
Transformation Semantics: An Efficient Approach for Collision Detection 
 
 

José Gilvan Rodrigues Maia, Creto Augusto Vidal, Joaquim Bento Cavalcante-Neto 
Departamento de Computação – Universidade Federal do Ceará (UFC) 

60455-760 – Fortaleza – CE – Brazil 
{gilvan, cvidal, joaquimb}@lia.ufc.br 

 
 

Abstract 
 

Collision detection is an important problem in 
many kinds of applications. This work presents an 
efficient approach for exact collision detection 
between complex, deformable models. The approach 
consists of a method for fast extraction of semantics 
from transformation matrices which places models in a 
scene, together with a general strategy for fast 
intersection tests. Non-uniform scaling is also 
supported efficiently. Our experiments demonstrate 
that our strategies are well suitable for real-time 
applications. 
 
1. Introduction 
 

Collision detection is a fundamental task for many 
kinds of applications, such as robotics, industrial 
prototyping, physics simulation, games and virtual 
reality (VR), which requires precise detection of 
interactions between objects in a simulated 
environment [1]. In Figueiredo et al. [2], the authors 
point out that such applications need realistic modeling 
of interaction between the elements of the environment 
in order to obtain convincing results. Simulation of 
simple contacts, impacts and deformations demands 
robust geometric algorithms for detecting collisions, 
computing distances and determining the contact 
surface, if any [3]. 

Intersection algorithms must be robust in order to 
correctly compute results in the many possible 
situations, so they do not report any false positives or 
negatives. Developing such algorithms is not only 
theoretically difficult, but the limited floating-point 
representation implies various practical aspects when 
creating strategies for collision detection. On the other 
hand, interactive applications such as games and VR 
also require efficient tests for maintaining real-time 
performance [3]. 

There are a number of software libraries for 
collision detection between polygonal models [1, 4, 5, 
6, 7], usually consisting of a triangle mesh. Such 
libraries employ the most diverse strategies for 
efficiently computing intersections or distances. Some 
of these libraries provide various kinds of tests and 
support scenes composed by multiple models in 
motion [4, 5, 6, 7], while other libraries only work with 
an object pair per time [1]. These collision detection 
libraries do not provide any direct support for 
representations such as terrains, triangle fans and 
triangle strips, which are widely used for rendering. 
This not only introduces overheads when using such 
representations, but also creates difficult collision 
queries when such representations are needed. 

Support for scaling models is an important feature 
for modeling virtual environments, allowing flexible 
instancing of models in a scene [8]. Most of these 
collision detection libraries also lack support for 
nonuniform scaling models, and the few libraries 
supporting this feature require explicit scale factors to 
be provided a priori by users. 

In this work, we describe an efficient approach for 
real-time collision detection involving rigid and 
deformable geometric models, aimed at developing 
general-purpose interactive applications. Our strategy 
is based on extraction of semantics from 
transformation matrices and their use for computing 
intersections in different coordinate systems. We show 
how the choice of coordinate systems affects 
performance and complexity of intersection 
algorithms. We also show how to rapidly compute a 
global Axis-Aligned Bounding-Box (AABB) from a 
local AABB and a transformation matrix. These 
strategies are implemented as a library that is very easy 
to integrate not only with high-level systems but with 
those representations typically used by low-level 
rendering interfaces such as OpenGL and Direct3D. 

The rest of the paper is organized as follows. In 
Section 2, it is given an overview of the related work 
on collision detection. The principal theoretical 



elements for the proposed strategies are described in 
Section 3. In Section 4, we present a discussion about 
the most important implementation aspects of the 
proposed approach. The experiments performed using 
our strategies and a discussion on their results are 
described in Section 5. Finally, we present an analysis 
of this work and its limitations in Section 6. 
 
2. Related work 
 

There are many techniques for intersection tests in 
the literature. These techniques sometimes are used to 
develop representative collision detection libraries. In 
the following we present these techniques and the 
libraries, as well as the strategies they employ and their 
limitations. 
 
2.1. Intersection tests 
 

Intersection tests can be classified, according with 
movement of models, in three categories: static, 
continuous and pseudo-continuous [3]. Changes in 
positions and orientations of objects are not considered 
when performing static tests, while in continuous tests 
these positions and orientations can vary with time. 
Computations needed for static tests are typically much 
simpler than those required by continuous tests. 
Because of this, pseudo-continuous tests are usually 
used as an approximation for continuous tests by 
performing successive static tests [9]. Collision tests 
can also support (or not) deformable or breakable 
models. The capability of detecting self-intersections is 
also required in order to respect physical constraints 
when models are deformed. 

In scenes containing multiple objects, collision 
detection is usually performed by two distinct phases: 
broad phase and narrow phase [2]. Distant, non-
overlapping pairs are rapidly discarded by using 
simple tests during broad phase. Pairs remaining from 
this early exit are individually processed during the 
narrow phase, whereas the most complex intersection 
tests take place in order to determine the contact 
surface, if any. 

Different intersection tests usually give rise to 
different contact information. The time of impact is 
required for most continuous tests, for example. 
Distinct applications may entail different data when an 
intersection is found. Maia et al. [3] categorize 
intersection tests, according with the information they 
report, as: picking or ray casting tests; distance 
computing, interpenetration vectors or closest feature 
tests; volume versus polygonal model tests; and model 
versus model tests. 

2.2. Strategies for real-time collision detection 
 

Various algorithms have been proposed in literature 
for detecting collisions. A classification of such 
algorithms is an important tool when highlighting their 
advantages and their drawbacks for real-time 
applications. Figueiredo et al. [2] present a taxonomy 
for collision detection algorithms, which categorizes 
such algorithms in two groups based on their data 
structures: Spatial Subdivision and Bounding Volume 
Hierarchies (BVHs). 

Spatial subdivision structures such as octrees, grids, 
k-d trees, R-trees and BSP-trees can be adapted to 
represent scenes composed by polygonal models, 
providing spatial coherence that is exploited for faster 
culling and intersection tests. However, according with 
[2], such representations are not well suited for broad 
phase in dynamic scenes and for narrow phase 
involving deformable models, because deformations 
on models demand refitting the subdivision, which 
may be an expensive task. 

BVHs are multi-resolution representation for 
polygonal models that are useful for rapidly rejecting 
non-intersecting pairs (either objects or primitives) [1]. 
Although BVHs cannot detect an object inside another 
because they are usually based on boundary 
representations, they are very useful for collision 
detection [7]. The main drawbacks of BVHs are the 
elevated memory requirements and the time for 
refitting hierarchy to the geometry of deformable 
models. Researchers have proposed various strategies 
for overcoming such limitations and improving 
efficiency of BVH-based intersection tests [4, 6, 10]. 

Besides these two groups of collision detection 
algorithms, there are other three important groups, 
whose strategies are based on Distance Fields, Spatial 
Hashing and Graphics Hardware, respectively. 

Discrete distance fields [11] can be used to 
represent volumetric objects and to efficiently perform 
collision detection tests. However, this strategy is 
inadequate for real-time applications in dynamic 
scenes composed by complex models [7, 11]. Hashing 
functions can speed up intersection computations in 
scenes containing small objects, and do not require any 
special pre-processing [12, 13]. This approach is 
clearly efficient for highly dynamic scenes and, 
moreover, provides natural support for deformable and 
breakable models. Such approach is more suitable for 
scenes with a fine level of mesh discretization. 

Other kind of algorithms exploits the capabilities of 
graphics hardware for dramatically accelerating 
intersection tests [14, 15]. Such algorithms depend on 
specific hardware, which is a requirement that cannot 
be always fulfilled in low-cost systems, for example. 



Algorithms and heuristics were developed specially 
for use in specific stages of collision detection. Cohen 
et al. [5] developed a sort-based Sweep and Prune 
algorithm for broad phase, which is linear over the 
number of objects. Gottschalk [16] introduced the 
Separating Axes Theorem (SAT) for intersection tests. 
Tests based on linear systems and optimization 
problems for polihedra were replaced by iterative 
searches for a separating axis. 

Bergen [4] points out that, when a hierarchy of 
AABBs or OBBs (Oriented Bounding Boxes) is 
employed for collision culling between two models, 
about 60% of the separating axes found corresponds to 
a face normal. Based on this, Bergen proposed an 
approximate test (SAT-lite) that considers only face 
normals as separating axis when performing collision 
detecting against AABB trees. The iterative method of 
Gilbert-Johson-Keerthi [17] for distance computation, 
referenced in the literature as GJK, has influenced 
many researchers and their algorithms [18, 19]. The 
principal advantages of GJK are: simplicity, 
performance and easy generalization for diverse 
primitives [19]. 
 
2.3. Collision detection libraries 
 

A variety of collision detection libraries were 
developed for use in general interactive applications, 
providing support for intersection tests against 
complex polygonal models. The following libraries are 
noticeable because of their popularity and 
performance: SOLID, I-Collide, Opcode, RAPID and 
SWIFT++ [4, 5, 6, 1, 7]. Most of these libraries exploit 
temporal coherence (TC) between successive frames 
for further speed up of intersection tests. 

These libraries represent polygonal models through 
a triangle mesh or a simple polygon mesh, and do not 
consider that graphics engines commonly used by 
applications for rendering can represent models in 
terms of triangle fans or strips. These representations 
require less memory and are more efficient for 
rendering [3, 20]. Thus, the use of these collision 
detection libraries yields triangle mesh conversion 
overheads. 

RAPID [1] introduced OBB trees and SAT for 
computing intersections between meshes, and does not 
provide direct support for deformable models. SOLID 
[4] is based on an extended GJK algorithm [17], and 
provides support for efficient tests against volumes and 
deformable models represented by AABB trees. I-
Collide [5] implements Sweep and Prune broad phase 
and is built on top of RAPID. Switf++ [7] represents 
models trough a hierarchy of convex hulls, and 

provides support for broad phase, distance computing 
and mesh versus mesh intersections. 

From these libraries, only SOLID provides support 
for deformable and non-uniformly scaled models. 
However, the scale factors must be provided a priori 
by the user application. Deformable models are 
supported by OPCODE, which does not support any 
scaling at all. In this library, scaling must be applied to 
the model’s vertices first and then the corresponding 
AABB tree must be refitted. Clearly this gives raise to 
an overhead. 

The use of deformable models in the other libraries 
implies complete rebuild of volume hierarchies, which 
is unfeasible in a real-time application or simply 
introduces a bottleneck. With the exception of 
OPCODE, all libraries supporting broad phase do not 
provide a direct way of testing a given pair of objects 
and introduce unnecessary burden for simple tasks. 

 
3. Exploiting transformation semantics for 
detecting collisions 
 

In this section, we first present our method for 
transformation inversion and semantics extraction. 
Then, we show how we can use transformation 
semantics for obtaining efficient intersecting tests 
without knowing a priori scale factors and for 
computing global AABBs containing the model’s local 
AABB in world space. AABB trees are the 
representation of choice for polygonal models, because 
the hierarchy refitting overhead is moderate [4]. 
Moreover, our global AABB calculation method 
makes it easy to use AABB trees for sweep and prune 
algorithm. 
 
3.1. Efficient Extraction of Transformation 
Semantics 
 

Consider a transformation matrix M, resulting from 
composition of matrices S (scale), R (rotation) and T 
(translation), in this order. M transforms a locally 
defined model into world coordinates. Various 
graphics libraries use exactly this form to represent 
matrices transforming geometric models, because such 
representation is clear to comprehend and also allows 
for optimized routines for updating scene graphs [3, 
20]. Wu [21] uses an equivalent representation for M 
for describing a simple and efficient inversion method. 
However, his method only considers isotropic scales. 
Our representation for M, depicted in (1), is more 
general and considers non-uniform scales. 

We demonstrate that M-1, described in equation (2) 
can be obtained without computing square roots. The 



3x3 part of M-1 is obtained by first transposing each 
column and then dividing each row by the square of its 
norm. This can be done because ri form an 
orthonormal basis. The translational part of M-1 is then 
obtained by multiplying –t by the recently computed 
3x3 part of M-1. Adapting this method for extracting of 
R, S and T from M is straightforward and requires 
three square roots to be computed. Note that simply 
inverting M does not require any square root to be 
computed. Although computing square roots is a bit 
slow, it is a relatively cheap operation in recent 
hardware. 
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Our inversion method is very efficient, requiring 27 
multiplications, 3 divisions and 12 additions against 
Wu’s method, which demands 21 multiplications, 1 
division and 8 additions. Thus we avoid the brute-force 
approach that yields 280 multiplications, 1 division 
and 101 additions. Wu’s method is proven to be just 
about 17% and 31% faster in 10 million executions in 
Pentium IV and Pentium II processors, respectively. 
Since square roots are avoided, it is possible to achieve 
not only better performance, but also robustness in 
intersection algorithms because half mantissa bits is 
not lost due to square roots. 

 
3.2. Computation of  Global AABBs for Broad 
Phase 
 

Sweep and Prune algorithm requires global (world 
space) AABBs containing each model for collision 
culling. A typical 3D scene usually provides a local 
AABB for each model, which is transformed into 
world space by a matrix M. The naïve approach for 
obtaining the global AABB consists of transforming 
the eight vertices of the local AABB by M, and then 
using these vectors to compute the global AABB. We 
present a geometric method that is significantly 
simpler and faster than the naïve approach. Observe 
that the components of the local AABB’s edge vectors 

are, in world space, complementary with respect to the 
dimensions of the global AABB that tightly fits the 
transformed, local AABB. This is illustrated by Figure 
1. First, we transform the minimum point of the AABB 
by M, obtaining p. The directions of the global edges 
are obtained efficiently by lookup over the first three 
columns from M. Then these directions are multiplied 
by the width, height and depth of the local AABB. The 
sign of each component of each edge vector in world 
space is checked. If that component is negative, then it 
moves p in the direction of the minimum point of the 
global AABB. Otherwise, we are moving p towards 
the maximum point.  

 
Figure 1. An oriented box and its edge 
directions, a and b. The maximum and 

minimum points of the global AABB are p + ax 
+ bx + by (positive components) and p + ay 

(negative components), respectively. 
 

3.3. Efficient Collision Detection between 
Deformable Models 
 

Although refitting instead of rebuilding a BVH is 
cheaper when the respective model changes its shape, 
this procedure has a considerable cost [4] and can 
become a bottleneck in scenes containing some 
complex deformable models or various simpler 
deformable models. We propose a slight modification 
in the broad phase procedure that overcomes this 
problem. The scene provides a local, up-to-date AABB 
containing each deformable model. An AABB tree is 
refitted only when the global AABB containing the 
corresponding model, if deformable, is touched during 
broad phase. Thus, our procedure updates only those 
models that must be processed in the narrow phase, 
and considerably improves the efficiency of 
intersection tests. 
 
3.4. Primitive Intersection Tests using 
Transformation Semantics 
 

The intersection algorithms between primitives 
have to be adapted in order to provide support for 
scaling. Our approach for adapting such algorithms is 



based on the diagram illustrated in Figure 2. The 
directed graph in this figure establishes a visual 
reference for concatenation of transformations from A 
and B coordinate systems, so edges represents the 
required transformations between coordinate systems, 
illustrated as vertices. Our intersection algorithms 
choose one from seven possible coordinate systems to 
carry out intersection tests. Transformation semantics 
provide a way to transform primitives to the desired 
coordinate system. Transformation matrices from A 
and B to B”, for example, is performed by the matrices 
T-1

BTARASA e RBSB, respectively 

 
Figure 2. Diagram illustrating the 

transitions between the seven coordinate 
systems available for intersection tests. 

 
All the basic intersection tests needed for narrow 

phase between AABB trees are simple to obtain by 
using this paradigm. A’ and B’ systems illustrated in 
Figure 2 are usually most convenient for tests using 
SAT, because it requires only the pre-computation of 
rotations, translations and scales from a system to 
another. This simplifies intersection tests between 
OBBs because they relative orientation is the same for 
the entire AABB hierarchy [4]. The same cached 
information can be reused for testing an AABB in A 
system against a triangle in B using SAT, which 
requires testing 13 potential separating axes. Testing a 
triangle pair for intersection is similar. However, we 
prefer computing intersections in A system, because 
the transformation of all triangles to A’ or B’ systems 
is avoided. A cached 4x3 matrix is then used to map 
triangles from B to A. 

Another improvement is obtained when the volume 
and number of primitives in each model is considered 
when traversing AABB trees during intersection tests. 
The adoption of the local system of the most complex 
model, for example, reduces the total number of 

transformed triangles before the collision test takes 
place. Testing a triangle pair using SAT requires 
checking 11 possible separating axes in the general 
case and 8 axes when the given triangles are coplanar 
[9]. In this case, SAT looks at triangles as they were 
degenerated prisms. This algorithm can be accelerated 
in the coplanar case by projecting the triangles over the 
axis-aligned plane that maximizes their area, which 
simplifies computations. 

Intersection tests between an AABB tree and a 
volume in local system are simplified if accomplished 
in A’, because distortions due to scales can lead to 
more complex intersection algorithms. A sphere, for 
example, gets deformed so intersection tests are done 
against an ellipsoid. Ray casting is simpler, because 
the endpoints of a line segment can be transformed to 
the model’s local space before the intersection tests 
take place, and parametric values reported by local 
tests are still valid in world space. However, special 
care must be taken when rays are used, because the 
intersection algorithm must consider scale distortions 
in the direction. 
 
4. Implementation 
 

The strategies described in prior sections were 
developed in C/C++ as a modification to OPCODE 1.3 
[6]. Tough this library employs various optimization 
strategies it does not provide any support for scaled 
models in the variety of intersection tests this library 
implements. Moreover, the library was modified in 
order to support not only triangle meshes, but also 
triangle strips, triangle fans and terrains represented as 
regular point grids. Original OPCODE does not 
support 64-bit processors and it is very inefficient for 
representing non-indexed geometry because memory is 
wasted with trivial index tables. 

Thus two new versions of the library were 
developed, introducing support for non-uniformly 
scaled models (version 1.3.1) and for other kinds of 
geometry (version 1.3.2), indexed or not. This second 
version is not only more flexible than the original 
library but saves memory when non-indexed geometry 
is used. We also added optional intersection tests, like, 
for example, SAT-based triangle-triangle overlap. 
OPCODE also allowed us to test the effectiveness of 
our approach through the variety of intersection tests it 
provides (picking, volume versus model and model 
versus model). 

 



5. Results 
 

Our custom versions of OPCODE were used in a 
variety of tests carried out in a Pentium IV 3GHz with 
1GB of RAM memory. The proposed method for 
computation of global AABBs is about 6 times faster 
than the naïve algorithm in 10 million executions. This 
method can be used not only for broad phase collision 
detection, but also for efficient culling in rendering 
algorithms. Moreover, our implementation of the broad 
phase algorithm became about 5.4 times faster in a 
scene containing 64 deformable models. Of course, 
time spent for refitting AABB trees was discarded in 
this test. 

The lazy update of AABB trees has proven to be an 
efficient heuristic for minimizing the bottleneck of 
refitting BVHs to deformable geometry during 
runtime. In a sequence of 10K frames in the same 
scene being animated, only 15 of the 64 models have 
to be refitted per frame. In other words, our strategy is 
about 4.26 times faster than the naïve approach for this 
particular scene. Clearly, collision detection in scenes 
with a reduced number of models in close proximity 
will be further accelerated because only those AABB 
trees corresponding to models involved in narrow 
phase need to be refitted. 

Intersection tests between a pair of polygonal 
models are faster when the objects are in close 
proximity, because extraction of transformation 
semantics requires the computation of three square 
roots. However, such tests only occur after the broad 
phase algorithm discarded distant, non-colliding pairs, 
so the overlap tests between boxes and triangles from 
BVHs consumes most processing time in this case. 

We used an approach similar to that used by Bergen 
[4] and performed exhaustive pairwise tests between 
two relatively complex models: bunny (5200 triangles) 
and cow (5000 triangles). These models were placed 
inside a cube in random positions and orientations 
before collision detection takes place. Scaling was not 
used in this experiment because we wanted to see how 
our modified OPCODE (1.3.2) compares with the 
original library (1.3). 

Tough computation of three square roots is required 
by our implementation, it slightly outperforms the 
original library in the tests when models are in close 
proximity. As we pointed out, when models are 
distant, the original library is faster because its box-
box SAT test is much simpler than computing three 
square roots. Our tests also show that triangle-triangle 
SAT tests discard pairs that are in slight contact, and 
reports a false negative. We repeated this experiment 
using a modified SAT that forces the computation of 

all potential separating axes and uses ‘fat’ prisms. We 
concluded that, even in the worst case, SAT is faster 
than Möller’s algorithm originally used by OPCODE. 
As a result, our implementation is about 7% faster than 
the original library (see Table 1). 

Table 1. Time measured for 50K and 500K 
pairwise collision tests of two models 
randomly placed inside a cube. 

#tests 50K 500K 
version 1.3 1.3.2 1.3 1.3.2 

total (ms) 2.221K 2.128K 20.91K 2.004K 
#collisions 833 832 8188 8134 

#pairs 393.8K 393.6K 3.681M 3.549M 
collision 

time 
2.132

K 
1.998K 1.994K 1.872K 

ms/ 
collision 2.56 2.40 2.43 2.31 

rejection 
time 88.15 130.41 974.5 13246 

ms/ 
rejection 1.81e-3 2.65e-3 1.98e-3 2.69 e-3 

 
We also developed an interactive application for 

visualization of the contact surface between models 
manipulated by the user. Performance tests were 
carried out in this application using two significantly 
complex models: Stanford bunny (69K triangles) and 
whitestar (91.3K triangles). Scales were used in this 
case, allowing for interaction between the models, 
because the spaceship model was too small (Figure 3). 
It takes an average time of 62.5 ms for testing 
intersection between these models in deep contact 
situations. The corresponding contact surface contains 
about 9.81K triangle pairs, resulting in only 6.37ns for 
testing each pair. 

As illustrated in Figure 3, we also carried out a 
performance analysis of testing intersections between 
volumes (AABB, OBB, Sphere and Capsule) and 
geometric models. The performance reported by our 
tests is about the same of those obtained by the original 
library, which is quite fast for volume tests. 

A ray casting algorithm was implemented in order 
to exhaustively execute tests of a ray against a model. 
Intersection tests first were carried out in A’ coordinate 
system. An image with 1024x768 pixels takes 29.3 
seconds in average to be rendered from a scene 
containing 149K triangles. Then we modified the 
picking routines so intersection tests are carried out in 
the model’s coordinate system, avoiding scaling 
triangles and boxes during intersection tests. The 
average rendering time for the same configuration 
dropped to 16.63 seconds, resulting in a speedup factor 
of 56.7% for 30 consecutive images. Figure 4 shows 
the scene being rendered in real-time and the 



corresponding image produced by ray casting. 
Moreover, intersection tests became more robust, 
particularly when a triangle is hit near edges, because 
precision is not lost due to the computation of square 
roots. 

 
Figure 3. A variety of intersection tests 

using complex models. The contact surface 
between two complex models is highlighted 
(a). Intersection surfaces: against a capsule 
(b), an oriented box (c) and a sphere (d). 

6. Conclusions 
 

Collision detection is an essential task in various 
applications that demands precise, robust and efficient 
algorithms. In this work, we presented an approach for 
exact collision detection between deformable models, 
which supports non-uniform scaling and accelerates 
intersection tests based on transformation semantics. 

We also presented fast methods for inverting and 
extracting semantics from transformation matrices 
used by typical graphics applications. An efficient, 
geometric algorithm for computation of global AABBs 
for broad phase collision was also proposed. 
Moreover, the lazy update of AABB trees during broad 
phase significantly reduces the number of AABB trees 
that must be refitted to deformable models. A number 

of experiments demonstrate that the proposed approach 
is suitable for real applications. Furthermore, the 
modified collision library we developed is efficient, 
flexible and easy to use. 

 
Figure 4. A scene displayed in real-time 

(top). The same scene is rendered via ray 
casting (bottom), with 1024x768 pixels in 
16.63s. 
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