
Plausible Image Based Soft Shadows Using Occlusion Textures

Elmar Eisemann Xavier Décoret
ARTIS-GRAVIR/IMAG-INRIA∗

Elmar.Eisemann@inrialpes.fr Xavier.Decoret@inrialpes.fr

Abstract

This paper presents a novel image-based approach to
render plausible soft shadows for complex dynamic scenes
with rectangular light sources. The algorithm’s perfor-
mance is mostly independent of the scene complexity and
the source’s size. Occluders and receivers do not need to
be separated and no knowledge about the scene representa-
tion is required, making the method easy to use. The main
idea is to approximate the occlusion in the scene with pre-
filtered occlusion textures. The visibility of the light source
at a point in space is estimated by accumulating the occlu-
sion caused by each texture, using a novel formula based on
probabilities.

1 Introduction

Shadows are very important to estimate the spatial re-
lationships of objects and to convey a sense of realism.
For many years, computer graphics concentrated mostly on
point lights which create hard shadows, surfaces being ei-
ther lit or not. In the real world, most light sources are
not punctual and create soft shadows made of umbra and
penumbra regions. In the umbra no direct light arrives,
whereas in the penumbra the light source is only partially
occluded. The incoming light, or irradiance, at a small sur-
face is given by a double integral over the surface and the
light source, of a function involving energy, visibility and
orientation. Several approaches [3, 4, 5], have shown that
the important information for convincing shadows lies in
the visibility contribution. Orientation can be factored out
of the integral. The problem thus simplifies to the calcu-
lation of the light’s visible portion, which yet represents a
challenging task. This paper presents a novel way to esti-
mate this visibility function with the following properties:

• the resulting shadows are plausible, continuous and
smooth, and account for real penumbrae (not just ex-
tended umbrae);

∗ARTIS is a team of the GRAVIR/IMAG laboratory, a joint effort of
CNRS, INRIA, INPG and UJF

• the quality and speed of the method is independent of
the size of the light source and the penumbrae;

• the algorithm is almost independent of scene complex-
ity, does not require information about the scene and
integrates well with various rendering paradigms (ver-
tex shaders, point and image based rendering. . . );

• in particular, there is no need to distinguish shadow
casters from receivers.

Our approach is inspired by previous work [20, 26] and ex-
ploits current graphics hardware to obtain real-time perfor-
mance for highly complex scenes.

2 Previous work

Lots of research focused on shadows and an exhaustive
presentation is not possible here. We refer the reader to
[31, 18] for surveys.

Point light sources do not create penumbrae and repre-
sent a direct equivalence to point-point-visibility. This is
exploited by image based techniques such as shadow map-
ping [29]. Using images results in independence to the ac-
tual scene complexity which is interesting for complicated
objects. On the other hand, the discrete nature of images
leads to aliasing. Percentage closer filtering [25, 8, 28]. uses
several shadow map samples to smooth the jaggy boundary
of hard shadows. In [14], statistics are used to smooth the
aliasing, but can introduce light leaks.

Shadow volumes [10] give higher quality, but they are
potentially costly for complex scenes, like trees, where al-
most all edges is a silhouette. Shadow quads overdraw and
silhouette detection become too expensive.

In principle soft shadows could be created by evaluat-
ing several point lights. If sampling is too coarse, banding
occurs. Using too many samples yields expensive creation
and evaluation [28], therefore, approximate methods have
been proposed. Brabec and Seidel calculate maximum un-
occluded radii on a depth map to approximate soft shad-
ows [7]. In [21] , appropriate width values are precalculated
in a special map. Shadow maps have been used in [27] to



calculate, in a preprocess, a special deep shadow map for
a static light source, encoding occlusion for each point of
a static scene. Dynamic objects can be inserted but cannot
cast soft shadows. The somewhat opposite strategy was pre-
sented by Zhou et al. [34]; shadow information is faithfully
precalculated per object. These static elements can then be
used dynamically. Due to huge storage necessities, the re-
sult is compressed on basis functions which are evaluated at
run-time at each scene vertex, involving sorting. Agrawala
et al.[1] warp several depth images to obtain layered atten-
uation maps which can be evaluated quickly at run-time.
As the preprocess is quite involving, light source and scene
have to be considered static. A purely image based ap-
proach has been presented by Arvo et al. [2]. The camera
view is filtered to detect hard shadow boundaries. Flood
fill is used to create penumbrae based on depth map infor-
mation. This is not well supported by the current graph-
ics hardware. The cost depends heavily on the size of the
penumbra on the screen, which can be large depending on
viewpoint and light source. As inner penumbra creation is
an erosion, overlapping umbras lead to a complete disap-
pearance and temporal incoherence. Although not physi-
cally correct, their goal was to create plausible shadows.
We work in the same context. Recently Atty et al. [6] pre-
sented an approach based on a single depth map. Separating
occluder and receiver, depth map pixels replace the actual
occluder and are projected on the receiving ground. The
algorithm gives convincing results at high framerates but
involves CPU usage which limits texture resolution. Guen-
nebaud et al. [17] presented a related technique that elim-
inates most constraints but has linear run-time complexity
with respect to the source’s size.

Shadow volumes extensions for soft shadows have been
presented in [3, 4, 5]. These geometry-based wedges give
high quality shadows but rely on silhouette determina-
tion from the center of the source. Sampling artifacts are
avoided and light sources can be textured [4], but the ap-
proaches are unsuitable for highly complex models. The
combination of the contributions of different occluders is
done by additive accumulation. Hybrid approaches like [9]
encounter such problems too. Here supplementary prim-
itives are attached to silhouettes to describe the blocking
influence of the edge. It is closely related to [24] and re-
sults in alias free, not soft, shadows, just like [32]. In [20],
the scene is replaced by an MDI (Multiple depth image) ob-
tained on the CPU, and ray-tracing is performed against this
alternative representation. There are several similarities to
our method and we will have a more precise discussion in
section 4.

3 Our approach

As explained in introduction, we approximate the
shadow intensity at a point P for a rectangular light source
S in the presence of an occluder O by the integral:

I(P ) :=
∫
S

vP (S)dS (1)

where vP is the visibility function defined by:

vP : S ∈ S → 1 if [P, S] ∩ O = ∅ else 0 (2)

In other words, we count the number of rays from P to S
that are not blocked by O. The shadow intensity function
is three dimensional and generally very complex. In subse-
quent sections, we describe a GPU friendly approximation.

3.1 Single planar occluder

First we consider a single planar occluder parallel to the
light source. It is fully described by it supporting plane ΠO
and its characteristic function in that plane:

δ : ΠO �→ {0, 1}, Q → 1 if Q ∈ O else 0 (3)

Consider the frustum defined by a point P and the light, and
the region where it intersects the occluder plane. There is a
bijection between that region and light rays passing through
P . Therefore, the shadow intensity at P is the integral of 1−
δ over this region, normalized by the regions’s size (Fig. 1).
Because the light is rectangular and parallel to the occluder,

filter
P

Light source

Occl
uder

Figure 1. Shadow intensity as a filter.

this region is a rectangle whose size depends solely on the
distances of P to the light and occluder planes:

s(P ) :=
d(P,ΠO)
d(P,ΠS)

× size(S) (4)

The integral can be computed by filtering 1 − δ with a box
filter of size s(P ). Our approach is to encode 1 − δ as a
an occlusion texture and to process it , as described in next
section, such that a point P can be shaded by simply com-
puting s(P ) using eq. (4) and performing a lookup of the
appropriately filtered result.



3.2 Fast box filtering

To filter an occlusion texture with a rectangular ker-
nel, we tried three approaches: Mipmapping, NBuffers and
Summed Area Tables.

Mipmapping was introduced to reduce aliasing of mini-
fied textures[30]. It linearly interpolates between dyadically
downsampled versions of the texture. It is is widely sup-
ported by GPUs and was a natural candidate to filter oc-
cluder textures. In particular, rectangular kernels are sup-
ported with anisotropic filtering. Thanks to linear interpo-
lation, using mipmapping gives smoothly varying shadows
(Fi.2, top). However, it suffers from blocky artefacts that
become particularly noticeable when the scene is animated.
This is because the dyadic downsampling may combine ad-
jacent texels only at very high levels in the mipmap pyra-
mid. Therefore, a slight shift of the occlusion texture can
lead to large variations of the filtered function.

To alleviate this problem, Décoret introduced the
NBuffers [12] to allow prefiltering with continuously placed
kernels. We use them to compute the mean value of neigh-
boring pixels. Each level l holds, for each texel, the nor-
malized response of a box filter with a kernel size of 2l×2l.
Via linear interpolation, intermediate kernel sizes can be ap-
proximated. It still does not compute the exact filtered func-
tion, but it significantly reduces the blocky artifacts (Fig.2
bottom) in particular for dynamic scenes. The construction
of NBuffers is extremely fast. For a 256×256 texture, 8 lev-
els need to be created, each of resolution 256 × 256. Ap-
proximately 500M pixels are processed, each requiring ex-
actly 4 texture lookups. Modern graphic cards can perform
more than 50 times this amount of work at 30 fps.

Interestingly, the filtering by a rectangular kernel can be
exactly computed using Summed Area Tables (SAT) [11].
Unfortunately, although an efficient GPU implementation
has been recently proposed [19], this approach still suffers
from several limitations. First, 32 bit textures are required
or severe precision artifacts will appear1. Currently, lin-
ear interpolation for such textures is not natively supported
(this is why texels are noticeable on the close-up of Fig.2).
Moreover, creation and transfer of such textures increase
the bandwidth, slowing down the process. Speed is also im-
peded by the 4 texture lookups required to get the filter’s re-
sponse, when NBuffers require only one. Finally, contrary
to NBuffers, the normalisation by the kernel size cannot be
embedded and thus requires extra computations. However,
as expectable, the resulting quality is higher, but the im-
provement does not compensate the performance penalty.

We have implemented the three approaches. Figure 2
shows a qualitative and quantitative comparison. In our
opinion, NBuffers are currently the best tradeoff between

1Shifting the values, as suggested by the authors, is not useful in our
case, due to the bitmask nature of occluder textures

performance and quality. On future hardware though, SAT
may prove fast enough to become the preferred solution.
In particular, it uses a single texture which is more cache
friendly than the multiple textures required by NBuffers.

resolution Mipmap SAT NBuffers
(top) (middle) (bottom)

256 × 256 < 1 ms 32 ms 3 ms
512 × 512 < 1 ms 139 ms 11 ms

Figure 2. Comparison of filtering methods.

3.3 Multiple planar occluders

Let’s now consider two or more planar occluders. The
shadows caused by each occluder independently can be
computed as before. However, combining these shadows
is a notably difficult problem. As pointed out in [26], the
correct solution lies between the sum and the maximum of
the occluders’ contributions. Intuitively, two occluders can
cover disjoint or overlapping parts of the light source.

Previous approaches more or less address this problem.
In [26], the mean value between these two cases is sug-
gested as an ad hoc solution. Assarson et al. use wedges to
add or subtract light, and are thus inherently bound to com-
bine them additively[3, 4, 5]. During their floodfill, Arvo
et al. [2] need to keep track of the texel in a shadow map
responsible for occlusion. When combining the occlusion
for two such texels, it has to make a choice and therefore
selects the one with maximum occlusion.

Additive approaches quickly saturate (it produces occlu-
sion values greater than 100% that must be clamped) and
overestimate the umbra: shadows look too dark and create
unrealistic shadow gradients. Taking the maximum value
gives visually more appealing results, but tends to create
too bright shadows, in particular if the occluders are rather
unstructured, like the foliage of a tree. Taking the average
does not make that much sense either, because the maxi-
mum only takes a single occluder into account, whereas the
sum involves all occluders. Thus the ranges of these two



values are too different to be meaningfully averaged. We
propose a novel way to combine the contributions based on
probabilities.

Our key observation is that the probability that a ray from
P to S is not blocked by the considered planar occluder is
exactly 1−V (P ), where V is the shadow intensity function
given by eq.(1). If we consider several occluders with a
uniform distribution of occlusion, the probability that a ray
is not blocked by the union of the occluders is the product of
the probabilities. Thus we propose to combine the shadow
intensities of several occluders using:

I1,...,n(P ) :=
n∏

k=1

(1 − Ik(P )) (5)

This formula has the same advantages as the sum. If an
occluder does not block any ray (Ik(P ) = 0), it does not
influence the result. If it blocks all rays (Ik(P ) = 1), the
resulting intensity is zero. Compared to the maximum, it
does combine all occluders instead of selecting only one.
Figure 3 shows a comparison.

3.4 General scene

To treat general scenes, we approximate the occlusion
they can cause with several occlusion textures. We cut the
scene in slices parallel to the light source, and project ev-
erything inside a slice on its bottom plane (the one furthest
from the light source). Since we only need binary infor-
mation in the occluder textures, approaches like slicemaps
[13, 16] can be used to obtain many slices and would
readily be usable with our approach. However, the more
slices we have, the more texture lookups we must do to
compute the combined shadow (note that the cost of pre-
filtering is neglectable). In practice, we observed that 4
to 16 slices is a good tradeoff between speed and accuracy.
Thus lightweight methods such as [23] can be used.

We perform a single rendering pass and a simple frag-
ment shader to construct one to four RGBA textures (using
MRTs). The 4 to 16 color channels each represent one oc-
cluder texture. This pass is very fast and does not interfere
with any CPU or GPU based vertex animation. It can ac-
tually be used with any modelling primitive and rendering
method that produces a depth, such as point-based render-
ing, impostors, ray-tracing on GPU. One benefit of pack-
ing occluder textures in color channels is that mipmapping,
NBuffers or SAT can be then computed for four slices in
one step.

The camera used during this rendering pass is very im-
portant as it controls how the scene is sliced. Using an or-
thogonal projection has two disadvantages. First, a very
large texture resolution is required for the camera’s frus-
tum to encompass the scene. Second, the projection onto

Thin occluder

Opaque occlusion texelLight source

Light leak

Figure 4. Orthogonal projection (left) causes
more light leaks than perspective one (right).

occlusion textures breaks continuous surfaces into patches
along lines not following the frustum center. The conse-
quence is that lot of light can shine through where it is actu-
ally blocked by the real surface, causing light leaks (Fig.4).
With perspective projection, the probability to have light
leaks is much lower. Figure (4) shows the difference. On
this figure, you can see that the center of projection (COP)
is not placed on the light source. The reason is twofold.
First, it would require a large field of view to encompass
the scene, increasing texture distorsion. Second, during the
shadow computations, this will involve kernels that are large
and that can jut out from the occlusion textures (Fig.5). This
would straighten the artifacts of the pre-filtering methods
(interpolation or precision issues). Our choice is to place
the COP slightly behind the light source, at a distance d
and to fit the frustum to the light source, choosing d so that
the frustum contains the scene. We want to emphasize that
using a projection from a particular COP only affects the
way we “x-ray” the scene to approximate occlusion, not the
areas where shadows are computed. It does not relate to
the approximation of silhouette edges from the center of the
light source as in other methods.

Kernel is almost of the size 
of the occlusion texture 

and even juts out on the right

Kernel are much smaller 
and never jut out 

with our offset projection

kernel size compared
to occlusion texture size

Figure 5. COP with offset: Filtering is simpler



Figure 3. Comparison of maximum (left), sum (middle) and our combining approach (right).

Figure 6. Fixing light leaks for thin occluders.

Light leaks.

As we have seen, our choice of perspective projection al-
ready limits the light leaks, but some may still occur. It
will become particularly visible in the case of thin geome-
try, such as a butterfly wings (Fig.6). For such geometry, we
project each occlusion texture on its successor farther away
from the source in order to “close” the discontinuities. Real-
ize, that this projection can be performed virtually. During
the slice creation, when converting distance into a color, it is
sufficient to fill the succeeding channel too. This introduces
no extra costs. Figure 6 shows how it drastically reduces the
leaks. This method does probably not handle all situations
but in practice, we did not encounter any leaks during our
tests.

Projecting occlusion textures in this way affects the re-
sulting shadows but only slightly. Umbrae are a little over-
estimated and the shadow gradient slightly differs. Conse-
quently, one can decide to enable this correction uniquely
for thin objects, as for others light leaks will be unlikely.

Self shadowing.

Our method does not distinguish shadow casters and re-
ceivers. Every point in the scene is shadowed, using only
the occluder textures between it and the light source. The
occlusion texture corresponding to the slice containing the

Sl
ice

Occlusion 
Texture...would indicate that point P is in shadow!

P
 Using the occlusion texture of the slice containing P...

Figure 7. Auto-shadowing inside a slice.

point is not used, because any point in the slice would be
shadowed by its own projection in the occlusion texture
(Fig. 7). Simply ignoring the containing slice would cause
discontinuities where the geometry crosses clipping planes.
Instead, we linearly fade out the contribution of a slice de-
pending on the distance of the shaded point to the slice’s
lower clipping plane.

Using slices for self occlusion is a coarse approximation,
but it often works well in practice for the following reasons.
For a slice far away from a point, the occlusion texture actu-
ally provides a good approximation of the occlusion caused
by what is in the slice. For a slice nearby a point, it is the-
oretically more problematic but is often concealed by dif-
fuse illumination. Indeed, for a watertight object, the front-
facing faces block light from the back-facing ones. When
they fall in the same slice, this effect is missed. How-
ever, the diffuse illumination for back-facing faces is zero
and dominates the incorrect shadowing. They appear dark
as they should (Fig.8). For non-watertight chaotic objects
like trees, the diffuse illumination contains high frequencies
which hide potentially incorrect shadowing. We insist that
this concerns only nearby slices. For distant slices, self-
shadowing behaves correctly and in particular, we do not
need to distinguish casters from receivers.



Figure 8. Our shadowing (left) may miss
close self-occlusions. Fortunately diffuse il-
lumination often compensates (right).

3.5 Putting everything together

Figure 9 summarizes the algorithm. The scene is sliced
and projected onto occlusion textures, which involves one
rendering of the scene from the light ’s point of view
(Sec. 3.4). These occlusion textures are pre-filtered with
different kernel sizes (Sec. 3.2). A second render pass is
performed from the observer’s point of view. For each point
P of the scene, all slices between it and the light source are
visited. The shadow caused by each slice is determined by
performing a texture lookup with a filter size corresponding
to the projection of light on the slice as seen from P . The
shadow contributions are combined using the formula (5)
which performs better than the maximum or the additive
approach (Sec. 3.3). The contribution of the slice closest to
P is weighted according to the distance of P to the slice,
in order to obtain smooth inter-slice variation of the shadow
intensity. The result is then combined with per-pixel Phong
shading and textures.

3.6 Implementation details

Conceptually, our algorithm is simple. The fragment
shader must get the world coordinates of the current frag-
ment, and loop over the occlusion textures. For each, it
computes the appropriate kernel size and then deduces the
two levels of the NBuffer to interpolate for the filter re-
sponse. However, this conversion is a complex formula.
Moreover, it is not possible to randomly index an array of
textures in a shader. Fortunately, it is possible to rewrite this
conceptual algorithm in a practical one. We maintain a cur-
rent slice index, starting with the one closest to the point.
We then loop over the NBuffer levels. Inside the loop, if

the kernel size required for the current slice is between that
of the current and next levels, we accumulate the shadow
contribution and update the current slice index. This works
because the kernel sizes are increasing along the slices.
Various tricks are used, such as using swizzling masks to
increase the current slice index, knowing that slices are
packed in RGBA channels (s = float4(1,0,0,0);
s = s.wxyz;). Moreover, since we have 4 to 16 occlu-
sion textures with several NBuffer levels for each, the limit
of 16 texture units is reached and texture packing of the
NBuffers must be done2. A detailed description was be-
yond the scope of this paper. Please refer to its webpage for
details (via the authors’ webpages on http://artis.imag.fr/).

4 Results and discussion

We implemented our method using Cg 1.4 shading lan-
guage and OpenGL, running on a Pentium 4 with a GeForce
7800. Figure 10 shows some results. Both the render pass
to slice the scene and the computations of NBuffers are very
fast, thus the rendering cost of our method is dominated by
the final render pass and is almost the same in all our tests.
For 800 × 600 images, we run between 20Hz and 30Hz.
Most of the images we show are levels of gray. This is
to emphasize the shadows. Our method works seamlessly
with textures and would even benefit from their presence,
since texture maps would mask minor shadowing artifacts.
Similarly, most of our examples show cast shadows on a
flat ground to ease the perception. An arbitrary ground is
possible, and we want to emphasize again that there is no
caster/receiver distinction in our methods.

Our shadows are plausible and smooth even for extreme
low resolution of occlusion textures. Separately, each single
occlusion texture is piecewise linear and has a blocky ap-
pearance. Combining non-aligned textures leads to an arti-
ficial increase of resolution. This can be interpreted in terms
of frequencies [15]. Slices can be seen as a decomposition
of the shadow on basis functions. Each slice is looked-up
with distinct filter size and thus represents a separate range
of frequencies. A combination is a wealth of information,
that is not equivalent to a single texture. Nevertheless, too
low resolutions would still introduce artifacts during ani-
mation. Also, as the smallest entity is a pixel, the blocking
contribution of very fine objects can be overestimated or
missed. Like the antennas in figure 6 which block too much
light. This is a problem that we share with all image based
methods.

Our work is similar in spirit to that of Keating and
Max [20] but the field of application is completely different.
Their approach does not aim at real time and targets ray-
tracing. Without averaging several rays, it is still presented

2Note that this does not cause problems with filtering because our ker-
nels are always entirely contained in the occluder texture (see Sec.3.4)



Figure 9. Summary of our algorithm.

in a form that would not allow real-time performance. It
uses convolution mostly to avoid noise and applies it sim-
ilarly to percentage closer filtering[25]. Instead, we use
convolution for acceleration purposes. We presented sev-
eral solutions to approximate filtering efficiently, rather than
performing it. Our method thus treats large light sources
without penalty. Occlusion textures are created on the GPU
whereas MDIs are created on the CPU. We combine con-
tributions differently, based on probability, and obtain con-
vincing results without evaluating several sample rays. Of
course, sampling produces more realistic images.

5 Conclusion and Future Work

We presented a novel image-based soft shadow algo-
rithm, that is fast and especially well-adapted to GPU. It
does not rely on precalculation and integrates smoothly
with animated scenes. The resulting shadows are plausi-
ble although not physically correct. In particular, inner
and outer penumbrae are handled. Although the method
is image based, shadows are smooth, even at low texture
resolution. Some artifacts can occur, due to the limited
number of slices/resolution and approximated filtering; self-
occlusion might fail locally and a slight flickering can oc-
cur for vertical movements as the weighting for the closest
slice changes. However, the complex task of inter-object
shading is seamlessly handled, through the introduction of
a novel way of combining shadow contributions based on
probabilities. No distinction between casters and receivers
is required. The method is output sensitive depending only
on the amount of shaded points rather than on the nature
or size of the shadow. To our best knowledge it is the only
approach that possesses all these properties.

As pointed out by Hasenfratz et al. [18], an unsolved
problem is to provide best soft shadows for a given time

constraint. Our algorithm gets quite close to this goal. Its
run-time is mostly predictable and depends on the number
of shadowed pixels in the final output. Currently we inves-
tigate using forward shadow mapping [33] to calculate a so-
lution as seen from the light and transfer it back to the final
output. The slice structure makes this possible. This fixes in
advance the number of fragments as well as the number of
texture lookups and speed becomes completely controllable
via resolution.

An important area of future investigation concerns the
slice placement. Slicing could be restricted to the part of the
scene that can cast shadows that are visible by the observer.
Litmaps introduced in [12], or CC Shadow volumes [22]
could serve that purpose. It is possible to create per object
representations, following [34]. This relates to the idea that
when the viewer or some elements of the scene move, the
slices should evolve in a “continuous” way.

Finally, hierarchical branching could be interesting, as
one lookup gives us information about four slices. On
our test hardware (GeForce 6800TD-7800), it is currently
cheaper to do a lot more work than branching. This shows,
that in general shader optimization becomes difficult and we
did not focus on this topic, as our approach is already fast.
Optimizations are certainly possible, especially on assem-
bler level or with respect to the card’s architecture.

Acknowledgements: We thank the anonymous review-
ers for their insightful comments and remarks. Special
thanks go to Sylvain Lefebvre for his helpful suggestions,
several discussions and very early input. We would also
like to thank especially Cyril Soler and Hedlena de Almeida
Bezerra for several discussions. The work was founded by
the region Rhone-Alpes (Dereve).



Figure 10. Examples of our method. Notice the self shadowing and the smoothness of shadows.
Images are rendered at about 25Hz at a resolution of 800×600 using 16 occlusion textures of 512×512.

References

[1] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll.
Efficient image-based methods for rendering soft shadows.
In Proc. of Siggraph’00, 2000.

[2] J. Arvo, M. Hikorpi, and J. Tyystjärvi. Approximate soft
shadows with an imag-space flood-fill-algorithm. In Proc.
of Eurographics’04, 2004.

[3] U. Assarson and T. Akenine-Möller. Approximate soft shad-
ows on arbitrary surfaces using penumbra wedges. In Proc.
of Workshop on Rendering’02, Springer Computer Science.
Eurographics, Eurographics, 2002.

[4] U. Assarson and T. Akenine-Möller. A geometry-based soft
shadow volume algorithm using graphics hardware. In Proc.
of Siggraph’03, 2003.

[5] U. Assarson, M. Dougherty, M. Mounier, and T. Akenine-
Möller. An optimized soft shadow volume algorithm with
real-time performance. In Proc. of Workshop on Graphics
Hardware’03, 2003.

[6] L. Atty, N. Holzschuch, M. Lapierre, J.-M. Hasenfratz,
C. Hansen, and F. Sillion. Soft shadow maps: Efficient sam-
pling of light source visibility. Computer Graphics Forum,
2006.

[7] S. Brabec and H. Seidel. Single sample soft shadows using
depth maps. In Proc. of Graphics Interface’02, 2002.

[8] S. Brabec and H. P. Seidel. Hardware-accelerated rendering
of antialiased shadows with shadow maps. In Proceedings
of CGI’01, 2001.

[9] E. Chan and F. Durand. Rendering fake soft shadows with
smoothies. In Proc. of Symposium on Rendering’03, 2003.

[10] F. Crow. Shadow algorithms for computer graphics.in com-
puter graphics. In Proc. of Siggraph’77, 1977.

[11] F. C. Crow. Summed-area tables for texture mapping. In
Proc. of Siggraph’84, 1984.

[12] X. Décoret. N-buffers for efficient depth map query. In Proc.
of Eurographics’05, 2005.

[13] Z. Dong, W. Chen, H. Bao, H. Zhang, and Q. Peng. Real-
time voxelization for complex polygonal models. In Proc.
of Pacific Graphics’04, 2004.

[14] W. Donnelly and A. Lauritzen. Variance shadow maps. In
Proc. of I3D’06, 2006.

[15] F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. Sillion.
A frequency analysis of light transport. ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2005), 24(3), aug
2005.

[16] E. Eisemann and X. Décoret. Fast scene voxelization and
applications. In Proc. of I3D’06, 2006.

[17] G. Guennebaud, L. Barthe, and M. Paulin. Real-time soft
shadow mapping by backprojection. In Eurographics Sym-
posium on Rendering.

[18] J.-M. Hasenfratz, M. Lapierre, N. Holzschuch, and F. Sil-
lion. A survey of real-time soft shadows algorithms. Com-
puter Graphics Forum, 22(4), Dec. 2003.

[19] J. Hensley, T. Scheuermann, G. Coombe, A. Lastra, and
M. Singh. Fast summed-area table generation and its ap-
plications. In Proc. of Eurographics’05, 2005.

[20] B. Keating and N. Max. Shadow penumbras for complex
objects by depth-dependent filtering of multi-layer depth im-
ages. In Proc. of Workshop on Rendering’99, 1999.

[21] F. Kirsch and J. Doellner. Real-time soft shadows using a
single light sample. Journal of WSCG, 2003.

[22] B. Lloyd, J. Wendt, N. K. Govindaraju, and D. Manocha.
Cc shadow volumes. In Proc. of EG Symposium on Ren-
dering’04, Springer Computer Science. Eurographics, Eu-
rographics Association, 2004.

[23] H. Nguyen and W. Donnelly. Hair Animation and Rendering
in the Nalu Demo. Addison Wesley, 2005.

[24] S. Parker, P. Shirley, and B. Smits. Single sample soft shad-
ows. Technical Report UUCS-98-019, University of Utah,
1998.

[25] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering an-
tialiased shadows with depth maps. In Proc. of Siggraph’87,
1987.

[26] C. Soler and F. Sillion. Fast calculation of soft shadow tex-
tures using convolution. In Proc. of Siggraph ’98, 1998.

[27] J.-F. St-Amour, E. Paquette, and P. Poulin. Soft shadows
from extended light sources with penumbra deep shadow
maps. In Proc. of Graphics Interface’05, 2005.

[28] Y. Uralsky. Efficient soft-edged shadows using pixel shader
branching. In GPU Gems 2. Addison Wesley, 2005.

[29] L. Williams. Casting curved shadows on curved surfaces. In
Proc. of Siggraph’78, 1978.

[30] L. Williams. Pyramidal parametrics. In Proc. of Sig-
graph’83, 1983.

[31] A. Woo, P. Poulin, and A. Fournier. A survey of shadow
algorithms. IEEE Comput. Graph. Appl., 10(6), 1990.

[32] C. Wyman and C. Hansen. Penumbra maps: Approximate
soft shadows in real-time. In Proc. of Symposium on Ren-
dering’03, 2003.

[33] H. Zhang. Forward shadow mapping. In Proc. of Workshop
on Rendering’98, 1998.

[34] K. Zhou, Y. Hu, S. Lin, B. Guo, and H.-Y. Shum. Precom-
puted shadow fields for dynamic scenes. In Proc. of Sig-
graph’05, 2005.


