for the

correspondence

high-level

Three geometric features are employed to cope with the
structural coherence constraint between the polygonal
regions (N-point simultaneous correspondence):

e Sum of the angles between each side of the polygonal
region and a horizontal line, in the image plane;

e  Area of the polygonal region;

e  Sum of the Euclidean distances of the incenter of the
polygonal region to its vertices.

The geometric features are computed for both the
reference and candidate polygonal regions and they are
compared through absolute differences.

The use of contextual and structural features of each
point (vertex), as well as the geometric properties of the
polygonal regions characterizes a hierarchical approach to
the correspondence  problem, in  which  point
correspondence is conducted at a low level by analyzing
local properties of a point, whereas high level
correspondence occurs globally across the image, while
matching the polygonal regions. Thus, for a reference
polygonal region, the correspondence is the process of
finding a polygonal region in the other image, among a
large number of candidate polygonal regions (or search
space), that may match the reference. Although the
geometric features are not invariant under projection, they
are used as a heuristic metric for the similarity between the
geometric shapes of the polygons, under different views.

2.4 Genetic Algorithms (GAs)

GAs were introduced by John Holland in 1975, based on a
method for studying natural adaptive systems and
designing artificial adaptive systems, with roots in



Darwinian natural selection and Mendelian genetics. GAs
search a problem representation space of artificial
adaptive systems, eliminating weak elements by favoring
retention of optimal and near optimal individuals (survival
of the fittest), and recombining features of good
individuals to perhaps make better individuals.

The elements of the search space represent possible
solutions to the problem and are coded as strings
(chromosomes) derived from an alphabet (Goldberg [7]).
They work with a coding of the problem rather than the
problem itself. Such characteristic has made them to be
known as robust optimization methods (Mirmehdi et al.
[121, Michalewicz [11}).

In order to use a GA approach, it is necessary to first
derive an initial population of chromosomes (potential
solutions) and set a cost function to measure each
chromosome's fitness. The best solution is then searched in
the solution space. The optimization is performed by
manipulating the population of chromosomes, during a
number of generations, in each of which the GA creates a
set of new individual by crossover and mutation
operations, similar to natural reproduction processes. The
crossover operation takes two parent chromosomes and
mates them to produce two child chromosomes. The
mutation operation is used for exploring new regions in
the search space, thus maintaining population diversity.

GAs are particularly suitable for applications that
require adaptive problem-solving strategies.

Following is the structure of a simple Genetic
Algorithm:

Procedure Genetic_Algorithm:
begin
t=0, initialize P(t);
evaluate P(t);
while (NOT termination-condition) do
begin
t=t+1;
select P(t) from P(1-1);
recombine P(t);
evaluate P(t);
end;
end;

2.5 The proposed GA approach to the correspondence
problem

Consider P,, P,,... ,P, .., Py as N vertices of a reference
polygonal region in the left image (L), and that for each
vertex P, S; = {Q,-" :j =12,k } is the set of candidate
corresponding points to P; in the right image (R). k;=15)

55

is the number of elements in the set S;. Each set, S, is
constructed under a rule tuned to avoid irrelevant points,
by analyzing the correlation index between the micro areas
of the candidate point and its reference, and the correlation
index of their macro areas. Both indices are compared to a
threshold T (T=0.75 in the experiments).

IF  Chio 2T & Churo = TTHEN choose point

A solution (a genotype) to the problem is coded as an
ordered sequence of randomly chosen vertices, forming a
candidate polygonal region,

0,0,.0,0,..0.,,.-Qy where Q; € S;

The genotype is a string in which each element is the
aggregation of 16 floating point numbers representing
pixel coordinates and the 14 similarity metrics (section
2.2).

The use of N simultancous points implies the
existence of N sets of candidate points that may result in a
large number of possible solutions (a search space with
k;x kyx...x ky possible candidate polygonal regions may
result in the right image). If 4 vertices are considered, each
with 1000 candidate points, then there may be 10'?
solutions to the problem. The proposed method avoids
dealing with a huge population, acting on a randomly
chosen sub set (population) of candidate points. Diversity
in the working population (new candidate points) is
brought in by the mutation operation. Then, the initial
population is a pool of ordered sequences representing
random candidate polygonal regions as potential solutions
to the correspondence problem.

Crossover

The crossover operator is used to exchange genetic
material among highly fitted individuals in the population.
In the proposed model, a uniform crossover operator
exchanges genes at randomly chosen positions across the
parent chromosomes. The operation consists in the
generation of a binary template (bit string) of the same
length as the parents, and the offspring chromosomes are
generated by swapping the genes between the parents at
the positions corresponding to 0’s in the binary template,
while those at positions 1’s remain unaltered. In the
proposed approach, the crossover operator is designed to
fit the needs of the non-binary representation used.
Uniform crossover is illustrated in Figure 4-c. In addition
to the uniform crossover the usual one point and two point
crossovers (Figures 4-a and 4-b) are also used.
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offspring 1 0/0,0;0,0,0¢070Q,
offspring 2 0,0:0,0.0:,0,0,0954
)

Figure 4 - a) One point crossover; b) two-point crossover;
and ¢) uniform crossover.

Mutation

Mutation operation brings in genetic diversity, thus
favoring the search in different regions of the solution
space. It performs this by randomly choosing genes of an
individual and replacing them by genes extracted from the
respective sets of candidate points. Then, if the randomly
chosen gene is @, then it is replaced by a randomly
chosen gene, . e¢gs,. Figure 5 illustrates the mutation
operation.

{ { 4 $
QlQZ"'QiQi+]Qi+2"'QN QlQZ"'QiQi+|Qi+Z"'QN

00,0000y 2.0:-0,0,,0:.,.0,

a) b)

Figure 5 — Mutation of: a) One randomly chosen gene; b)
Multiple randomly chosen genes.

Fitness Function

The performance of individuals in the population is
measured by the fitness. The proposed approach to the
correspondence problem deals with the minimization of
the similarity measures given by all the criteria (sections
2.2 and 2.3) combined together, thus forming the basis for
the fitness (evaluation) function (F).

The fitness function for each candidate polygonal
region (i) with N vertices is computed by the equation (2).
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F’_(GE,PT) _ FiPT i d 2)

i
area + d )

incenter

N
+.d)

j=1
Where F,(%**7) is the combined measure of similarity of

candidate polygonal region i to the reference polygonal
region due to the features of the points (PT) and the
geometric (GE) features of the polygonal regions; d' ., is
the normalized absolute difference between the areas of
candidate polygonal region i and the reference polygonal

region; ﬁ (d,;,.

j=1

+d! ) is the sum of the normalized

incenter ;

absolute differences between the angles (d ,'n ) of the sides
1

and the normalized absolute differences between the
distances of the vertices of the polygonal regions from its

¢ ); F.'T is calculated by

incenter ( dmcenter, i

N
PT _ i i i i i i i
E = 2 (ED +Cmm:m +H!'+H2;+Hs +Hds +Hs (3)

=1

+Ho+H7 +Hs' + Ho' + H}, + Cnicere')

Equation (3) is the sum of the normalized absolute
differences of the contextual and structural features of
each point j (vertex of the polygonal region). Both
correlation indices, between the micro and macro contexts
surrounding each reference and candidate point (vertices
of the polygonal regions), are first complemented to 1 to
change their interpretation for similarity in a minimization
problem approach. H,' is the Hamming distance between
binary structures of kind ¢ of both the candidate point j and
the respective reference point. ED' is the Euclidean
distance between the micro context of candidate point j
and the micro context of the respective reference point.
Index i refers to an individual solution i in the population
and index j refers to point (vertex) j of the polygonal
region.

The computation of the fitness function is preceded
by the normalization of all the terms in relation to the
maximum values each measurement may achieve. Such
operation make them vary in the interval [0,1]. The
correspondence is established by minimizing the fitness

function F,.‘GE‘PT). Then, the individual (polygonal

region) in the population that minimizes the fitness
function is chosen as the best correspondence to the
reference region.

Selection

The selection scheme is performed within an elitist
approach (Gen et al. [6], Brooks et al. [4]) that assumes a
decrease (or increase) in the population average fitness
and tries to avoid the disruptive character of the
recombination operators. It keeps the best individuals in



the current population as a basis for the next generation,
and guarantees that the best answer found throughout the
generations is present in the last one.

3 Results

The proposed GA approach was applied to pairs of real
world images with 120 x 160 pixels and 240 x 320 pixels,
each one with 64 gray levels. Such images were acquired
from indoor scenes, with an assembly of two parallel
cameras under the same illumination conditions.

The experiments aimed at using the proposed
approach to establish the correspondence of N=6
simultaneous points. Besides the previously referred
images, the method was also tested on several different
images.

The general process starts by the choice of the 6
reference points in the left image (L) (Figure 6), based on
gradient information within a 5 x 5 window and a contrast
analysis of regions of the image. For reference point,
several candidate corresponding points are then chosen by
applying the rule of section 2.5.

The contextual and structural features are extracted
for the reference and candidate points. The similarities
among the features are computed by the similarity criteria
mentioned in section 2.2. Such metrics are computed for
each candidate point in relation to its reference point. Each
candidate point is assigned a vector of similarity metrics.

The initial population is created with Npop
(Npop=100, in the experiments) individuals, for each of
which the geometric features, described in section 2.3, are
computed. Similarity metrics are applied to compute the
differences relative to the reference polygonal region.

In the experiments, the real corresponding points
were picked from the right image. Such information was
used as a reference to allow a numerical analysis of the
answer provided by the proposed approach (see table 1).

The genetic algorithm was executed to evolve a
population using 85% crossover probability and 50%
mutation probability. These probabilities resulted from
experiments developed to test the influence of different
crossover and mutation rates. Higher mutations could have
been used to introduce more diversity in the process.

Table 1 presents the coordinates of the reference and
corresponding points, as well as, the coordinates of the
correct correspondence in the right image (Figure 6). The
computed squared errors show the effectiveness of the
proposed approach, which can be seen by the mean
squared error between the set of references and the set of
corresponding points found (less than 1 squared pixel).

(a
Fitness
8

7
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Table 1 -~ Computed squared errors for the
correspondences in Figure 6.
rence | Corresp. Points | Real Corresp. | Squared Errors
found Points
Line | Pixel | Line [ Pixel | Line | Pixel
32 94 32 94 0 0
47 69 47 69 0 0
43 70 43 70 0 0
18 83 18 82 0 1
19 92 19 92 0 0
25 93 25 93 0 0
Mean squared error: 0 0.166

Retkrence Regbn PartialCorrespondences

Solution Evolution

(d)

250

300 350

Generations

Figure 6 - (a) reference polygonal region with vertices at
(33,109), (45,101), (40,100), (18,98), (19,107), (25,108);
(b) partial solutions; (c) solution evolution; (d) final
corresponding polygonal region with, vertices at (32,94),
(47,69), (48,70), (18,83), (19,92), (25,93).

Figure 7 shows the results for another image. Figure
7-a) displays the image of an office room in which 6
reference points were chosen through a global analysis of
predominant structural features. The proposed method was
applied using the same parameters mentioned before for
the genetic algorithm. The corresponding points are
displayed in Figure 7-b). Figure 7-c) shows the disparity
map obtained by applying equation (1). It is to be noted



that the closer a point is to the camera the larger will the
disparity (bright pixels) be.

Figure 7 — a) Reference Image with 6 control points; b)
Corresponding points; ¢) Disparity map generated from
the 6 control points.

The disparity map was constructed based only on the
correspondence of the 6 reference points. An algorithm
was developed to compute the disparity map considering
the 6 correspondences found as control points, thus
avoiding exhaustive calculations to establish many
correspondences before computing the disparity map. The
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computations performed verify the correspondence
between a point in the reference image, and a point in the
other image, by minimizing the sum of differences among
the similarity measures of their structural and contextual
features, and the differences among their spatial
localization in the images.

4 Conclusions

This paper presents an approach based on genetic
algorithms to multiple-point correspondence of a pair of
stereo images.

The process is modeled under a point-wise fashion,
using point contextual and structural features, and the
geometric features of the polygonal region defined by
these points.

Structural features extraction is performed by a group
of neural networks, thus not requiring preprocessing for
gradient extraction and token establishment prior to the
correspondence process. The structures are restricted to
local operators in the neighborhood of interesting points
(see section 3), picked up as those belonging to edges in
the image.

The structural coherence of the polygonal regions
allows the simultaneous correspondence of multiple
points, thus accelerating the correspondence process. The
combination of multiple points with contextual and
structural features makes the proposed approach different
from those in Saito and Morti [13] and Chai and Ma [5].

The results presented show the correspondence of
control points in the image, before recovering a complete
disparity map. The number of muitiple points can be large,
thus implying more complex geometric features of the
polygonal region and a larger number of correspondences
established simultaneously. However, an increase in the
number of simultaneous points means an increase in the
processing time.

The effectiveness of the use of a genetic search in
pursuing the best correspondence of multiple reference
points within a huge search space, has been shown with
the experiments conducted.

An algorithm was developed to calculate the disparity
map shown in Figure 7-c). The result may be enhanced if
the number of simultaneous points is larger, because more
control points can be used to guide the calculations.

The occlusion problem is implicitly treated here by
performing a number of iterations in the correspondence
process. Along the iterations the reference image is
alternated. The idea consists in fixing a set of initial
reference points in one image (say the left one), pursuing
their corresponding ones in the other image (the right
image). The correspondences found become the references



for the next iteration whose corresponding points are
pursued back in the left image, and so on. The algorithm
stops when convergence to a set of repeated points in both
images is reached.
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