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Abstract—In supervised learning, the algorithm accuracy usu-
ally improves with the size of the labeled dataset used for training
the classifier. However, in many real-life scenarios, obtaining
enough labeled data is costly or even not possible. In many
circumstances, Data Augmentation (DA) techniques are usually
employed, generating more labeled data for training machine
learning algorithms. The common DA techniques are applied to
already labeled data, generating simple variations of this data.
For example, for image classification, image samples are rotated,
cropped, flipped or other operators to generate variations of input
image samples, and keeping their original labels. Other options
are using Neural Networks algorithms that create new synthetic
data or to employ Semi-supervised Learning (SSL) that label
existing unlabeled data. In this paper, we perform a comparison
among graph-based semi-supervised learning (GSSL) algorithms
to augment the labeled dataset. The main advantage of using
GSSL is that we can increase the training set by adding non-
annotated images to the training set, therefore, we can benefit
from the huge amount of unlabeled data available. Experiments
are performed on five datasets for recognition of handwritten
digits and letters (MNIST and EMINIST), animals (Dogs vs Cats),
clothes (MNIST-Fashion) and remote sensing images (Brazilian
Coffee Scenes), in which we compare different possibilities for DA,
including the GSSL, Generative Adversarial Networks (GANs)
and traditional Image Transformations (IT) applied on input
labeled data. We also evaluated the impact of such techniques on
different convolutional neural networks (CNN). Results indicate
that, although all DA techniques performed well, GSSL was more
robust to different image properties, presenting less accuracy
variation across datasets.

I. INTRODUCTION

Machine learning (ML) is an area of great importance
nowadays, which is based on creating and modeling systems
capable of learning from examples and automatically improve
with experience. In ML, there is a learning hierarchy that can
be divided into supervised, semi-supervised and unsupervised
learning [1]. Among the most popular applications of ML,
we can cite image classification [2], [3]. An example is
the classification of coffee plantations from remote sensing
images, which help farmers to better identify areas with coffee
farming [4]. However, for this automatic recognition to work
in the best possible way, a large amount of data is needed,
especially labeled data to train a classifier. Specialized image
and video classification tasks often have insufficient data, since
obtaining good labels is a difficult and costly task, or the data
access is restricted due to privacy concerns.

Several techniques for data augmentation (DA) have been
employed to obtain more labeled data in image classifica-
tion [2], [5], [6]. DA is the process of generating samples
by transforming training data, to improve the accuracy and
robustness of classifiers. Previous works have demonstrated
the effectiveness of DA through simple techniques, such as
cropping, rotating, and flipping input images [6]. The choice
of the DA strategy is important to reach good accuracy and
robustness properties, with a limited number of additional
training samples [2]. However, constructing DA schemes which
result in simple, fast algorithms and improve the classification
results is a non-trivial task, since successful strategies vary
with the nature of data present in different applications [7].
Moreover, there are not many comparative studies that show
the performance differences of these different augmentations,
especially using semi-supervised learning (SSL).

In this work, we employ three DA techniques in image
classification: i) four different GSSL techniques to propagate
the labels to unlabeled elements; ii) image transformation that
expands the dataset by applying effects such as cut, rotate,
etc; iii) GANs to create new samples [8]. We carried out an
experimental evaluation using features extracted by CNN, i.e.,
ResNet, VGG16, VGG19, Xception. We analyzed the results
using the three DA techniques to understand the advantages
and disadvantages of each one in five datasets: digits and
letters (MNIST and EMINIST), animals (Dogs vs Cats), clothes
(MNIST-Fashion) and remote sensing images (Brazilian Coffee
Scenes). The last one is very challenging since it is composed of
satellite images of coffee plantations. The recognition of crop
regions in remote sensing images still poses many challenges.

The remaining of the paper is organized as follows: Section II
presents related work using DA. Section III briefly presents
the DA techniques used in this work. Section IV describes the
experimental setup employed in this paper. Section V presents
the experimental results and the comparison among different
data augmentation scheme, especially using graph-based SSL.
Finally, Section VI presents conclusions and future work.

II. RELATED WORK

The performance of the algorithms in supervised learning
usually can be improved according to the increase in the number
of instances in a database. However, in real-life situations, we



do not always have sufficient examples available especially
labeled ones. Data augmentation (DA) consists in transforming
the available samples into new samples using label-preserving
transformations.

Most DA methods adopted in image classification setups
use techniques like cropping, mirroring, color casting, scaling
and rotation for creating additional training images. In [5],
the authors explored and compared multiple solutions to the
problem of data augmentation in image classification. They
considered the tiny-imagenet-200 data and MNIST datasets
and employed image transformations and GANs to generate
images of different styles. They proposed a method to allow a
neural network to learn augmentations that best improve the
classifier. They conclude that GANs and neural augmentations
do not perform much better than traditional augmentations and
consume much more computational resources.

In [6], authors considered Alexnet as the pre-training network
model and a subset of CIFAR10 and ImageNet (10 categories)
were selected as the original dataset. The data augmentation
methods used in their paper included: GAN, flipping, cropping,
shifting, PCA jittering, color jittering, noise, rotation, and some
combinations. Authors found that cropping, flipping, GAN,
rotation perform generally better than others.

In [9], authors proposed a greedy strategy that selects the
best transformation from a set of candidate transformations
resulting in a computationally expensive process. An automated
way for finding transformation parameters that lead to increased
accuracy and robustness of classifiers was proposed by [2]. They
transformed samples by small transformations that induced
maximal loss to the current classifier. Then, they performed
a simple modification of the Stochastic Gradient Descent
(SGD) algorithm to incorporate the proposed DA scheme in
the training of deep neural network classifiers.

Different applications have employed DA. In [10], the
authors studied augmentation of drone sounds to detect
commercial hobby drones in real-life environments and help to
detect drones used for malicious purposes. They recorded the
sound produced by some popular commercial hobby drones,
and then augmented this data with diverse environmental
sound data to remedy the scarcity of drone sound data in
the diverse environment. The research in [11] explored the use
of a DA method for training a deep learning algorithm for gait
recognition as biometric information. They generate synthetic
video data with 6.5 million frames of real motion capture data,
video data and 3D mesh models. Authors [12] used DA in the
development of a model that artificially augments a dataset of
real images with 2D human pose annotations using 3D Motion
Capture data. In [13], the authors proposed a method to create
a grid of n× n cells, in which each cell contains a different
randomly rotated image and introduces a natural background
in the newly created image. The dataset considered has aerial
images of cows and natural scene backgrounds.

Few works presented semi-supervised methods for data
augmentation. Authors in [14] proposed an approach that
can synthesize large-scale labeled training datasets using 3D
graphical engines based on a physically-valid low dimensional

pose descriptor. They validated the dataset quality by per-
forming human pose estimation using deep neural network
models. Some works used data augmentation to improve semi-
supervised learning (SSL) accuracy, like [15] that employed
state-of-the-art data augmentation to generate diverse and
realistic noise. They presented good results on text and vision
datasets.

III. DATA AUGMENTATION (DA)

A DA technique is a method capable of augmenting the
training dataset while preserving its original label and can be
represented as the mapping presented in Equation 1. The fact
that DA is based on techniques that preserve the original labels
of an example means that if a given x has a label y, then φ(x)
will also have a label y [16].

φ : S 7→ T (1)

where S is the original training set and T is the augmented
set from S. Then, the augmented dataset S′, containing the
original data and the data augmented by the technique φ is
defined in Equation 2.

S′ = S ∪ T. (2)

There are several approaches to generate more data from
the training set. Following, some techniques are presented in
more detail.

A. Graph-based Semi-Supervised Learning (GSSL)

To acquire a sufficiently large labeled training set is ex-
pensive, time-consuming, and often infeasible. Due to the
abundance of the unlabeled data available, SSL is interested
in how this data can be used to improve the accuracy of the
classifiers produced [3], [17], [18]. The work-flow in Figure 1
describes the approach for DA employing SSL. The idea is
to use a few labeled data together with a large amount of
unlabeled data as input for an SSL algorithm, which will
generate augmented labeled data. This augmented set can
improve a supervised classifier prediction.

Here, we employed graph-based semi-supervised learning for
DA. Graph-based SSL uses two different datasets for training
[19]: the set of labeled data Xl = {(x1, y1), . . . , (xl, yl)} and
the set of unlabeled data Xu = {xl+1, . . . , xl+u}, where y ∈ Y
corresponds to the data labels, l� u, X = l + u. Given both
sets as input, first we construct a graph G = (V,E,W ) where
each example x ∈ X corresponds to a vertex v ∈ V . E is
the set of edges and W is a matrix with the corresponding
weights for each edge. A complete weighted graph can be
used or some strategy like k-nearest neighbors (kNN) for
graph sparing, where each edge is connected to its k nearest
neighbors [20]–[22]. Finally, a label propagation algorithm can
run on the graph to spread the known labels to the unlabeled
vertices. This way, we can increase the labeled set with the
labels predicted by the algorithm: given a small labeled set and
an unlabeled set as input, the output is an augmented training
set.



Fig. 1: Work-flow for data augmentation (DA) process using semi-supervised learning (SSL): given a small set of labeled data
together with a high amount of unlabeled data, SSL is capable of producing augmented labeled datasets. The augmented labeled
data will be used to train some supervised classifier to generate better predictions.

We considered the following GSSL algorithms:

• Label Propagation (LP) [23]: it occurs via the iteration
of the following:

Ŷ (t+1) = P Ŷ (t); (3)

Here, Pij =
Pij∑
k Pik

and Ŷ (0) = Y = [Yl, Yu]
> is the

matrix representing the initial labeling.
• Local and Global Consistency (LGC) [24]: minimizes the

following cost function:

Q(F ) = 1

2
(tr(FTLF ) + µ(F − Y 2)) (4)

where L is the unnormalized graph Laplacian. The pa-
rameter µ ∈ (0,∞) controls the trade-off between fitting
labels versus enforcing the graph smoothness by mini-
mizing local differences. A matrix F = {FT

1 , . . . , F
T
n }T

corresponds to a classification on the dataset X .
• Gaussian Fields and Harmonic Functions (GFHF) [25]:

builds upon the initial LP. Here authors show that the
derived solution is harmonic, which means that the value
of the classifying function f at each unlabeled instance is
a weighted average of its neighbors at unlabeled points:

f(j) =
1

dj

∑
Wijf(i) (5)

for j = l + 1, . . . , l + u.
• OMNI-Prop (OMNI) [26]: it works by iteratively updating

the scores of vertex i holding a label y (represented by a
self-score qiy) and the neighborhood of i holds this same
label (represented by the follow score δiy).

qiy =

∑n
j=1Aijδjy + λby∑n

j=1Aij + λ
(6)

and,

δjy =

∑n
i=1Aijqiy + λby∑n

i=1Aiy + λ
(7)

where Aij is the ij-element in the adjacency matrix; by
in each equation is the prior score; and λ is the prior
strength parameter, which controls the updates of by .

B. Image transformations (IT)

Image transformation is a simple and widely used approach
for DA. Here, image transformations are applied to an original
labeled image, generating a new set of images with the same
label. Thus, an increased dataset is obtained, composed of the
original images plus the edited ones. The image transformations
are usually divided into two categories: photometric techniques
and geometric techniques [16]. Photometrics apply effects
such as noise, blur, color effects (e.g., brightness, saturation,
color jittering), etc. Geometry uses, for example, rotations,
translations, scales, flips, etc.

Geometric transformations are easily implemented and
help overcome positional biases. However, there are some
applications (e.g., medical) where the biases are more complex
than positional and translational variances. We also need to
take care of some geometric transformations such as rotation
or random cropping to make sure they have not altered the
label of the image (ex. 6 versus 9).

C. GANs

Generative modeling refers to the practice of creating
artificial instances from a dataset such that they retain similar
characteristics to the original set. The GAN architecture first
proposed by Ian Goodfellow [8] is a framework for generative
modeling through adversarial training. It is composed of a
generator G(z), and a discriminator D(x). The main goal
of the discriminator is to determine whether the input was
sampled from the true distribution p(x), or if was produced
by G. The GAN architecture uses a deep learning model
(ex. CNN) in the generator and discriminator networks. It
is able to produce acceptable images on a simple image dataset
such as the MNIST handwritten digits. There have been many
new architectures proposed for expanding on the concept of
GANs and producing higher resolution output images, such
as DCGANs, Progressively Growing GANs, CycleGANs, and
Conditional GANs [27]. However, GANs can present some
drawbacks, since they require a substantial amount of data to
train, depending on how limited the initial dataset is, GANs
may not be a practical solution. Depending on the configuration
and the application, it can fail to produce quality results for
higher resolution, more complicated datasets.



Fig. 2: Work-flow: Phase 1 divides the dataset into train and test sets using holdout (train set gets size A and test set gets size
B). Phase 2: divides the train set into k sets containing only 10% of the original data each one. Phase 3: applies different DA
techniques into the k folds until the set reaches the original train size A. Phase 4: applies CNN feature extraction into the k
training sets and the original test set, and then performs SVM classification to compare the results.

IV. EXPERIMENTAL SETUP

Figure 2 summarizes the methodology used in this work,
which can be divided into four phases presented below.

• Phase 1: Each dataset will be randomly separated between
train and test sets using holdout sampling. Therefore, the
training set will have size A and the test set will have a
size B.

• Phase 2: The train set will be divided into k = 5 disjoint
sets, each one considering only 10% of the train set.

• Phase 3: Finally, each of these k sets will be applied to a
different DA technique, generating new data until the set
reaches the original size of the train set.

• Phase 4: The augmented training sets go through clas-
sification experiments, with the test set defined at the
beginning. For each augmented set, the SVM classifier is
applied. In the end, each technique will be evaluated and
compared, calculating the average results.

A. DA generation

In Phase 3, three DA techniques are employed:

• Graph-based Semi-supervised Learning (GSSL): From
each training set with 10% of labeled data randomly
selected, a GSSL algorithm is applied to label the other
90% of the unlabeled data. This set with predicted labels

is used as an augmented set. The kNN approach was
employed to construct the graphs. We considered k = 5.

• Image Transformation (IT): From each training set with
10% of labeled data randomly selected, IT techniques
are applied to generate increased data until reaching the
original training data size. We used the following IT:
rotation, cut, translation, zoom, flip and fill.

• Generative Adversarial Networks (GANs): From each
training set with 10% of labeled data randomly selected,
a GAN is applied. We considered the HyperGAN1. Some
of the main default parameters of the implementation are
as follows, we only change the number of iterations, batch
size, and image size:

– Discriminator D: 4 layers, tanh as final activation,
1 fully connected layer;

– Generator G: 64 as final depth, tanh as final activa-
tion;

– Training: learning rate D (ηD) = 0.0001, learning
rate G (ηG) = 0.0001, 5,000 iterations, batchsize =
variable with the size of the images, image dimension
= same as the dataset considered;

1https://github.com/HyperGAN/HyperGAN



B. Feature extraction with CNN

For Phase 4, we used different convolutional neural networks
(CNNs) pre-trained on ImageNet as feature extractors [28]. We
used as feature vectors, the output of the last layer before the
classification layer. The CNNs considered here were ResNet50,
VGG16, VGG19, and Xception:
• VGG16 and VGG19: are CNNs with 16 and 19 weight

layers, respectively. There are 13 convolution layers for
VGG16 and 16 for VGG19, with 3 fully connected layers.
The pooling is of type max pooling. The feature vector
generated by the network has dimensionality 1× 4096.

• ResNet50: is a CNN with 50 weight layers, being 49
convolution and 1 fully connected layer. The pooling is of
type global average pooling. The feature vector generated
by the network has a dimensionality of 1× 2048.

• Xception: is a CNN with 36 layers structured in 14
modules. The pooling is of type max pooling and global
average pooling. The feature vector generated by the
network has dimensionality 1× 4096.

C. Evaluation

The k augmented sets with their features extracted by a
CNN are used for the SVM classification experiments with
validation by the original test set. Then, with the results, the
accuracy measure and the standard deviation were calculated
for further comparison and evaluation among all approaches.
Each result considers the average of the k augmented training
sets generated by each DA technique and for each CNN, given
a dataset.

D. Implementation and execution environment

We used the TensorFlow2 and Keras3 libraries both for
feature extraction with the CNNs and for applying IT. The
scikit-learn4 for SVM classifier and NumPy5 for vectors and
arrays.

The experiments were performed on a notebook with Intel I5
processor 7GHz 2.5GHz, 8GB RAM and NVIDIA GEFORCE
920MX GPU with Windows10 and Python 3.7.

E. Datasets

Brazilian Coffee Scenes [4]: this dataset is composed of
remote sensing images of coffee plantations in cities of Minas
Gerais, Brazil. The dataset consists of 2876 examples (50% of
the class coffee and 50% of the class non coffee). We divided
into train and test sets with 70% and 30% of data, respectively.
Thus, the train set had 2014 examples and the test set had 862
examples, both sets had 50% from each class. Figure 3 shows
some examples of the images captured by the sensor.

Dogs vs Cats [29]: this dataset contains images of dogs
and cats. We considered 10,000 training examples and 2,000
test examples, both sets had 50% from each class. Figure 4
presents some examples.

2https://www.tensorflow.org/
3https://keras.io/
4https://scikit-learn.org/stable/
5https://www.numpy.org/

Fig. 3: Example of coffee (a - b) and non-coffee (c - d) images
from Brazilian Coffee Scenes dataset [4].

Fig. 4: Example of dogs vs cats dataset [29].

MNIST [30]: This dataset consists of images of handwritten
digits. Here, we only used examples of the digits 3 and 8, with
7,000 examples in total. We divided into train and test sets
with 70% and 30% of data, respectively. Thus, the train set
had 5,600 examples and the test set had 1,400 examples, both
sets had 50% from each class. Figure 5 shows some examples.

Fig. 5: Examples of MNIST dataset [30].

Extend MNIST - EMNIST [31]: this dataset contains images
made up of handwritten digits and letters. We only used
examples of the letters “D”, “G”, “O” and “Q” (which bear
some resemblance and would be a challenge for the classifier),
with 5,600 examples of each class and a total of 22,400
examples. We use the train and test partition from the author,
thus the train set has 19,200 examples and the test set has
3,200 examples. Figure 6 shows some examples of the images.

Fig. 6: Examples of EMNIST dataset [31].

MNIST-Fashion [32]: this dataset contains images in gray
levels associated with 5 classes: ankle boot, coat, dress, shirt,
and sneaker, presented in Figure 7. Each class has 7,000
examples totaling 35,000 examples. We use the train and test
partition from the author, thus the train set has 30,000 examples
and the test set has 5,000 examples.

V. RESULTS

This section presents the results comparing the DA tech-
niques Graph-based Semi-Supervised Learning (GSSL) - con-



TABLE I: Classification accuracy considering different DA techniques in five different datasets. All the DA techniques generated
90% of the training set using as source only 10% of the original training set. As a baseline, the last column shows results when
the whole training set was used (no data augmentation). We can observe that the DA techniques perform very well, in many
cases obtaining accuracy values very close to the baseline. GSSL techniques also presented good results.

IT GSSL(LP) GSSL(LGC) GSSL(GFHF) GSSL(OMNI) HyperGAN Baseline
Brazilian Coffee Scenes

ResNet50 87.35 ± 1.79 79.79 ± 1.26 81.33 ± 2.19 84.04 ± 1.17 82.54 ± 1.08 - 88.59 ± 1.05
VGG16 79.42 ± 2.27 68.59 ± 1.73 70.92 ± 1.99 72.95 ± 3.93 66.93 ± 3.77 - 85.50 ± 2.57
VGG19 81.06 ± 2.69 72.01 ± 4.36 68.15 ± 4.98 76.47 ± 2.35 68.82 ± 2.15 - 85.71 ± 1.98

Xception 77.53 ± 2.10 71.62 ± 0.98 66.79 ± 0.47 73.42 ± 0.56 72.84 ± 0.66 - 82.3 ± 0.78
Dogs vs Cats

ResNet50 97.85 ± 0.14 98.07 ± 0.17 98.46 ± 0.05 98.37 ± 0.05 98.36 ± 0.07 - 99.20 ± 0.11
VGG16 97.47 ± 0.26 97.46 ± 0.09 98.19 ± 0.13 98.18 ± 0.14 98.19 ± 0.16 - 98.81 ± 0.14
VGG19 97.6 ± 0.15 97.55 ± 0.09 98.06 ± 0.23 97.87 ± 0.09 97.82 ± 0.08 - 98.63 ± 0.08

Xception 65.34 ± 0.62 55.63 ± 0.86 60.82 ± 0.78 62.33 ± 0.70 62.26 ± 1.19 - 95.79 ± 0.65
MNIST

ResNet50 97.79 ± 0.37 97.2 ± 0.16 98.84 ± 0.22 98.38 ± 0.19 98.23 ± 0.12 98.09 ± 0.28 99.04 ± 0.36
VGG16 95.31 ± 0.37 96.59 ± 0.19 98.13 ± 0.296 97.69 ± 0.09 97.79 ± 0.26 96.98 ± 0.29 98.38 ± 0.26
VGG19 96.07 ± 0.47 96.95 ± 0.16 98.33 ± 0.14 97.47 ± 0.16 97.37 ± 0.14 97.58 ± 0.17 98.50 ± 0.29

Xception 90.91 ± 0.88 75.87 ± 4.36 91.33 ± 1.38 91.23 ± 0.46 89.66 ± 1.29 93.03 ± 0.37 96.17 ± 1.95
EMNIST

ResNet50 83.48 ± 0.72 81.45 ± 0.37 82.37 ± 0.41 81.58 ± 0.63 81.45 ± 0.33 83.71 ± 0.62 88.78 ± 0.59
VGG16 83.91 ± 0.17 82.05 ± 0.41 82.73 ± 0.55 82.33 ± 0.42 82.21 ± 0.35 84.3 ± 0.47 88.78 ± 0.28
VGG19 83.85 ± 0.34 80.55 ± 0.22 82.27 ± 0.32 81.8 ± 0.26 80.57 ± 0.15 84.44 ± 0.43 89.22 ± 0.47

Xception 74.28 ± 0.64 63.77 ± 0.87 69.07 ± 0.69 69.1 ± 0.51 68.45 ± 0.47 75.31 ± 0.45 82.72 ± 0.46
MNIST-Fashion

ResNet50 87.58 ± 0.16 87.40 ± 0.13 87.80 ± 0.26 87.11 ± 0.15 86.4 ± 0.22 87.68 ± 0.26 91.36 ± 0.36
VGG16 85.64 ± 0.07 85.23 ± 0.15 86.80 ± 0.17 86.08 ± 0.20 85.72 ± 0.55 86.85 ± 0.31 90.28 ± 0.30
VGG19 86.96 ± 0.25 83.49 ± 0.45 85.90 ± 0.32 84.73 ± 0.31 84.12 ± 0.64 86.6 ± 0.44 90.04 ± 0.24

Xception 81.12 ± 0.26 75.63 ± 0.81 81.79 ± 0.31 80.88 ± 0.28 79,65 ± 0.36 82.77 ± 0.36 87.32 ± 0.36

Fig. 7: Examples of MNIST-Fashion dataset [32].

sidering the algorithms LP, LGC, GFHF and OMNI, Image
Transformation (IT) and HyperGAN.

Table I presents the average classification results (with
standard deviation) for each DA technique and each dataset.
We also show the results considering each CNN used as a
feature extractor. As a baseline, we performed experiments with
the complete original training set (i.e., no data augmentation;
similar to executing the workflow of Figure 2 with only Phases
1 and 4). The baseline results are shown in the last column
of Table I and it represents a possible upper bound for the
classification results because in this case, we had access to the
original labels of the training set.

We could observe that for some datasets, the use of DA
techniques could achieve very close results to the baseline,
indicating that the DA technique could generate or label good
samples for training the classifier. For the Brazilian Coffee
Scenes dataset, we noticed that image transformation (IT)
performed better than the other DA techniques, for any of
the CNNs used. For Dogs vs Cats dataset, GSSL techniques,
especially LGC, performed better although other DA techniques
presented similar accuracies. For MNIST, GSSL-LGC also

showed higher accuracy values. For EMNIST, the HyperGAN
presented slightly higher accuracy values, indicating that
the generated handwritten letters were effective in enlarging
the training set. For MNIST-Fashion, many DA techniques
performed similarly. In general, one conclusion is that, although
the differences among the DA techniques tested were not
large, GSSL techniques, especially LGC, could better handle
the task of enlarging a training dataset. GSSL obtained this
effective augmentation by labeling unlabeled data with similar
distribution to the original dataset. ITs, although very simple,
also performed well in most of the cases.

In our experiments, the employed HyperGAN did not
converge for Brazilian Coffee Scenes and dog vs cat datasets
(see Figures 8 and 9). Coffee plantation recognition, in general,
is difficult because it is usually cultivated in mountainous
regions. This causes shadows and distortions in the spectral
information, which makes the recognition difficult. Moreover, in
a very specific scenario such as recognition of coffee regions
in remote sensing, it is difficult to guarantee the generated
images will be of the expected classes. Expert supervision
may be required and this fact is not desirable when using data
augmentation techniques. In the dataset of dogs and cats, one
possible reason for HyperGAN to not converge is that more
images may be necessary.

In addition, we applied and evaluated CNN as image feature
extractors. Table II presents a comparison of CNN architecture
details (network size, number of parameters and number of
attributes it generates), as well as features file size generated



Fig. 8: Examples of images generated by HyperGAN for
Brazilian Coffee Scenes dataset.

Fig. 9: Examples of images generated by HyperGAN for Dog
vs Cat dataset.

and the time spent. In this case, the last two factors were
evaluated with the MNIST-Fashion dataset, as it is the largest
used in this work (30,000 examples). Xception is the network
with a smaller size, smaller number of parameters and its
features occupy less space in relation to the others. ResNet50,
in turn, generates fewer attributes, took less time and has
the 2nd smallest size and number of parameters. VGG16 and
VGG19 are the networks with a larger size, larger number of
parameters (almost 6x more), occupy more storage and spent
more time.

The ResNet50, VGG16 and VGG19 networks did well for
almost every experiment, with ResNet50 having the best results
overall. Xception, in turn, got the worst results. Depending
on the application of interest, one important decision factor
for selecting a CNN is related to computational complexity.
In our experiments, ResNet50 presented the highest accuracy
in many cases and a good performance related to the other
CNNs tested, both in terms of parameters, processing time,
and feature dimensionality.

VI. CONCLUSION

In this work, we evaluated the effectiveness of different
data augmentation techniques for enlarging training datasets
for supervised learning scenarios. Additionally, to commonly
used data augmentation techniques, we evaluated graph-based
semi-supervised learning (GSSL) techniques and concluded
that GSSL performed very well in our experiments. Our
experimental scenario considered using only 10% of the labels
of the original training set and applying the data augmentation
techniques to label or to generate the remaining 90% of the
training set. GSSL techniques presented high accuracy values
and presented less variation in performance across the different
datasets tested, showing good robustness to the different image
properties. In general, LGC had a better performance since

it uses a hyperparameter that controls the trade-off between
considering the initial labels and the smooth concerning the
graph.

As future work, we would like to evaluate other techniques
to generate the graph in GSSL and other semi-supervised
approaches. We also envision opportunities for evaluating other
GANs. We also believe that GSSL can be more robust in
scenarios in which the training set is enlarged by adding
examples from other datasets and domains, because more data
variability can be included in the training set, consequently
making the classifier more robust to real-world situations.
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