Tracking Facial Features Using Gabor Wavelet Networks
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Abstract.

This work presents a new method for automatic facial feature tracking in video sequences. In this

method, a discrete face template is represented as a linear combination of continuous 2D odd-Gabor wavelet func-
tions.The weights and 2D parameters (position, scale and orientation) of each wavelet are determined optimally
so that the maximum of image information is preserved for a given number of wavelets. We have used this repre-
sentation to achieve effective facial feature tracking that is robust to homogeneous illumination changes and affine
deformations of the face image. Moreover, the tracking approach considers the overall geometry of the face, being
robust to facial feature deformations such as eye blinking and smile. The number of wavelets in the representation
may be chosen with respect to the available computational resources, even allowing real-time processing.

1 Introduction

The automatic tracking of faces and facial features in video
sequences is a fundamental and challenging problem in com-
puter vision. This research topic has many applications in
human-computer interaction, model-based coding, gaze de-
tection and teleconferencing. Furthermore, automatic face
recognition from image sequences may require the tracking
process in order to segment the face in each frame. Faster
recognition may be achieved by using only facial features.

In this paper, we propose a method for tracking fa-
cial features that is based on the work of Kruger and Som-
mer [1], which uses a Gabor wavelet network (GWN) for
face representation, allowing tracking robust to homoge-
neous illumination changes and affine deformations of the
face image. This representation is generated by approxi-
mating the face template as a linear combination of con-
tinuous 2D odd-Gabor wavelet functions. Thus, we have
a continuous wavelet representation of a discrete face tem-
plate. The weights and 2D parameters (position, scale and
orientation) of each wavelet are determined optimally so
that the maximum of image information is preserved for a
given number of wavelets in the representation.

Our tracking method is manually initialized by the user,
who indicates, in the first frame, the face region and the po-
sition of the pupils, center of nose and center of mouth. It is
worth saying that it could be done automatically by means
of a skin-color blob information and some technique for au-
tomatic detection of facial features. We are still working on
this problem [2], which will be addressed in a future paper.

After this initialization process, the wavelet represen-
tation for the face template is generated and the facial fea-
tures are tracked along the video sequence by using it. The
tracking approach considers the overall geometry of the face
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and, therefore, it is robust to facial feature deformations
such as eye blinking and smile.

The number of wavelets that will approximate the face
template may be chosen by the user. The representation be-
comes more specific as the number of wavelets increases.
On the other hand, as the number of wavelets is decreased,
the representation becomes more general, being more suit-
able to be applied to different individuals. It is interesting to
note that a GWN is a RBF network, which provides gener-
alization of the training data when a small number of basis
functions are used.

The tracking algorithm may be even executed in real-
time. For this, the user must choose the number of wavelets
in the representation according to the available computa-
tional resources.

The remainder of this paper is organized as follows.
Section 2 reviews some techniques related to our work. Sec-
tion 3 introduces the wavelet networks as a powerful tool
for function approximation. In section 4, the face represen-
tation obtained by a GWN is described and its advantages
are discussed. Section 5 is concerned with the reposition-
ing of a GWN, which allows face tracking. In section 6,
facial feature tracking is presented as the major contribu-
tion of this paper. The experimental results are discussed in
section 7. Finally, section 8 concludes this paper with some
remarks on further research directions.

2 Related Work

Many approaches have been proposed to track faces and fa-
cial features in video sequences. Recently, color-based sys-
tems have been widely used to accomplish this task. The
work of Jie Yang and Alex Waibel [3] presents a statistical
skin-color model, which is invariant to people from differ-



ent races. This work was extended to track faces in real-
time [4].

Stiefelhagen and Yang [5] have used a color-based ap-
proach to track specific facial features (pupils, nostrils and
lipcorners) in video sequences. The determined location of
facial features in each frame was used to estimate face 3D
position. The use of color to track faces and facial features
has advantages such as face pose invariance and real-time
processing. On the other hand, this approach is, in general,
not robust to illumination changes.

Liyanage Silva et. al. [6] proposed a method, which
they called edge pixel counting, to detect and track facial
features in image sequences. This method is based on the
fact that the edge concentration is high near the facial fea-
tures (eyes, nose and mouth) and low around them. The
method is simple but it fails in several situations, such as
in the presence of cluttered backgrounds, glasses and hair
covering the forehead.

The work of Thomas Maurer and Christoph Malsburg
[7] presents a system that tracks facial features with Ga-
bor wavelet filter responses. Initially, feature positions are
initialized by hand in the first frame of the sequence. Ga-
bor filters are then used to extract feature vectors, or jets,
from that positions. Finally, each feature point is individu-
ally tracked by phase-based displacement estimation. The
main disadvantage of this approach is the high computa-
tional cost required, which leads to tracking with less than
1 fps.

Our approach uses a wavelet representation for the face
image that is even sparser than the Gabor jet representa-
tion. Also it differs from the one introduced by Mallat or
Daubechies [8, 9]. In fact, it is based on a wavelet network
concept, which will be explained in the next section.

3 Function Approximation

The wavelet representation for the face template is obtained
by a function approximation method. Our problem of func-
tion approximation consists in estimating an unknown con-
tinuous function f : R®™ — R from scattered samples
{(zi,y:)} that are employed as training patterns, where z; €
R™andy; € R.

We may consider the face image as an unknown con-
tinuous function f : R? — R, assuming that we have a
grey-level image. In this case, each pixel of the face tem-
plate corresponds to a scattered sample (z;,y;) where z; is
the pixel position and y; is the pixel intensity. Thus, our ob-
jective is to determine a continuous function f : R? = R
that approximates f, i.e., a continuous representation for
the face template.

The method used to obtain the face representation is
a wavelet network [10], which is an alternative to feedfor-
ward neural networks for approximating continuous func-
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tions. In the following subsections, we first discuss neural
networks and after we introduce the wavelet networks for
function approximation.

3.1 Neural Networks

Feedforward neural networks have been intensely studied
as efficient tools for arbitrary function approximation. The
work of Cybenko [11] shows a rigorous demonstration that
multilayer perceptrons with only one hidden layer of pro-
cessing elements is sufficient to approximate any continu-
ous function with support in a hypercube. Figure 1 shows
this network structure for approximation.

The neural network universal appproximation property
follows: if ¢ is a non-linear continuous, limited and mono-
tonically increasing function, then finite sums of the form:

) M
fx) = wio(alx +b) 1

=1

are dense in the space of continuous functions defined on
[0,1]™, where w;,b; € R,a; € R™. In other words, given
any continuous function f defined on [0, 1]™ and any € > 0,
there is a sum f(z) of the form above, for which |f(z) —
f(z)] < eforall z € [0, 1]™.

Figure 1 - Neural network for function approximation.

3.2 Wavelet Networks

Wavelet networks, or wavenets, were proposed as an alter-
native to feedforward neural networks for function approx-
imation. This concept was inspired by both the wavelet de-
composition and neural networks.

It is well know that wavelet decomposition allow us
to decompose any function f(x) € L?(R™) using a fam-
ily of functions obtained by dilating and translating a single
mother wavelet function 1 : R® — R. Thus, f(z) may
be expressed as a linear combination of wavelet functions,
where the wavelet coefficients (weights) are estimated by
the decomposition process. In contrast, in the wavelet net-
work, not only weights, but also the parameters of wavelet
functions (translation, dilation and we may also consider



orientation) are jointly fitted from data. In this case, the
number of wavelet functions may be choosen by the user
and its parameters are optimized by a learning process. The
more used wavelets, the more precise is the approximation.

Thus, if we want to approximate a continuous function
f: R™ — R from scattered data, we may use a wavelet net-
work, computing the approximation function f acoording
to the equation below:

M
fx) =Y withn,(x) + f @)
=1

where w; € R,vn, is a wavelet function, n; is the param-
eter vector of each wavelet and f is introduced in order to
approximate functions with nonzero average. Weights and
parameter vectors of wavelets are determined optimally by
a learning process. Figure 2 illustrates the typical structure
of a wavenet for a function approximation problem.

Figure 2 - Wavelet network for function approximation.

4 Face Representation Using Gabor Wavelet Networks

The face representation is obtained by using a wavelet net-
work in which the mother wavelet is a Gabor function. The
use of Gabor filters in image analysis is biologically mo-
tivated as they model the response of the receptive fields
of the orientation-selective simple cells in the human visual
cortex [12]. Furthermore, they provide the best possible
tradeoff between spatial and frequency resolution (Heisen-
berg principle). Figure 3 shows an illustration of a 2D odd-
‘Gabor function.

Figure 3 - 2D odd-Gabor wavelet function.

To define a Gabor wavelet network, we start by tak-
ing a family of M 2D odd-Gabor wavelet functions ¥ =
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{¥nys- -, ¥n,, } of the form

Yn(z,y) =
exp(—%[sz((z — ¢z)cos8 — (y — ¢,)sinf)]?

+[8y((z = ¢5)8in8 + (y — ¢y )cosb)?))
xsin(sz((z — cz)cosd — (y — c,)sinf))

3)

with the parameter vector n = (cz,cy,f), Sz, 8y), Where
¢z, ¢y denote the translation (position) of the Gabor wavelet,
Sg, Sy denote the dilation (scale) and 6 denotes the orienta-
tion.

In order to obtain the wavelet representation for a face
image f, the weights and parameters of each wavelet are de-
termined optimally, by means of a learning process, which
minimizes the energy function

If - (Z withn, + de(f))|I3

FE = min

n;,w; Vi

)

with respect to the weights w; € R and wavelet parame-
ters n; € R5. In the equation above, dc(f) is the DC-value
of f. The Levenberg-Marquard gradient descent learning
method [13] was employed to determine the optimal wavelet
network for the face template. The method might get stuck
in local minima and a careful selection of the initial param-
eters is important.

Then, we can say that the two optimized vectors ¥ =
(Ynys- -y ¥np )T and w = (w1, ..., war)T define an op-
timized Gabor Wavelet Network (¥, w) for a specific face
image f. The continuous representation for f may be con-
sidered as the reconstruction of the original image and it is
given by:

M
f=2_ withn, +de(f)
i=1

Of course the quality of the reconstruction depends on
the number M of used wavelets. Figure 4 shows a face
template (left) and its discretized representation (middle),
which we call the Gabor wavelet template (GWT). This rep-
resentation was obtained by using a GWN of just M = 52
odd-Gabor wavelets, initialized in the inner face region.
The right illustration shows the position of the 16 largest
wavelets, after optimization.

The obtained continuous face representation has sev-
eral advantages: it provides generalization depending on
the number of used wavelets; it is invariant to some degree
to affine deformations of the face image, as we will see in
the next section; and since the odd-Gabor Wavelets are DC-
free, they are invariant to some degree to homogeneous il-
lumination changes.

(%)

5 Repositioning a Gabor Wavelet Network

In the previous section we have shown how a continuous
wavelet representation for a face template is obtained based



Figure 4 - Face template representation.

on a Gabor wavelet network. Now, we will see how this
representation can be affinely repositioned in a new face
image so that its wavelets are registered on the same fa-
cial features as in the original image. This process is called
GWN repositioning.

For instance, consider the face template shown in fig-
ure 5 (top left) and let G be its optimized GWN. Now, con-
sider this face image in a different pose as shown in fig-
ure 5 (bottom left). In the repositioning process, the set
of wavelets of G are positioned correctly on the same fa-
cial facial features in the distorted image. It is important
to emphasize that the GWN repositioning may determine
the parameters (translation, scale, rotation and shearing) of
any affine deformation applied to the original image. The
right illustrations of figure 5 show the position of the 16
largest wavelets of G in each image, whereas the middle il-
lustrations show the original and repositioned discrete face
template representation (GWT), which was obtained with
52 odd-Gabor wavelet functions.

The repositioning of a GWN in a new image, i.e., the
determination of the correct affine parameters, is established
by using a superwavelet [14]. Let ¥ = (¢, ...
(wy, ..., wnr)bea GWN. A Gabor superwavelet ¥, (GSW)
may be defined as a linear combination of the wavelets ¢y,
such that

Un(x) = Z Witn, (SR(x — ¢)) (6)

where the parameters of vector n of the GSW ¥ define the
dilation matrix S, the rotation matrix R and the translation
vector ¢ with:

sz O
5 = ( 0 sy >’

cosf —sinb
R < sinf  cosf )’
c = (cwycy)T

Thus, a Gabor superwavelet U,, is again a wavelet that
has the typical wavelet parameters dilation s, s, transla-
tion ¢;, ¢, and rotation 8. So, the GSW ¥,, may be handled
in the same way as we handled each single Gabor wavelet in

"‘ZJIIM)!w =
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the previous section. For a given new image g, we may arbi-
trarily deform the superwavelet by optimizing its parameter
vector n according to the energy function below:

N

It is important to note that the parameters of a wavelet
include only translation, dilation and rotation. Even so, we
may include shearing and thus allow any affine deformation
of GSW ¥,,. For this, we add the parameter s;, to vector
n and rewrite the scaling matrix:

Sz
&
In order to minimize the energy function and to deter-
mine the optimal parameter vector n, we may use the same
Levenberg-Marquard algorithm as in the previous section.
In general, the initialization that must be supplied to the
gradient descent method may be within the range of ap-
proximately £10pz in position, £20% in scale and +10°
in orientation.

It is interesting to note that a wavelet representation
with a small number of wavelets may work well in different
individuals. For instance, the optimized GWN for the face
template showed in figure 4 may be repositioned in other in-
dividuals, since only 52 wavelets are used, providing gen-
eralization. Figure 6 illustrates this property, showing the
16 largest wavelets repositioned in other person.

E = min ||g - a|l3

Szy
Sy

S

6 Tracking of Facial Features

The GWN repositioning described in the previous section
may be applied to an image sequence, allowing affine face
tracking. We consider the face as a planar object that is
viewed under ortographic projection.

Thus, for each frame J; at time step ¢, the Gabor super-
wavelet ¥,,, is optimized according to the energy function:

E =min||J; — ¥p,||3 (8)

The parameter vector n;_; is used as initial value for
optimization in the frame J;. As image changes are small
from frame to frame, the optimization process converges



Figure 5 - GWN repositioning.

quickly. Initial values for ng in the first frame are choosen
by hand, but it could be derived from a color blob informa-
tion.

In order to track facial features, the user manually se-
lects, in the first frame, the pupils, center of nose and center
of mouth. The face region must also be indicated, since
this information is necessary to the Gabor wavelet network
initialization.

After this initialization process, the wavelet represen-
tation for the face template is obtained by using a GWN.
This representation is then affinely repositioned in the next
frames, as described above. Facial feature tracking is then
performed by applying, in each frame, the correct affine
transformation to the selected points. The parameters of
the affine transformation are obtained by means of the su-
perwavelet parameter vector (g, Sy, Szy, €z, Cy, §) in each
frame.

Thus, this facial feature tracking approach considers
the overall geometry of the face and, therefore, it is robust to
facial feature deformations such as eye blinking and smile.
In other words, the method does not require the condition
of a high inter frame correlation around the feature areas as
it is required in template matching.

Instead of tracking feature points, we may choose to
track facial areas such as eyes, nose and mouth. For this, a
rectangle is drawn around each feature point selected by the
user in the first frame. The size of each rectangle is deter-
mined according to the specific facial feature and face re-
gion size. In the following frames, the rectangle is affinely
deformated according to the superwavelet parameters. This
tracking process may be useful for recognition from video

sequences, since facial features are segmented in each frame.

It is worth saying that the GWN technique has recently
been used to perform face tracking, face recognition and
pose estimation. Our facial feature tracker is a contribution
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over face tracking, in the sense that it may be a good al-
ternative to most facial feature tracking systems, which are
either not robust or computationally expensive.

7 Experimental Results

Facial feature tracking was tested in different video sequen-
ces and the obtained results confirmed the robustness of the
method. Figure 7 illustrates 3 frames of a test image se-
quence during tracking. Other examples can be seen in
http://www.ime.usp.br/rferis. It is important to note that
each wavelet of the GSW has to be evaluated during the
repositioning process. Then, using less wavelets results in
a respective speedup.

We are still verifying the performance of the system so
that future work will cover quantitative experimental results
(related to efficiency, invariance properties, etc.) as well as
comparison with other systems.

Figure 6 - Repositioning in different individuals.



Figure 7 - Facial feature tracking.

8 Conclusions

This paper described a method for facial feature tracking
using Gabor Wavelet Networks. The method is based on
a continuous wavelet representation of a discrete face tem-

plate, which is invariant to some degree to illumination changes

and affine deformations of the face image. This representa-
tion may be specific or generic, depending on the number
of used wavelets.

Facial feature tracking was achieved by repositioning
the wavelet representation in each frame. Since the overall
geometry of the face is considered, the method is robust to
facial feature deformations such as eye blinking and smile.

As future work, we intend to use skin-color and Gabor
wavelet networks to perform automatic detection of faces
and facial features.
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