
Transformation Semantics: An Efficient Approach for Collision Detection

José Gilvan Rodrigues Maia, Creto Augusto Vidal, Joaquim Bento Cavalcante-Neto
Departamento de Computação – Universidade Federal do Ceará (UFC)

60455-760 – Fortaleza – CE – Brazil
{gilvan, cvidal, joaquimb}@lia.ufc.br

Abstract

Collision detection is an important problem in
many kinds of applications. This work presents an
efficient approach for exact collision detection
between complex, deformable models. The approach
consists of a method for fast extraction of semantics
from transformation matrices which places models in a
scene, together with a general strategy for fast
intersection tests. Non-uniform scaling is also
supported efficiently. Our experiments demonstrate
that our strategies are well suitable for real-time
applications.

1. Introduction

Collision detection is a fundamental task for many
kinds of applications, such as robotics, industrial
prototyping, physics simulation, games and virtual
reality (VR), which requires precise detection of
interactions between objects in a simulated
environment [1]. In Figueiredo et al. [2], the authors
point out that such applications need realistic modeling
of interaction between the elements of the environment
in order to obtain convincing results. Simulation of
simple contacts, impacts and deformations demands
robust geometric algorithms for detecting collisions,
computing distances and determining the contact
surface, if any [3].

Intersection algorithms must be robust in order to
correctly compute results in the many possible
situations, so they do not report any false positives or
negatives. Developing such algorithms is not only
theoretically difficult, but the limited floating-point
representation implies various practical aspects when
creating strategies for collision detection. On the other
hand, interactive applications such as games and VR
also require efficient tests for maintaining real-time
performance [3].

There are a number of software libraries for
collision detection between polygonal models [1, 4, 5,
6, 7], usually consisting of a triangle mesh. Such
libraries employ the most diverse strategies for
efficiently computing intersections or distances. Some
of these libraries provide various kinds of tests and
support scenes composed by multiple models in
motion [4, 5, 6, 7], while other libraries only work with
an object pair per time [1]. These collision detection
libraries do not provide any direct support for
representations such as terrains, triangle fans and
triangle strips, which are widely used for rendering.
This not only introduces overheads when using such
representations, but also creates difficult collision
queries when such representations are needed.

Support for scaling models is an important feature
for modeling virtual environments, allowing flexible
instancing of models in a scene [8]. Most of these
collision detection libraries also lack support for
nonuniform scaling models, and the few libraries
supporting this feature require explicit scale factors to
be provided a priori by users.

In this work, we describe an efficient approach for
real-time collision detection involving rigid and
deformable geometric models, aimed at developing
general-purpose interactive applications. Our strategy
is based on extraction of semantics from
transformation matrices and their use for computing
intersections in different coordinate systems. We show
how the choice of coordinate systems affects
performance and complexity of intersection
algorithms. We also show how to rapidly compute a
global Axis-Aligned Bounding-Box (AABB) from a
local AABB and a transformation matrix. These
strategies are implemented as a library that is very easy
to integrate not only with high-level systems but with
those representations typically used by low-level
rendering interfaces such as OpenGL and Direct3D.

The rest of the paper is organized as follows. In
Section 2, it is given an overview of the related work
on collision detection. The principal theoretical

elements for the proposed strategies are described in
Section 3. In Section 4, we present a discussion about
the most important implementation aspects of the
proposed approach. The experiments performed using
our strategies and a discussion on their results are
described in Section 5. Finally, we present an analysis
of this work and its limitations in Section 6.

2. Related work

There are many techniques for intersection tests in
the literature. These techniques sometimes are used to
develop representative collision detection libraries. In
the following we present these techniques and the
libraries, as well as the strategies they employ and their
limitations.

2.1. Intersection tests

Intersection tests can be classified, according with
movement of models, in three categories: static,
continuous and pseudo-continuous [3]. Changes in
positions and orientations of objects are not considered
when performing static tests, while in continuous tests
these positions and orientations can vary with time.
Computations needed for static tests are typically much
simpler than those required by continuous tests.
Because of this, pseudo-continuous tests are usually
used as an approximation for continuous tests by
performing successive static tests [9]. Collision tests
can also support (or not) deformable or breakable
models. The capability of detecting self-intersections is
also required in order to respect physical constraints
when models are deformed.

In scenes containing multiple objects, collision
detection is usually performed by two distinct phases:
broad phase and narrow phase [2]. Distant, non-
overlapping pairs are rapidly discarded by using
simple tests during broad phase. Pairs remaining from
this early exit are individually processed during the
narrow phase, whereas the most complex intersection
tests take place in order to determine the contact
surface, if any.

Different intersection tests usually give rise to
different contact information. The time of impact is
required for most continuous tests, for example.
Distinct applications may entail different data when an
intersection is found. Maia et al. [3] categorize
intersection tests, according with the information they
report, as: picking or ray casting tests; distance
computing, interpenetration vectors or closest feature
tests; volume versus polygonal model tests; and model
versus model tests.

2.2. Strategies for real-time collision detection

Various algorithms have been proposed in literature
for detecting collisions. A classification of such
algorithms is an important tool when highlighting their
advantages and their drawbacks for real-time
applications. Figueiredo et al. [2] present a taxonomy
for collision detection algorithms, which categorizes
such algorithms in two groups based on their data
structures: Spatial Subdivision and Bounding Volume
Hierarchies (BVHs).

Spatial subdivision structures such as octrees, grids,
k-d trees, R-trees and BSP-trees can be adapted to
represent scenes composed by polygonal models,
providing spatial coherence that is exploited for faster
culling and intersection tests. However, according with
[2], such representations are not well suited for broad
phase in dynamic scenes and for narrow phase
involving deformable models, because deformations
on models demand refitting the subdivision, which
may be an expensive task.

BVHs are multi-resolution representation for
polygonal models that are useful for rapidly rejecting
non-intersecting pairs (either objects or primitives) [1].
Although BVHs cannot detect an object inside another
because they are usually based on boundary
representations, they are very useful for collision
detection [7]. The main drawbacks of BVHs are the
elevated memory requirements and the time for
refitting hierarchy to the geometry of deformable
models. Researchers have proposed various strategies
for overcoming such limitations and improving
efficiency of BVH-based intersection tests [4, 6, 10].

Besides these two groups of collision detection
algorithms, there are other three important groups,
whose strategies are based on Distance Fields, Spatial
Hashing and Graphics Hardware, respectively.

Discrete distance fields [11] can be used to
represent volumetric objects and to efficiently perform
collision detection tests. However, this strategy is
inadequate for real-time applications in dynamic
scenes composed by complex models [7, 11]. Hashing
functions can speed up intersection computations in
scenes containing small objects, and do not require any
special pre-processing [12, 13]. This approach is
clearly efficient for highly dynamic scenes and,
moreover, provides natural support for deformable and
breakable models. Such approach is more suitable for
scenes with a fine level of mesh discretization.

Other kind of algorithms exploits the capabilities of
graphics hardware for dramatically accelerating
intersection tests [14, 15]. Such algorithms depend on
specific hardware, which is a requirement that cannot
be always fulfilled in low-cost systems, for example.

Algorithms and heuristics were developed specially
for use in specific stages of collision detection. Cohen
et al. [5] developed a sort-based Sweep and Prune
algorithm for broad phase, which is linear over the
number of objects. Gottschalk [16] introduced the
Separating Axes Theorem (SAT) for intersection tests.
Tests based on linear systems and optimization
problems for polihedra were replaced by iterative
searches for a separating axis.

Bergen [4] points out that, when a hierarchy of
AABBs or OBBs (Oriented Bounding Boxes) is
employed for collision culling between two models,
about 60% of the separating axes found corresponds to
a face normal. Based on this, Bergen proposed an
approximate test (SAT-lite) that considers only face
normals as separating axis when performing collision
detecting against AABB trees. The iterative method of
Gilbert-Johson-Keerthi [17] for distance computation,
referenced in the literature as GJK, has influenced
many researchers and their algorithms [18, 19]. The
principal advantages of GJK are: simplicity,
performance and easy generalization for diverse
primitives [19].

2.3. Collision detection libraries

A variety of collision detection libraries were
developed for use in general interactive applications,
providing support for intersection tests against
complex polygonal models. The following libraries are
noticeable because of their popularity and
performance: SOLID, I-Collide, Opcode, RAPID and
SWIFT++ [4, 5, 6, 1, 7]. Most of these libraries exploit
temporal coherence (TC) between successive frames
for further speed up of intersection tests.

These libraries represent polygonal models through
a triangle mesh or a simple polygon mesh, and do not
consider that graphics engines commonly used by
applications for rendering can represent models in
terms of triangle fans or strips. These representations
require less memory and are more efficient for
rendering [3, 20]. Thus, the use of these collision
detection libraries yields triangle mesh conversion
overheads.

RAPID [1] introduced OBB trees and SAT for
computing intersections between meshes, and does not
provide direct support for deformable models. SOLID
[4] is based on an extended GJK algorithm [17], and
provides support for efficient tests against volumes and
deformable models represented by AABB trees. I-
Collide [5] implements Sweep and Prune broad phase
and is built on top of RAPID. Switf++ [7] represents
models trough a hierarchy of convex hulls, and

provides support for broad phase, distance computing
and mesh versus mesh intersections.

From these libraries, only SOLID provides support
for deformable and non-uniformly scaled models.
However, the scale factors must be provided a priori
by the user application. Deformable models are
supported by OPCODE, which does not support any
scaling at all. In this library, scaling must be applied to
the model’s vertices first and then the corresponding
AABB tree must be refitted. Clearly this gives raise to
an overhead.

The use of deformable models in the other libraries
implies complete rebuild of volume hierarchies, which
is unfeasible in a real-time application or simply
introduces a bottleneck. With the exception of
OPCODE, all libraries supporting broad phase do not
provide a direct way of testing a given pair of objects
and introduce unnecessary burden for simple tasks.

3. Exploiting transformation semantics for
detecting collisions

In this section, we first present our method for
transformation inversion and semantics extraction.
Then, we show how we can use transformation
semantics for obtaining efficient intersecting tests
without knowing a priori scale factors and for
computing global AABBs containing the model’s local
AABB in world space. AABB trees are the
representation of choice for polygonal models, because
the hierarchy refitting overhead is moderate [4].
Moreover, our global AABB calculation method
makes it easy to use AABB trees for sweep and prune
algorithm.

3.1. Efficient Extraction of Transformation
Semantics

Consider a transformation matrix M, resulting from
composition of matrices S (scale), R (rotation) and T
(translation), in this order. M transforms a locally
defined model into world coordinates. Various
graphics libraries use exactly this form to represent
matrices transforming geometric models, because such
representation is clear to comprehend and also allows
for optimized routines for updating scene graphs [3,
20]. Wu [21] uses an equivalent representation for M
for describing a simple and efficient inversion method.
However, his method only considers isotropic scales.
Our representation for M, depicted in (1), is more
general and considers non-uniform scales.

We demonstrate that M-1, described in equation (2)
can be obtained without computing square roots. The

3x3 part of M-1 is obtained by first transposing each
column and then dividing each row by the square of its
norm. This can be done because ri form an
orthonormal basis. The translational part of M-1 is then
obtained by multiplying –t by the recently computed
3x3 part of M-1. Adapting this method for extracting of
R, S and T from M is straightforward and requires
three square roots to be computed. Note that simply
inverting M does not require any square root to be
computed. Although computing square roots is a bit
slow, it is a relatively cheap operation in recent
hardware.

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= ××

1000

1000
000
000
000

1000
0

1

321

321
T

1333

trrr
M

rrr
0

tI
M

zyx

z

y

x

sss

s
s

s

 (1)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅−

⋅−
⋅−

== −−

10
strsr
strsr
strsr

TRSM

T
zz

T
yy

T
xx

T

33

22

11

11)((2)

Our inversion method is very efficient, requiring 27
multiplications, 3 divisions and 12 additions against
Wu’s method, which demands 21 multiplications, 1
division and 8 additions. Thus we avoid the brute-force
approach that yields 280 multiplications, 1 division
and 101 additions. Wu’s method is proven to be just
about 17% and 31% faster in 10 million executions in
Pentium IV and Pentium II processors, respectively.
Since square roots are avoided, it is possible to achieve
not only better performance, but also robustness in
intersection algorithms because half mantissa bits is
not lost due to square roots.

3.2. Computation of Global AABBs for Broad
Phase

Sweep and Prune algorithm requires global (world
space) AABBs containing each model for collision
culling. A typical 3D scene usually provides a local
AABB for each model, which is transformed into
world space by a matrix M. The naïve approach for
obtaining the global AABB consists of transforming
the eight vertices of the local AABB by M, and then
using these vectors to compute the global AABB. We
present a geometric method that is significantly
simpler and faster than the naïve approach. Observe
that the components of the local AABB’s edge vectors

are, in world space, complementary with respect to the
dimensions of the global AABB that tightly fits the
transformed, local AABB. This is illustrated by Figure
1. First, we transform the minimum point of the AABB
by M, obtaining p. The directions of the global edges
are obtained efficiently by lookup over the first three
columns from M. Then these directions are multiplied
by the width, height and depth of the local AABB. The
sign of each component of each edge vector in world
space is checked. If that component is negative, then it
moves p in the direction of the minimum point of the
global AABB. Otherwise, we are moving p towards
the maximum point.

Figure 1. An oriented box and its edge
directions, a and b. The maximum and

minimum points of the global AABB are p + ax
+ bx + by (positive components) and p + ay

(negative components), respectively.

3.3. Efficient Collision Detection between
Deformable Models

Although refitting instead of rebuilding a BVH is
cheaper when the respective model changes its shape,
this procedure has a considerable cost [4] and can
become a bottleneck in scenes containing some
complex deformable models or various simpler
deformable models. We propose a slight modification
in the broad phase procedure that overcomes this
problem. The scene provides a local, up-to-date AABB
containing each deformable model. An AABB tree is
refitted only when the global AABB containing the
corresponding model, if deformable, is touched during
broad phase. Thus, our procedure updates only those
models that must be processed in the narrow phase,
and considerably improves the efficiency of
intersection tests.

3.4. Primitive Intersection Tests using
Transformation Semantics

The intersection algorithms between primitives
have to be adapted in order to provide support for
scaling. Our approach for adapting such algorithms is

based on the diagram illustrated in Figure 2. The
directed graph in this figure establishes a visual
reference for concatenation of transformations from A
and B coordinate systems, so edges represents the
required transformations between coordinate systems,
illustrated as vertices. Our intersection algorithms
choose one from seven possible coordinate systems to
carry out intersection tests. Transformation semantics
provide a way to transform primitives to the desired
coordinate system. Transformation matrices from A
and B to B”, for example, is performed by the matrices
T-1

BTARASA e RBSB, respectively

Figure 2. Diagram illustrating the

transitions between the seven coordinate
systems available for intersection tests.

All the basic intersection tests needed for narrow

phase between AABB trees are simple to obtain by
using this paradigm. A’ and B’ systems illustrated in
Figure 2 are usually most convenient for tests using
SAT, because it requires only the pre-computation of
rotations, translations and scales from a system to
another. This simplifies intersection tests between
OBBs because they relative orientation is the same for
the entire AABB hierarchy [4]. The same cached
information can be reused for testing an AABB in A
system against a triangle in B using SAT, which
requires testing 13 potential separating axes. Testing a
triangle pair for intersection is similar. However, we
prefer computing intersections in A system, because
the transformation of all triangles to A’ or B’ systems
is avoided. A cached 4x3 matrix is then used to map
triangles from B to A.

Another improvement is obtained when the volume
and number of primitives in each model is considered
when traversing AABB trees during intersection tests.
The adoption of the local system of the most complex
model, for example, reduces the total number of

transformed triangles before the collision test takes
place. Testing a triangle pair using SAT requires
checking 11 possible separating axes in the general
case and 8 axes when the given triangles are coplanar
[9]. In this case, SAT looks at triangles as they were
degenerated prisms. This algorithm can be accelerated
in the coplanar case by projecting the triangles over the
axis-aligned plane that maximizes their area, which
simplifies computations.

Intersection tests between an AABB tree and a
volume in local system are simplified if accomplished
in A’, because distortions due to scales can lead to
more complex intersection algorithms. A sphere, for
example, gets deformed so intersection tests are done
against an ellipsoid. Ray casting is simpler, because
the endpoints of a line segment can be transformed to
the model’s local space before the intersection tests
take place, and parametric values reported by local
tests are still valid in world space. However, special
care must be taken when rays are used, because the
intersection algorithm must consider scale distortions
in the direction.

4. Implementation

The strategies described in prior sections were
developed in C/C++ as a modification to OPCODE 1.3
[6]. Tough this library employs various optimization
strategies it does not provide any support for scaled
models in the variety of intersection tests this library
implements. Moreover, the library was modified in
order to support not only triangle meshes, but also
triangle strips, triangle fans and terrains represented as
regular point grids. Original OPCODE does not
support 64-bit processors and it is very inefficient for
representing non-indexed geometry because memory is
wasted with trivial index tables.

Thus two new versions of the library were
developed, introducing support for non-uniformly
scaled models (version 1.3.1) and for other kinds of
geometry (version 1.3.2), indexed or not. This second
version is not only more flexible than the original
library but saves memory when non-indexed geometry
is used. We also added optional intersection tests, like,
for example, SAT-based triangle-triangle overlap.
OPCODE also allowed us to test the effectiveness of
our approach through the variety of intersection tests it
provides (picking, volume versus model and model
versus model).

5. Results

Our custom versions of OPCODE were used in a
variety of tests carried out in a Pentium IV 3GHz with
1GB of RAM memory. The proposed method for
computation of global AABBs is about 6 times faster
than the naïve algorithm in 10 million executions. This
method can be used not only for broad phase collision
detection, but also for efficient culling in rendering
algorithms. Moreover, our implementation of the broad
phase algorithm became about 5.4 times faster in a
scene containing 64 deformable models. Of course,
time spent for refitting AABB trees was discarded in
this test.

The lazy update of AABB trees has proven to be an
efficient heuristic for minimizing the bottleneck of
refitting BVHs to deformable geometry during
runtime. In a sequence of 10K frames in the same
scene being animated, only 15 of the 64 models have
to be refitted per frame. In other words, our strategy is
about 4.26 times faster than the naïve approach for this
particular scene. Clearly, collision detection in scenes
with a reduced number of models in close proximity
will be further accelerated because only those AABB
trees corresponding to models involved in narrow
phase need to be refitted.

Intersection tests between a pair of polygonal
models are faster when the objects are in close
proximity, because extraction of transformation
semantics requires the computation of three square
roots. However, such tests only occur after the broad
phase algorithm discarded distant, non-colliding pairs,
so the overlap tests between boxes and triangles from
BVHs consumes most processing time in this case.

We used an approach similar to that used by Bergen
[4] and performed exhaustive pairwise tests between
two relatively complex models: bunny (5200 triangles)
and cow (5000 triangles). These models were placed
inside a cube in random positions and orientations
before collision detection takes place. Scaling was not
used in this experiment because we wanted to see how
our modified OPCODE (1.3.2) compares with the
original library (1.3).

Tough computation of three square roots is required
by our implementation, it slightly outperforms the
original library in the tests when models are in close
proximity. As we pointed out, when models are
distant, the original library is faster because its box-
box SAT test is much simpler than computing three
square roots. Our tests also show that triangle-triangle
SAT tests discard pairs that are in slight contact, and
reports a false negative. We repeated this experiment
using a modified SAT that forces the computation of

all potential separating axes and uses ‘fat’ prisms. We
concluded that, even in the worst case, SAT is faster
than Möller’s algorithm originally used by OPCODE.
As a result, our implementation is about 7% faster than
the original library (see Table 1).

Table 1. Time measured for 50K and 500K
pairwise collision tests of two models
randomly placed inside a cube.

#tests 50K 500K
version 1.3 1.3.2 1.3 1.3.2

total (ms) 2.221K 2.128K 20.91K 2.004K
#collisions 833 832 8188 8134

#pairs 393.8K 393.6K 3.681M 3.549M
collision

time
2.132

K
1.998K 1.994K 1.872K

ms/
collision 2.56 2.40 2.43 2.31

rejection
time 88.15 130.41 974.5 13246

ms/
rejection 1.81e-3 2.65e-3 1.98e-3 2.69 e-3

We also developed an interactive application for

visualization of the contact surface between models
manipulated by the user. Performance tests were
carried out in this application using two significantly
complex models: Stanford bunny (69K triangles) and
whitestar (91.3K triangles). Scales were used in this
case, allowing for interaction between the models,
because the spaceship model was too small (Figure 3).
It takes an average time of 62.5 ms for testing
intersection between these models in deep contact
situations. The corresponding contact surface contains
about 9.81K triangle pairs, resulting in only 6.37ns for
testing each pair.

As illustrated in Figure 3, we also carried out a
performance analysis of testing intersections between
volumes (AABB, OBB, Sphere and Capsule) and
geometric models. The performance reported by our
tests is about the same of those obtained by the original
library, which is quite fast for volume tests.

A ray casting algorithm was implemented in order
to exhaustively execute tests of a ray against a model.
Intersection tests first were carried out in A’ coordinate
system. An image with 1024x768 pixels takes 29.3
seconds in average to be rendered from a scene
containing 149K triangles. Then we modified the
picking routines so intersection tests are carried out in
the model’s coordinate system, avoiding scaling
triangles and boxes during intersection tests. The
average rendering time for the same configuration
dropped to 16.63 seconds, resulting in a speedup factor
of 56.7% for 30 consecutive images. Figure 4 shows
the scene being rendered in real-time and the

corresponding image produced by ray casting.
Moreover, intersection tests became more robust,
particularly when a triangle is hit near edges, because
precision is not lost due to the computation of square
roots.

Figure 3. A variety of intersection tests

using complex models. The contact surface
between two complex models is highlighted
(a). Intersection surfaces: against a capsule
(b), an oriented box (c) and a sphere (d).

6. Conclusions

Collision detection is an essential task in various
applications that demands precise, robust and efficient
algorithms. In this work, we presented an approach for
exact collision detection between deformable models,
which supports non-uniform scaling and accelerates
intersection tests based on transformation semantics.

We also presented fast methods for inverting and
extracting semantics from transformation matrices
used by typical graphics applications. An efficient,
geometric algorithm for computation of global AABBs
for broad phase collision was also proposed.
Moreover, the lazy update of AABB trees during broad
phase significantly reduces the number of AABB trees
that must be refitted to deformable models. A number

of experiments demonstrate that the proposed approach
is suitable for real applications. Furthermore, the
modified collision library we developed is efficient,
flexible and easy to use.

Figure 4. A scene displayed in real-time

(top). The same scene is rendered via ray
casting (bottom), with 1024x768 pixels in
16.63s.

7. Acknowledgements

This work was partially supported by
FUNCAP/Brazil.

8. References

[1] Gottschalk, S., Lin, M.C. & Manocha, D. (1996A),
“OBBTree: A Hierarchical Structure for Rapid Interference
Detection”, Proc. of SIGGRAPH ’96, pp. 171–180, 1996.

[2] Figueiredo, M., Marcelino, L. & Fernando, T. (2002), “A
Survey on Collision Detection Techniques for Virtual
Environments”, Proceedings of the 5th SVR, Fortaleza,
October 2002, pp. 295-317

[3] Maia, J. G. R., Cavalcante-Neto, J. B. & Vidal, C. A.
(2003) “CRAbGE: Um MotorGráfico Customizável,
Expansível e Portável Para Aplicações de Realidade
Virtual”, Proceedings of the 6th SVR, Ribeirão Preto, SP,
Brazil, pp. 03-14, October 2003.

[4] Bergen, G. Van Den (1997), “Efficient Collision
Detection of Complex Deformable Models using AABB
Trees”, Journal of Graphics Tools, 2, 4, pp. 1-13.

[5] Cohen, J., Lin. M. C., Manocha, D., & Ponamgi, M.
(1995), “I-Collide: An interactive and exact collision
detection system for large-scale environments”, Proceedings
of ACM I3D, pp. 189-196.

[6] Terdiman, P. (2002) “OPCODE User Manual”,
http://www.codercorner.com/Opcode.htm.

[7] Ehmann, S. A. & Lin, M. C. (2001), “Accurate and Fast
Proximity Queries Between Polyhedra Using Convex
Surface Decomposition”, Proceedings of the ACM
Eurographics.

[8] Vidal, C. A., Gomes, G. A. M. (2004), “Uma Ferramenta
de Autoria de Ambientes Virtuais Adaptável a Diferentes
Motores Gráficos”, Proceedings of the 7th SVR, São Paulo,
pp. 212-224.

[9] Eberly, D. H. (2005), “Geometric Tools”,
http://www.geometrictools.com. Visited in October 2005.

[10] Schmidl, H., Walker N. & Lin, M. C. (2004), “AB: Fast
Update of OBB Trees for Collision Detection Between
Articulated Bodies”, Journal of Graphics Tools, 9(2):1-9,
2004

[11] Hirota, G., Fisher, S. & Lin, M. C. (2000), “Simulation
of non–penetrating elastic bodies using distance fields”,
Technical Report TR00-018, University of North Carolina,
2000.

[12] Smith, R. L. (2005), “Open Dynamics Engine”,
http://www.ode.org. Visited in November 2005.

[13] Teschner, M., Heidelberger, B., Müller, M.,
Pomeranets, D. & Gross, M. (2003), “Optimized Spatial
Hashing for Collision Detection of Deformable Objects”,
Proceedings of VMV'03, pp. 47-54, 2003.

[14] Heidelberger, B., Teschner, M. & Gross, M. (2003),
“Real–Time Volumetric Intersections of Deforming
Objects”, Proceedings of VMV'03, pp. 461-468, 2003.

[15] Govindaraju, N. K., Lin, M. C. and Manocha, D. (2005),
“Quick-CULLIDE: Efficient Inter- and Intra-Object
Collision Culling using Graphics Hardware”, Proc. of IEEE
VR 2005, ACM, Bonn, March, pp. 1-10.

[16] Gottschalk, S. (1996B), “Separating Axis Theorem”,
Technical Report TR96-024, Dept. of Computer Science,
UNC Chapel Hill, 1996.

[17] Gilbert, E. G., Johnson, D. W. & Keerthi, S. S. (1988),
“A fast procedure for computing the distance between
complex objects in three-dimensional space”, IEEE Journal
of Robotics and Automation, 4(2):193–203, 1988.

[18] Rabbitz, R. (1994), “Fast Collision Detection of Moving
Convex Polyhedra”, Graphics Gems IV, pp. 83-109.

[19] Bergen, G. Van Den (1999), “A Fast and Robust GJK
Implementation for Collision Detection of Convex Objects”,
Journal of Graphics Tools, 2(4): pp. 1-13.

[20] OGRE3D (2005), “Object-oriented Graphics Rendering
Engine”, http://www.ogre3d.org. Visited in December 2005.

[21] Wu, K. (1994), “Fast inversion of Length-and Angle-
Perserving Matrices”, Graphics Gems IV, 1994, pp. 199-206.

