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Abstract. This paper presents a model describing Intelligent Information present in the Virtual Environment, as
well as the Camera Control. We are interested in modeling Intelligent Virtual Environments, integrated with our
Intelligent Camera control in order to provide information to be used in behavioural simulations. Our main goal
is to be able to populate Virtual Environments with virtual agents endowed with different Levels of Autonomomy:
from guided to autonomous.

1 Introduction

Various researches on behavioural modeling have mainly
focused on several aspects of virtual human control and au-
tonomy. This paper presents a model describing Intelligent
Information, required in order to perform behavioural sim-
ulations, outside the virtual agents. In our case, we are in-
terested in modeling Intelligent Virtual Environments (IVE)
integrated with our Intelligent Camera control (IC) in order
to provide information to be used in behavioural simula-
tions. Our main goal is to be able to produce behavioural
simulations in Virtual Environments using virtual agents
endowed with different Levels of Autonomy (LOA): from
low to high. Table.1 shows the classification we used in this
work [21].

Table 1: Characteristics of different agents’ control:
Guided agents deal with LOA and autonomous agents with
High LOA.

In our model, IVEs are modeled including geometric
and semantic information. Geometric information is related
to locations of places in the IVE, paths to go to specific lo-
cations, regions to walk, objects to avoid, etc. Semantic in-
formation deals with behavioural aspects of the spaces: spe-

cific actions or movements to be applied, emotional states
to be assumed, information related to the characteristics of
the space (like comfortable, beautiful, etc). Afterwards, the
autonomous agents are able to evolve in the IVE using only
the information found in the space which can be used in the
decision process.

Concerning the visualization of complex simulations
(with multiple agents in complex environments), sometimes
it is not possible to cover the events we are interested in
only by using an interactive camera, because there are many
agents doing different things in different places of the envi-
ronment, simultaneously. That is the main reason why we
proposed the IC module in our simulations.

The goal of the IC module is to find the events that
the user wants to monitor during the simulation. The IC
input is a script file in which is possible to write the events
that the camera has to detect during the simulation. Then,
the camera can locate spatial or temporal events which are
triggered: the application of specific tasks by the agents, the
states of an agent, the location of an agent, etc.

The main idea of this work is to distribute the infor-
mation and ”intelligence”, which are needed to simulate
and visualize virtual agents, among the Virtual Environ-
ment (VE) and the camera control. In this way, the sim-
ulation as well as the visualization can be facilitated from
the user point of view.

In next sections we discuss related works. In section
3 we present our model as well as the system architecture
of our framework including IVE, IC, Simulators and Visu-
alizers. In sections 4 and 5 we discuss more details about
the IVE and IC modules. Section 6 draws the results, and
section 7 presents some conclusions.



2 Related Works

Many works have presented different ways for controlling
the virtual humans in order to improve their ability to evolve
in an autonomous way. Several authors agree with the con-
cept of autonomous or ”intelligent” agent requirements: au-
tonomous behaviour, action, perception, memory, reason-
ing, learning and self-control [4, 5, 20, 34].Also, several
methods have been developed in order to model autonomous
agents: L-systems [17, 23, 28], vision systems [18, 26];
rule-based systems [14]; learning methods [27, 30], evo-
lution [17], etc.

Becheiraz [3] presented a model of emotion to repre-
sent the behaviour of autonomous agents. Hyvrinen and
Honkela [15] presented a mathematical model to describe
emotional disorders in autonomous agents. Ashida [1] cre-
ated agent behaviours through statistical analysis of obser-
vation data.

Specifically concerning VE, some authors have dis-
cussed methods for building informed virtual scenes fo-
cused on urban context [8, 10, 12, 31, 32]. Donikian [9]
have studied the animation and simulation of autonomous
vehicles in urban environments. Farenc [13] described a
database model in a framework to simulate virtual humans.

Musse [22] proposed ViCrowd: a model to describe
crowd behaviours allowing the virtual agents to interact
among them as well as with the VE. ViCrowd’s goal is to
simulate groups of autonomous agents endowed with dif-
ferent levels of autonomy. Ulicny [33] presented a model
to provide virtual reality training in emergency situations.

Marchand [19] presented a general framework that al-
lows the automatic control of a camera in a dynamic envi-
ronment based on the image-based control or visual servo-
ing approach. It consists in positioning a camera according
to the information perceived in the image, to be ready to
automatically respond to modifications of the environment.

Drucker and Zeltzer [11] describe a framework to con-
trol an Intelligent Camera in a 3D Virtual Environment, us-
ing a virtual museum as prototype. The Camera control is
based on an analysis of what tasks are to be required in a
specific environment.

This paper presents the IVE and IC modules used in
order to provide behavioural simulation and visualization.
The main idea of this work is to allow very simple agents
to be ”convincingly” animated in large and complex virtual
environments. Next sections show information about our
work.

3 A Framework to Simulate Virtual Agents

The goal of this framework is to manage information from
any VE (IVE module), to provide a convenient visualiza-
tion in order to verify information about the simulations
(IC module) and to visualize virtual humans in different

levels of detail (LOD’s). The visualizers we developed are
Caterva, RTKrowd and POVo [2]. Figure 1 shows the sys-
tem architecture including the three behavioural modules:
IVE, IC and AgentSim which is responsible by the agents
control. The integration among the modules is made using
Python [25], consequently all modules are independent of
each other.

Figure 1: System Architecture. Showing how is the inte-
gration among the modules.

The user can edit the semantic information of the VE
using IVE Editor (figure 1 - A) as well as to inform the
events that the IC module should find during the simulation
(figure 1 - C).

The IC should have information from IVE (PLACE
position) and AgentSim (agent position) in order to check
the triggered events. Once having this information the IC
is able to discover if events are occurring. Then, the IC
changes camera’s parameters and send them to the visu-
alizers. Further details about the IC, IVE and AgentSim
Modules are presented in the next sections.

Concerning the visualizers, Caterva is a simple viewer
based on OpenGL based viewer designed to display simu-
lations with a very large number of agents in real-time. It is
limited to receive and display the position, orientation and
color of each agent (Figure 2).

RTKrowd is a more complex viewer, based on RTK
Motion (Softimage) [29], capable of visualizing more com-
plex models as well as animating structures. In addition, it
is not limited to display only the agents’ position and orien-
tation: RTKrowd’s actors are capable to perform keyframed
animations. This viewer is also targeted to real-time simu-
lations (Figure 3).



Figure 2: Caterva Viewer.

Figure 3: RTKrowd Viewer.

POVo is not a real-time viewer. It writes simulation
data to files that can be rendered with the POV-Ray ray-
tracer [24]. Furthermore, it is possible to create realistic
images and videos from simulations (Figure 4).

Figure 4: POVo Viewer.

4 Intelligent Virtual Environment

The goal of the Intelligent Virtual Environment (IVE) mod-
ule is to provide information from the VE in order to be
used in behavioral simulations of virtual agents. Using
EnvEditor, it is possible to define geometric and semantic

information from the VE, which is saved in a VE Database
(in XML format). Afterwards, the virtual agents are able to
use the information in order to evolve in the IVE.

4.1 EnvEditor

EnvEditor follows the approach discussed in some recent
works on the domain [9, 12, 16] in order to remove part of
the complexity regarding some complex tasks processed by
the agent and to transfer this information to the VE. As a
consequence, a virtual agent can ”ask” to the IVE the posi-
tion of a specific place, the best way to go to a position, the
semantic of a place or a path, or other needed information
to provide the agents’ evolution in the virtual environment.

The following information can be found in our IVE
and informed to the agents during the simulation (further
information about these items are described in the next sec-
tions).

• Interest Points (IPs) information (IPs are physical po-
sitions in the VE where the agents can go).

• IPs connection forming graphs that represent the pos-
sible paths to be applied by the agents.

• Visibility graphs generation means the automatic gen-
eration of paths to link two or more IPs.

• Criteria specification associated to the paths that could
be used by the agents during the simulation.

• FSM (Finite State Machine) specification associated
to the space (paths or specific places) containing tasks
information (action, motion, state changes),

All this information is saved in XML format database.
An example is shown in the annex.

4.1.1 Interest Points (IPs)

An IP is a geometric location in space that defines an inter-
est point for the agent, that is, a point where the agent can
pass [22].

Each IP is surrounded by a set of points that form a
limit region around the IP. This region is used to distribute
the agents in the case of multiple agents simulation. These
region points can be connected among themselves, forming
access regions between one IP and other (Figure 5).



Figure 5: The path are represented by the lines (graph con-
nections), the IPs are represented by the points in the center
of the dark regions. The points around the dark regions rep-
resent the IP limit region.

Moreover, IPs and Places are semantically different.
While one IP is only an intermediate point, for instance a
corner, where the agent has to pass in order to cross the
street, a Place is an interest point where the agent would
like to go, for example the entrance to a restaurant.

4.1.2 Graph Paths

The paths are formed by the connection of two IPs (or places).
Once there is a path between two IPs, an agent is able to
apply this path. Only existent paths in the database can be
understood by the agents. The paths can be automatically
generated using visibility graph or by the user.

The visibility graph is generated in three steps: i) the
3D model of the environment is transformed into a 2D plane;
ii) the polygon vertices are linked with intersections be-
tween them and a new polygon is calculated using a convex
hull algorithm [6]; iii) The visibility graph is generated.

In order to generate the visibility graph we used the
dijkstra algorithm [7] (Figure 6). The boxes represent ob-
stacles ( buildings, for example), and the lines represent the
graphs connexion.

4.1.3 Criterias

The criteria are attributes that can be associated to paths,
places or IPs. For each of them it is possible to define a dif-
ferent criteria, for instance, specify a sunny path, a crowded
place, a dangerous or dark path. Since there are many paths
and places in the database, the agent can use the criteria
information in order to generate its path planning.

The criteria list can be specified by the user utilizing
the EnvEditor. Each criteria is defined by a keyword, an
identifier, that can be used by the agents in order to make
decisions. For instance in Figure 7 we can see the list of
keywords which represent the spaces criteria.

Figure 6: The environment visibility graph.

Figure 7: The criteria list of the path.

4.1.4 State Machines

The FSM (Finite State Machines) can be defined, using
EnvEditor, in order to specify tasks and states changes which
are associated to paths, places or IPs of IVEs. For example,
specify an action (play a keyframe animation), change the
emotional state of an agent in a certain place, etc.

Moreover, parameters can be associated to the FSM,
being informed by the user and interpreted by the agents.
Figure 8 shows the FSM specification interface. There are
three possibilities of FSM information:

• Action, the agent applies a specific action, for example
clapping (executing a pre-calculated animation);

• Movement, the agent applies a specific motion, for in-
stance go to a determined place;

• State, the agent changes its emotional state.

Figure 8: The interface of FSM.



4.2 AgentSim

This module was developed in order to simulate very simple
agents evolving in IVEs. The agents in AgentSim are not
able to take decisions, so they behave exactly as informed
by the IVE. Our idea is to integrate with very simple as well
as sophisticated agents. In the first case the agent just does
what the environment says, in the latest, the agent decides
which information coming from the environment is going
to be used and in which manner.

The integration between the modules (IVE, IC and
AgentSim) is made using Python language. In a script the
user can call Python functions to manage the agent and ask
information from other modules.

EnvLib (library responsible by IVE) offers a set of
functions that allow access to the XML database. For exam-
ple: GetPathFromPosthose parameters are: current agent
position (x,y,z) and PLACE (that means a specific location
in the database where the agent should go). This function
returns a list of positions to be reached by the agent in order
to arrive at the final destination (PLACE).

AgentSim provides creation, manipulation and visual-
ization of virtual agents. For example:CreateAgentwhich
parameters are agent identification, initial emotional state
and start position.

In a script, we call functions from each module appro-
priately, loading the generated information by the EnvEdi-
tor, choosing the paths, creating the agents, and informing
the agents to follow a determined path. The example below
shows a simulation script including one agent:

Loading the intelligent environment module
import Env

Loading the AgentSim module
import agent

Loading the data base with the virtual environment semantic
Env.LoadEnv(”city.xml”)

Getting the list of IPS to go to the bank from a specific posi-
tion (0,0,0)
l =Env.GetPathsFromPos(0.0, 0.0,0.0, ”bank”)

Getting the paths semantics that are into path ”l”
ls=Env.GetFSMFromPath(l)

Starting the AgentSim module
agent.init()

Defining the geometric model of the city
agent.setCityModel(”city.obj”)

Creating an agent called Bob
agent.create(”bob”)

Calling agent control
agent.perform()

Starting the graphical visualization
agent.visualize()

Sending a task of type ”GO” to the agent called ”Bob”, ap-
plying the paths ”l” with the specified semantic defined in ”ls”
agent.go(”bob”, l, ls)

When the script is loaded by the python interpreter,
it starts the simulation, then the agent start to walk to the
PLACE. Figure 9 shows an agent walking in the city.

Figure 9: Agent walking in the city.

5 Intelligent Camera

When we deal with complex simulations containing many
agents in a large environment, it can be difficult to visu-
alize all the events that were triggered, because more than
one event can happen at the same time. The IC has the
main function to provide an easy visualization of the events
that occur during the simulation. IC automatically adjusts
the viewing parameters in order to have proper view of the
event.

The IC behaviour is based on events which trigger as a
function of IVE and Agents information. A script contain-
ing events definition has to be informed to IC Controller in
order to deal with any event and react in the appropriated
manner.

As can be see in table 2, the entity can be a specified
agent (informed identifier) or not. For instanceagent<04>
andagentwhich triggers for any agent in simulation 2. The
possible tasks can be NEAR, FAR, STATUS, APPLYING
as presented in Figure (10). PLACE and STATUS are re-
lated to position in the IVE and emotional state of agents,
respectively.

Entity Task Entity —Place— State
agent near agent<03>
agent status happy

agent<04> far agent<01>
agent near library
agent applying restaurant-path

Table 2: IC Script Example.



Figure 10: The camera script format.

In order to check the triggered events, the IC camera
asks information from the IVE and the AgentSim modules.
For instance, if the event is: ”Agent Bob NEAR to School”.
IC modules needs to know the location of Bob and School
in order to decide whether the distance is near or not. Figure
11 shows IC automatically localizing the agent.

Figure 11: The IC localizing the agent.

In order to provide a proper view of the triggered events,
the IC module describes the behavior to be adopted: fol-
lowing the entity or standing still, depending on the agents
motion.

6 Results

For this case study, we simulated agents endowed with very
little intelligence. In this case, the agents change their emo-
tional states based on the semantic information associated

to the environment, for instance one agent can become ”sad”
when it is near to a cemetery, or ”happy” when it passes in
front of a party.

The example below shows the following situation: we
load a 3D city model that contains IPs and PLACE (park)
specification. The IPs and PLACES are connected using
the visibility graph. Then, AgentSim module runs a Python
script in order to start the simulation. The script informa-
tion is presented as follows (we avoided the comments in
some lines because they were explained in Section 5.1):

import Env
import agent
import IC
Env.Init(””)
Env.LoadEnv(”city.xml”)
l =Env.GetPathsFromPos(0.0, 0.0,0.0, ”park”)
ls=Env.GetFSMFromPath(l)
Load the IC script file
IC.File(”script.cam”)
Ask to AgentSim module the agents position
IC.Reg(agent.query)
Ask to Env module the places position
IC.RegEnv(Env.query)
send to Env the camera position
IC.RegCam(agent.lookAt)
agent.init()
agent.setCityModel(”city.obj”)
agent.create(”bob”)
agent.setPos(”bob”, 100.0, 0.0,140.0)
agent.perform()
agent.visualize()
agent.go(”bob”, l, ls)
It starts the camera perform
IC.per()

It is possible to make a simulation with many agents,
as they are very unsophisticated ones. We simulated seven
agents in a frame rate of 25 FPS, using a desktop Pentium
III 800 mhz with 128 MB of memory. In this case, each
agent starts in a different place and has different paths, e.g.
one is going to the bank, two are going to the restaurant, one
is going to the park, two are going to the school and one is
going to the administration building. The models used have
been designed using 3DS.

Further information and a video (AVI format) of the
simulation is available for viewing at
http://inf.unisinos.br/cglab/equipe/flaviapf/index.html

7 Conclusions

This paper discusses the possibility to provide information
from VE integrated with a module to help in the production



and visualization of virtual human simulations. Four mod-
ules were presented in this framework (IC, IVE, AgentSim
and Visualizers) and discussed in this paper.

The main goal of this work is to demonstrate that not
sophisticated virtual humans can behave in a convincing
way only by interacting with IVEs. Figure.12 shows three
available configurations of simulation concerning different
levels of autonomy (LOA) for virtual humans (VH) as well
as the level of informed information (LOII) contained in the
VEs. According to Figure 12 (c), the agents should have a
high level of autonomy in order to be able to evolve in non-
Intelligent VEs (Low LOII). On the other hand, IVEs can be
easily integrated with agents endowed with different levels
of autonomy (Figure 12 (a) and (b)).

Figure 12: (a) High LOA for VH and High LOII for VE;
(b) Low LOA for High LOII; (c) High LOA for Low LOII.

In despite this discussion, it is hard to say the exact
LOA for VH or LOII for VE that allow to obtain convinc-
ing behavioural simulations. It means which level of LOII
and LOA are minimum acceptable or really needed for each
type of application. As future work we are interested on in-
tegrating this framework with other VH simulators, where
the agents can be more sophisticated. Futhermore, we are
studying some metrics to be observed in order to evaluate
the believability of simulations.
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