E-Shell Rendering

LEONARDO M. ROCHA AND ALEXANDRE X. FALCAO

Institute of Computing - University of Campinas
Av. Albert Einstein, 1251, CEP 13084-851, Campinas, SP, Brasil.
Phone: 55-19-37885881, FAX: 55-19-37885847 {leonardo.rocha, afalcao}@ic.unicamp.br.

Abstract. In Medical Imaging, shell rendering is considered one of the most efficient and effective
methods for volume visualization. It requires a compact data structure of voxels and uses the voxel
splatting technique for surface and volume rendering. In order to avoid holes in the rendition, the size
of the voxels are usually made bigger than the size of the pixels for voxel splatting. In such a case, we
have identified a conceptual problem in shell rendering which affects the correctness and quality of the
renditions. In this paper, we discuss this problem and propose a solution, which improves image quality
without affecting the speed of the method. The new approach is called E-Shell Rendering (extended-shell
rendering). It requires an extension of the shell data structure and a variant of the original algorithm.
We illustrate and discuss the results with examples created by surface and volume rendering.

1 Introduction

Volume visualization consists of three important steps
- classification, representation, and rendering. Classi-
fication is the process of assigning opacities to objects
proportional to the degree of interest in these objects
for visualization. The most difficult challenge in classi-
fication is to identify the voxels that belong to distinct
objects, which is, in essence, a segmentation problem.
Representation consists of defining a geometric model
for the classified objects and a data structure to store
the parameters of the model together with a set of at-
tributes for visualization. It has a direct impact on the
efficiency of the visualization algorithms. Rendering is
the process of simulation of light propagation within
the volume and determining the light that reaches the
view point to obtain different views of the selected ob-
jects.

Approaches to volume visualization may be di-
vided according to the classification process in two
groups - surface rendering and volume rendering. In
surface rendering, the objects are classified either
opaque or transparent [1, 2, 3, 4]. As a consequence,
a geometrical model of their surface can be created for
visualization, and the methods may be further divided
based on two classes of geometric models - polygonal
and digital. Digital methods represent the surface of
the objects as a set of primitives - voxel and voxel faces
- that are directly associated with the discrete coordi-
nate system of the volumetric data [3, 4]. In polygonal
methods, a set of polygons - most commonly triangles
- are used to represent the surface [1, 2]. In volume
rendering, the classification process is fuzzy where the
objects are considered to have a continuous degree of

opacity from transparent to opaque [4, 5, 6, 7]. Their
geometric model is digital (a set of voxels), and in the
case of binary classification, volume rendering is equiv-
alent to digital surface rendering, which makes it an
interesting, simple, and flexible approach for volume
visualization.

In spite of the inherent difficulties in the clas-
sification process, visualization at interactive speeds
is mandatory. This is often a challenge, because
the amount of information for visualization often re-
quires extensive storage and time-intensive computa-
tions. Researchers have proposed specialized hard-
ware [7, 8] and algorithms that trade off image quality
for speed [9, 10] in order to overcome the speed prob-
lem. While the development of specialized hardware
is relevant to advance the state of knowledge in com-
puting, addressing the problem algorithmically and via
software is preferable from the practical viewpoint of
availability and portability of implementations. More-
over, considering that more than 85% of the voxels are
usually classified as transparent, the most interesting
approaches to address the speed problem use spatial
data structures that encode the presence and/or ab-
sence of high-opacity voxels to eliminate computation
in transparent regions of the volume [4, 5, 6, 7, 11].
Among these approaches, one of the most successful
techniques has been shell rendering [4].

Shell rendering uses a compact data structure,
called shell, based on a list of non-transparent voxels
and a 2D array of pointers to that list. It provides sur-
face and volume rendering with the same data struc-
ture. The voxels in the shell are usually considered
bigger than the pixels in the image for voxel splatting,

in order to avoid holes in the rendition. Surface shell
rendering has proved to be from 18 to 31 times faster
on a 300MHz Pentium PC than software-based and
hardware-based polygonal rendering methods, includ-
ing those based on very expensive machines such as
the Silicon Graphics Reality Engine II [12]. Shell ren-
dering has also been extended to provide digital per-
spective [13] and to render polygonal geometric models
within the same framework [14].

In this paper, we point out and discuss a concep-
tual problem of shell rendering when the size of the
voxels are made bigger than the size of the pixels for
voxel splatting. We propose an extension of the com-
pact shell data structure and a variant of the original
algorithm to solve that problem. The new approach
is called E-Shell Rendering (extended-shell rendering).
We show that e-shell rendering improves the image
quality without affecting the speed of the method.

The paper is organized as follows. Section 2 de-
scribes the methods and points out their major dif-
ferences in the computational aspects. The results are
illustrated and discussed with examples created by sur-
face and volume rendering in Section 3, and the con-
clusions are stated in Section 4.

2 Methods

A sceneis a pair (V, f) consisting of a finite rectangular
array V of wvozels (points in Z3), and a mapping f
that assigns to each voxel v in V' an intensity value
f(v) in some arbitrary value space. A scene is usually
stored as a finite 3D retangular array of voxels, where
each voxel represents a small cuboid in 3. Without
loss of generality, we will assume that all voxels are of
identical size and so each voxel can be identified by a
triple (z,y,z) in Z2 of the coordinates of its center.
When it is not the case, this form can be achieved by
interpolation [15].

An object in V is a set O of voxels forming one
or more connected components in Z3. We are inter-
ested in visualizing the subset B of voxels in O that
belong to the vicinity of the object’s boundary. Note
that segmentation is the process of identifying such a
subset. The aim of classification is to transform (V, f)
into another scene (B, 0) by assigning an opacity value
o(v) lying in the interval [0, 1] to each voxel v in B.

There are many methods of voxel classification [16,
17]. In this paper, we shall assume classification is al-
ready done by one of these approaches such that the
fuzzy /hard boundary is the same for both visualization
techniques. Shell rendering [4, 13] support orthogonal
and perspective projection, but we will concentrate our
analysis on orthogonal projection.

2.1 Shell rendering

Given a scene, shell rendering uses a compact data
structure, called shell, to encode only non-transparent
voxels of the bondary. Each voxel is represented by an
opacity value in (0, 1], its z coordinate in the scene and
some visualization and manipulation attributes. The
voxels are stored in a list V, starting from (z,y,2) =
(0,0,0), in a x-by-z, y-by-y, and z-by-z order of the
voxels in the scene. A 2D pointer array P, indicates
the first voxel in the list V, associated with a particular
coordinate (y,z) in the scene. Figure 1 illustrates a
simple example of a shell for a scene of size 3 x 3 x 3
voxels. Figure 1a shows the scene where each voxel is
numbered from 1 to 27, following the z-by-z, y-by-y,
and z-by-z order. The voxels of the shell (i.e. the non-
transparent voxels) are only those numbered from 1 to
9. Figure 1b shows the list V,, and the pointer array
P, for this example.

Fast orthogonal voxel projection is possible from
front-to-back by just sweeping the pointer array and
the list of voxels in eight different ways. Shell rendering
exploits the fact that in orthogonal projection, there is
no preference of order among x, y, and z. Thus, since
the voxels in the list are encoded along x, it is faster to
project them onto the viewing plane by going along x
before going along y and z. Figure 4 illustrates a scene
where each octant has an identification number from 1
to 8. The indexing order will depend on what octant
is the viewing direction. Table 1 shows the front-to-
back indexing order for each octant in Figure 4, where
the notation x~ — zT, y~ — yT, 2= — 27T indicates
that the voxels should be indexed from the lowest to
the highest coordinate along each axis, z, y, and z,
respectively.

A well known problem of visualization methods
based on voxel projection is the apparency of holes in
the rendered image for certain viewing directions (see
Figure 2a). Post-processing algorithms may be used
to “close that holes”, but their success is not guaran-
teed and the resulting image quality may not be good.
A more effective and efficient solution is to make the
size of the voxels bigger than the size of the pixels.
Figure 2b shows the result of voxel splatting for the
same viewing direction shown in Figure 2a. In such a
case we have identified a conceptual problem in shell
rendering, which affects the quality of the renditions.

Shell rendering exploits the property of non-
preference order among z, y, and z for fron-to-back
orthogonal projection to increase efficiency by index-
ing the axis z before y and z (see Table 1). Unfor-
tunately, this property is no longer valid when splat-
ting voxels bigger than pixels. Figure 3 illustrates an
example where the observer is in octant 6, the voxel

Octant Voxel Indexing Order

1 - ozt yT oyt 2T o2t
zt oz ,y syt 2 o2t
x- s xt yt sy, 2T =2t
gt >z, yt >y, 27 =27
- szt yT syt 2t o 2T
st o r,y” syt 2t 5 27
- szt yt sy, 2t o 2T
gt s, yt sy, 2T o 2T

Q[D] U =W N

Table 1: This table shows the voxel indexing order
in shell rendering for each octant in Figure 4, where
the notation z~ — zT, y~ — yT, 2= — 27T indicates
that the voxels should be indexed from the lowest to
the highest coordinate along each axis, z, y, and z,
respectively, for a front-to-back projection.

indexing order is as indicated in Table 1, the axis z
is perpendicular to the viewing plane, and each voxel
paints 3 x 3 pixels. Note that farther and hidden voxels
are painted in place of closer and non-hidden voxels. In
other words, shell rendering does not perform hidden-
surface removal correctly, and the same problem may
also occur in other visualization methods which exploit
the same property. In the case of surface rendering, the
problem still has a solution if we use the z-buffer for
depth-sorting, but unfortunately it remains unsolved
for volume rendering.

The effective solution for the problem requires the
determination of the principal viewing azis - the axis
most perpendicular to the viewing plane among the
axes x, ¢, and z. That is, front-to-back voxel splatting
requires the principal axis to be indexed at last, as in-
dicated in Tables 2a-c. However, this creates another
problem in shell rendering, because its efficiency is only
guaranteed when the axis z is indexed before the oth-
ers. We present an effective solution to the problem in
the next section.

2.2 E-shell rendering

Suppose the voxel indexing order in shell rendering is
as indicated in Table 2a (when the principal axis is z).
Note that, for each x coordinate in the scene, we need
a binary search in the list V, for each (y, z) coordinate
in the pointer array P,, to verify the existence of a
voxel with the (z,y, z) coordinate in the shell. In the
worst case, the number of binary searches is the size of
the scene, which is usually 85% more than the size of
the shell, making shell rendering impractical.

We solve the problem by adding to the original
shell data structure a second 2D pointer array P,, and

a second list V,, of voxels (see example in Figure 1c). By
indexing the scene, starting from (z,y, 2) = (0,0,0), in
a y-by-y, z-by-z, and z-by-z order, we store in Vj the
y coordinate of each voxel of the shell and a pointer
to its corresponding position in the first list V. Sim-
ilarly, each pointer in P,, indicates the first voxel in
V, associated with a particular (z, z) coordinate in the
scene. Note that, the other attributes for visualization
and manipulation are stored only in the first list V.
Thus, we use P, and V,, whenever the principal axis
is . This extended shell and the new algorithm which
takes into account the voxel indexing order, as indi-
cated in Tables 2a-c, form the proposed visualization
method called E-Shell Rendering.

Observe that, the e-shell requires more memory
space than the original shell, but this is acceptable
since the later is a very compact data structure. Note
also that, the speed of both methods is practically the
same. Therefore, we need only to compare them in
terms of image quality. This issue is addressed next.

3 Results

In practice, the conceptual mistake of shell rendering
is very difficult to be detected, because it depends on
the thickness of the shell and the voxel opacity values.
It is more evident when the voxel opacities are lower,
or even when they are higher, but there are abrupt
changes on the object’s surface.

Figure 5a shows an image created by volume shell
rendering with lower-opacity values. Note that hidden
voxels appear as dark stains on the object’s surface.
Figure 5b illustrates that this problem does not hap-
pen in volume e-shell rendering, where the same view
of the object with the same lower-opacity values is pre-
sented. Figure 6a illustrates the other situation when
voxels are opaque. In this case, we observe in surface
shell rendering a dark-and-bright pattern wherever oc-
curs abrupt changes on the object’s surface (i.e. the
manibular region and among the teeth). It looks like
aliasing, but it is not. As one can observe for the same
view of the opaque object presented in Figure 6b, the
pseudo-aliasing pattern does not appear in surface e-
shell rendering.

Figures Ta-d present other examples which show
that the image quality in e-shell rendering is superior
than the rendition quality of shell rendering.

4 Conclusions and discussion

We proposed an extension of the shell rendering tech-
nique for volume visualization, called E-Shell Render-
ing, and presented a comparative analysis of them in
terms of image quality. A conceptual mistake in shell

The principal axis is x

Octant Voxel indexing order

1 y =yt =2zt oot
Yy~ oyt o 2tat 5z
yt =y 2z o2zt 5ot
yT =y T,z w2ttt 5z
y~ oyttt 527z 5ot
y~ o ytzt sz at 52T
yT oy 2zt 92T 5ot
yT oy Tzt o2zt 5T

O[O U x| W N

The principal axis is y

Octant Voxel indexing order

1 x> xt T 52ty syt
gt sz 2" 22ty oyt
- s xt T o2t yt 5y
gt o r 2z 92t yt 5y
—satzt 527y »yt
zt sz 2tz y syt
- s xt ezt 52Tyt 5y
zt sz 2zt s 2yt Sy

QO || U x| W N
Hl

The principal axis is 2

Octant Voxel indexing order

1 - s xtyT syt o2t
zt oy oyt o2t
- s xtyt 5yt o2t
gt sz gyt >y 27 =2t
r —axty —ytet o2
zt sy syttt =527
z” =Tyt =y 2zt =27
zt syt oy 2t 527

O[3 O x| W D

Table 2: This table shows the voxel indexing order in
e-shell rendering for each octant in Figure 4, where the
principal axis determines an order of precedence among
z, y, and z, respectively. The notation z= — z7T,
y~ = yt, 2~ = 21 indicates that the voxels should
be indexed from the lowest to the highest coordinate
along each axis, z, y, and z, respectively, for a front-
to-back projection.

rendering was pointed out when voxels are made big-
ger than pixels for voxel splatting. We showed that
this mistake affects the correctness and quality of the
renditions. The results showed that e-shell rendering
corrects the problem and provides better image quality

than shell rendering.

We emphasize that the same conceptual problem
may happen in other visualization methods which use
voxel splatting, whenever the principal axis is not in-
dexed at the end. In particular, the solution presented
here for orthogonal projection is also valid for digital
perspective projection [13].

References

[1] W.E. Lorensen and H.E. Cline. Marching cubes:
A high resolution 3D surface construction algo-
rithm. Computer Graphics (In Proc. of ACM SIG-
GRAPH), 21(4):163-169, Jul 1987.

[2] M.J. Durst. Letters: Additional reference to
marching cubes. Computer Graphics (In Proc. of
ACM SIGGRAPH), 22(2):72-73, Apr 1988.

[3] I. Gargantini and H. Atkinson. Multiple-seed
3D connectivity filling for innacurate borders.
CVGIP: Graphical Models and Image Processing,
53(6):563-573, 1991.

[4] J.K. Udupa and D. Odhner. Shell rendering. IEEE
Computer Graphics and Applications, 13(6):58—
67, 1993.

[5] M. Levoy. Efficient ray tracing of volume data.
ACM Transactions on Graphics, 9(3):245-261,
1990.

[6] K.R. Subramanian and D.S. Fussell. Applying
space subdivision techniques to volume rendering.
In Proceedings of Visualization’90, pages 150-159,
San Francisco, CA, 1990.

[7] P. Lacroute. Fast volume rendering using a shear-
warp factorization of the viewing transformation.
PhD thesis, Dept. of Electrical Engineering and
Computer Science, Stanford University, Stanford,
CA, Sep 1995.

[8] M. Bentum. Interactive visualization of volume
data. PhD thesis, Dept. of Electrical Engeneering,
University of Twente, Enschede, The Netherlands,
Jun 1996.

[9] M. Levoy. Volume rendering by adaptive refine-
ment. The Visual Computer, 6(1):2-7, 1990.

[10] J. Danskin and P. Hanrahan. Fast algorithms
for volume ray tracing. In Proceedings of the
1992 Workshop on Volume Rendering, volume 19,
pages 91-98, 1992.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J.K. Zuiderveld, A.H.J. Koning, and M.A.
Viergever. Acceleration of ray-casting using 3d
distance transforms. In Proceedings of Visual-
ization in Biomedical Computing, pages 324-335,
Chapel Hill, North Caroline, Oct 1992.

G.J. Grevera, J.K. Udupa, and D. Odhner. An
order of magnitude faster isosurface rendering
in software on a PC than using dedicated, gen-
eral purpose rendering hardware. IEEE Trans-

actions on Visualization and Computer Graphics,
6(4):335-345, Oct-Dec 2000.

G.P. Carnielli, A.X. Falcdo, and J.K. Udupa. Fast
digital perspective shell rendering. In XIT Brazil-
ian Symposium on Computer Graphics and Image
Processing, pages 105-111, Campinas, SP, Brazil,
Oct 1999.

G.J. Grevera, J.K. Udupa, and D. Odhner. T-
shell rendering. In Proceedings of SPIE on Med-
ical Imaging: Visualization, Display, and Image-
Guided Procedures, volume 4319, pages 413-425,
Feb 2001.

J.K. Udupa. 3D visualization of images. Tech-
nical Report MIPG196, Medical Image Process-
ing Group, Department of Radiology, University
of Pennsylvania, Jun 1993.

R.A. Drebin, L. Carpenter, and P. Hanrahan. Vol-
ume rendering. Computer Graphics (In Proc. of
ACM SIGGRAPH), 22(4):65-74, Aug 1988.

D.H. Laidlaw, K.W. Fleischer, and A.H. Barr.
Classification of material mixtures in volume data
for visualization and modeling. Technical Report
CS-TR-94-07, California Institute of Technology
Computer Science Department, 1994.

a)
X
y)
1
4
7
b)
y
NI b :
nl yz |
| | |
| | |
} } |
| | |
| | |
| \\\ 1
| N |
| ~ |
1 | |
y y Y
102 (3]4]5]6] 7] 89|V,
O S N R N N
I ! I ! I ! I ! I
IR A R A
| N TS | o~ |
1 // \\/,’|\\\// \\ 1
PN	PSRN						
C)							
V.							
A A A y							
P————							
	L ______						
%							
V4
I:)XZ

Figure 1: (a) A scene of size 3x3x3 voxels where the
voxels are numbered from 1 to 27, following the z-by-
z, y-by-y, and z-by-z order, and only those numbered
from 1 to 9 are voxels of the shell. (b) The list V, and
the pointer array P,. which represent the shell. (c)
The list V,, and the pointer array P,, which extend
the original data structure presented in (b).

Figure 2: Surface shell rendering of a CT skull by splat-
ting (a) one voxel on to one pixel and (b) one voxel on
to 3 x 3 pixels.

Figure 3: Splatting of one-voxel onto 3 x 3 pixels when
the observer is in octant 6, x is perpendicular to the
viewing plane, and the voxel indexing order is as indi-
cated in Table 1.

3.-

Figure 4: A scene where each octant has an identifica-
tion number from 1 to 8.

Figure 5: Image renditions of a CT child skull with
voxel splatting. (a-b) Volume shell and e-shell rendi-
tions with lower-opacity values, respectively.

Figure 6: Image renditions of a CT child skull with
voxel splatting. (a-b) Surface shell and e-shell rendi-
tions, respectively.

Figure 7: (a-d) present other renditions which show that the image quality in e-shell rendering is superior than
the rendition quality of shell rendering.

