
An Innovative Methodology for Hybrid Rendering at Interactive Rates Combining

Screen Space Reflections with GPU Ray Tracing

Daniel Valente de Macedo, Maria Andréia Formico Rodrigues (Orientadora)

Programa de Pós-Graduação em Informática Aplicada (PPGIA)

Universidade de Fortaleza (UNIFOR)

Av. Washington Soares 1321, Bloco J, sala 30 – Fortaleza – CE – Brazil

{danielvalentemacedo,andreia.formico}@gmail.com

Abstract—The realistic representation of light within a com-
putational domain is crucial in computer graphics applications
(from the film industry to the computer games), however, it
is not a trivial task and an extremely costly performance
wise, in most cases, unfeasible to be performed in real time.
Traditionally, realistic static scenes have been generated using
ray tracing. For dynamic scenes, rendering algorithms at
the GPU level have prioritized speed over quality to achieve
interactive frame rates, with a drawback of generating un-
desirable visual artifacts. This work presents an innovative
methodology for rendering in a hybrid way realistic scenes
(both static and dynamic) at interactive rates. To generate
reflections, it combines Screen Space Reflection (SSR) with
ray tracing in GPU and, for shadows, it uses shadow maps
and/or ray tracing. Systematic tests using varied scenarios
(with flat, curved, rigid, and deformable objects) showed that
this innovative methodology is able to generate high quality
reflections at interactive rates (on average of 30 frames per
second) in dynamic scenes, including multiple recursive rays.

Keywords-Realistic Reflections; Dynamic Scenes; Real-time;
3D Scenes; Raytracing

I. INTRODUCTION

In recent years, 3D graphics applications have been

increasingly present in many relevant areas: entertainment,

commercials, multidimensional data visualization and explo-

ration, simulation on engineering and medical processes, etc.

In particular, the level of quality required by the users of

these applications has increased, aiming for very realistic,

accurate and fast results. Consequently, this high demand

has stimulated the emergence of faster graphics cards and

more robust processors with high parallel processing capacity.

However, even with the evolution of these hardwares, the

current graphics cards still have important limitations, both

in terms of quality and efficiency of the images generated.

Computer games, movies, and visualization of large three-

dimensional data sets has a high dependency on the rendering

process and target very important aspects of the computer

graphics, such as: processing time, visual realism, interactive

frame rates, robustness in terms of scalability (number of

polygons processed over time and update rates on geometries

of moving objects), resolution of generated images, etc. The

GPUs are essential parts of graphics cards which influence

directly the performance of the application. Recently, due to

the high demand on parallelism provided by the GPUs and

to take advantage of its robustness, the costly and traditional

algorithms based on ray tracing began to be exploited in

GPU, focusing on the rendering of 3D scenes.

Initially, visual effects (like shadows, reflections, indirect

light, etc.) in interactive scenes were created using precom-

puted texture maps. As a result, the first examples of very

simple 3D static scenes containing a quite limited number

of rigid moving objects with low geometric complexity

were produced, synthesized by ray tracing [1]. Currently,

the ray tracing technique is not yet a widespread feature in

interactive graphics applications, even in the area of digital

games. In general, this is due to its high computational cost,

which ends up compromising the user experience by not yet

achieving interactive rates (FPS) with the current hardware.

In particular, shadows and reflections are relevant effects,

which add value to the generated images and, consequently,

to the user experience, achieving a satisfactory quality result,

when perceived by the human eye, but still rather complex

to be synthesized by computer in real time.

Very recently, few hybrid solutions combining rasterization

and ray tracing have been proposed. The one that most relates

to this work is from Ganestam and Doggett in GPU [2], in

which ray tracing is used to compute reflections of objects

that are close to the observer, and a cubemap of g-buffers is

used to render objects which are located further away from

the observer.

There are two fundamental differences between the Ganes-

tam and Doggett’s solution [2] and the one presented in

this work: (1) in this work, reflections are always provided,

whereas in the work proposed by the above cited authors, the

reflections can fail when an object (or part of it) is occluded

in the cubemap; and (2) in the test scenarios of the cited

work, the generations of reflections in scenes with deformable

body simulations have not been addressed.

Therefore, this work 1 [3] presents an innovative method-

ology of rendering at interactive rates, combining reflections

in screen space [4] with ray tracing in GPU. In addition, as a

proof of concept, it also presents a hybrid rendering engine,

1This paper summarizes the results of a PhD dissertation

named VTracer, capable of generating realistic visual effects

(reflections and shadows) in static and dynamic 3D scenes.

II. HYPOTHESIS AND RESEARCH QUESTIONS

Considering the current hardware and GPU programming,

this work focused on the verification of the following

hypothesis:

“The combination of a raster technique and the ray tracing

algorithm, in a hybrid way, generates realistic visual effects

(shadows and, particularly, reflections) at interactive rates,

both in static 3D scenes containing flat and curved objects,

and in dynamic 3D scenes, whether these objects are rigid

or deformable.”

Based on the above hypothesis, six research questions

were elaborated and answered (resulting in publications in

qualified vehicles), as follows:

1) Is it possible to generate shadows and use a hybrid

solution for SSR and ray tracing to generate reflections

in 3D scenes at interactive rates? [5], [6], [7] X

2) Is it possible to generate realistic reflections of flat and

curved objects, whether static or dynamic, through a

hybrid rendering solution? [6], [7] X

3) What are the existing GPU libraries and acceleration

data structures that would support a hybrid solution

for reflection generations on dynamic objects in 3D

scenes? [5], [8], [7], [9] X

4) What are the major acceleration data structures and

their update techniques that can be optimized to achieve

interactive rates with ray tracing in dynamic 3D scenes?

[8], [7], [9] X

5) Is it possible to generate realistic reflections at interac-

tive rates, in dynamic 3D scenes containing rigid and

deformable objects? [8], [9] X

6) Is it possible to evaluate the hybrid solution in dif-

ferent test scenarios, including rigid and deformable

body dynamics simulations, focusing on the resulting

images’s scalability, visual realism, processing time,

and frame rate? [9] X

III. AN INNOVATIVE METHODOLOGY FOR HYBRID

RENDERING TO GENERATE REFLECTIONS

Figure 1 shows the architecture and the components from

VTracer, being two of them responsible for the special effects:

(1) the shadow composer, used for the generation of shadows

using shadow maps [10] or ray tracing; and (2) the reflection

composer, in charge of combining the reflections from SSR

and ray tracer. More specifically, the reflection composer is

divided into two steps: (1) one using the SSR [4] algorithm;

and (2) another one using a ray tracer.

In the first step, our algorithm gets a reflection map from

the G-buffer (i.e., a map indicating which pixels represent

objects with reflections) and uses this information to generate

the initial reflections applying the SSR. To take advantage of

the main benefits that both techniques offer and bypass their

Figure 1: Diagram showing the architecture and the main

VTracer’s components.

limitations, we initially generate both the reflections using

the SSR and a mask map of the areas with the scene points

in which the SSR failed to calculate the reflections. This is

particularly a well-known problem of the SSR, since it only

processes what is visible in the image space. The second

step of the algorithm focuses on the 3D scene geometry, the

mask map containing the pixels that needs ray tracing from

SSR and the G-buffer information, wich are passed to the ray

tracer to calculate the secondary rays for the reflections (the

information referring to the primary rays are already available

in the G-Buffer), and then merge the SSR reflection from the

previous step with the additional raytraced reflections. The

ray tracer verifies each pixel of the mask generated during

the first step, searching for pixels that were not correctly

calculated. If any pixel satisfying this situation is found, a

reflected ray from the viewer’s eye to that point is calculated

and ray traced, resulting in a new complementary reflection

image. If necessary, more secondary rays are generated until

the reflected object is found. As a result, the reflection of

objects that lie outside the screen-space or that are occluded

by any other objects can be processed.

It is important to emphasize that, for the ray tracer of the

second step, two reflection modules were developed. The first

one, with NVIDIA’s Optix (used in the first implementation

of the algorithm [7]). The second one, in CUDA, based

on a GPU data structure inspired by a Linear Bounding

Volume Hierarchy (LBVH) [11], to accelerate the generation

of reflections in dynamic scenes with rigid and/or deformable

objects. We remark that for aiming at processing acceleration,

our ray tracer distinguishes between the static objects and

dynamic ones, which are divided into two distinct lists, where

each list is traversed separately and the nearest intersection

point is used, discarding the need of rebuilding the whole

data structure of the scene on every frame. Finally, the two

reflection images are combined and a Gaussian Blur [12] filter

is applied to minimize the artifacts generated by the SSR,

especially in regions of transition between the reflections.

IV. TESTS, METRICS, AND RESULTS

The new methodology presented in this work was applied

in varied scenarios. Thorough functional tests, our aim was to

identify and correct punctual situations that potencially could

generate failures. In addition, we conducted performance

tests focusing on realism, frame rate, and level of scalability

of the generated images.

To measure the level of realism of the images, we applied

two objective metrics (SSIM and RMSE) [13], [14], to

evidence the quality of the images. The main diference

between these metrics is that the RMSE estimates absolute

errors; whereas the SSIM is a perception-based model which

considers image degradation as a perceived change in the

structural information, while also incorporating important

perceptual phenomena, such as both luminance and contrast

masking terms. Some test results with different types of

reflective objects are shown in Figure 2. Others, performed

with dynamic simulations of rigid and deformable bodies,

are shown in Figures 3 and 4, respectively. A test including

multiple recursive rays in a dynamic simulation of reflective

rigid bodies is shown in Figure 5. An illustrative animation of

several test results can be visualized at https://goo.gl/NxkEzp

The results show that it is possible to combine reflections

in screen space with ray tracing in GPU. Additionally, they

show that shadows and hybrid reflections using SSR and ray

tracing can be generated in static scenes at high frame rates,

usually, over 30 FPS. Regarding to the generated shadows,

performance tests were conducted with shadow maps, which

achieved much higher frame rates and a visual realism very

similar to the results generated by ray tracing.

Images with Reflections Rays Distribution

Figure 2: Images generated by the VTracer’s hybrid reflection

module. Tests with different types of reflective objects,

highlighting the ray distribution (colored in pink and blue,

respectively, indicating the rendering by ray tracing and SSR).

Several test cases with a realistic hybrid reflection within

a static scene with rigid objects which are in constant

movement throughout the animation were also successfully

produced. In addition, it was possible to conclude that

OptiX and its acceleration data structures has not presented

satisfactory performance for this type of scenario. This

verification motivated the development of a new solution

in VTracer, this time fully developed in CUDA, which was

successfully used in dynamic scenes testing, as shown in

Tables I and II.

Scalability tests of the solution also pointed out that for a

scene with many dynamic objects, the realistic rendering

in real-time is still very challenging, due to the high

computational cost required to update the acceleration data

structures of the ray tracing module.

V. CONCLUSIONS

The use of ray tracing in graphical applications at interac-

tive rates is becoming more and more a reality mainly due to

the advances in algorithms, acceleration data structures, and

Table I: Summarized comparative results of each test run with a dynamic simulation of rigid Stanford Bunnies using CUDA

and OptiX

Time Time Implementation
Stanford Bunnies Triangle Count Dynamic Triangles mean +/- std dev min, max

(x103) (x103) (ms) (ms)

5 3.2 2.5 15.2 +/- 0.7 14.0, 17.7 CUDA

10 5.7 5 18.4 +/- 1.1 16.1, 21.5 CUDA

15 8.2 7.5 22.6 +/- 1.2 21.0, 26.5 CUDA

20 10.7 10 28.9 +/- 1.4 25.5, 32.4 CUDA

25 13.2 12.5 31.7 +/- 1.6 29.6, 37.7 CUDA

30 15.7 15 36.5 +/- 1.5 34.4, 43.7 CUDA

5 3.2 2.5 39.1 +/- 2.1 36.2, 46.5 OptiX

10 5.7 5 55.1 +/- 2.6 52.7, 63.5 OptiX

15 8.2 7.5 75.7 +/- 3.7 70.6, 94.0 OptiX

20 10.7 10 98.6 +/- 3.7 88.2, 113.3 OptiX

25 13.2 12.5 111.1 +/- 5.3 104.0, 135.3 OptiX

30 15.7 15 129.3 +/- 6.8 122.1, 163.9 OptiX

Table II: Summarized comparative results of each test run with a dynamic simulation of deformable Utah Teapots using

CUDA and OptiX

Time Time
Utah Teapots Triangle Count Dynamic Triangles mean +/- std dev min, max Implementation

(x103) (x103) (ms) (ms)

5 3 2.8 14.7 +/- 0.8 13.6, 13.6 CUDA

10 5.9 5.7 21.9 +/- 1.2 20.5, 26.5 CUDA

15 8.8 8.6 28.4 +/- 1.1 26.5, 31.1 CUDA

20 11.6 11.4 36.4 +/- 1.5 33.8, 41.5 CUDA

25 14.5 14.3 44.3 +/- 2.0 40.6, 51.7 CUDA

30 17.4 17.2 50.0 +/- 1.9 45.4, 55.1 CUDA

5 3 2.8 40.9 +/- 0.7 39.8, 43.5 OptiX

10 5.9 5.7 59.5 +/- 2.7 56.0, 66.3 OptiX

15 8.8 8.6 80.7 +/- 2.9 76.0, 88.2 OptiX

20 11.6 11.4 103.3 +/- 3.9 95.9, 115.0 OptiX

25 14.5 14.3 117.0 +/- 4.4 113.0, 136.6 OptiX

30 17.4 17.2 138.7 +/- 6.5 132.9, 159.1 OptiX

Frame #10 Frame #50

Frame #170 Frame #230

Figure 3: Some animation frames of a dynamic simulation

of rigid Stanford Bunnies with a reflective sphere using the

ray tracer module in CUDA

hardware. In this work, we present an innovative methodology

for hybrid rendering of fast and realistic reflections in

rigid and deformable body simulations (including multiple

recursive rays), with frame rates in general over than 30 FPS.

Our solution was implemented for the OptiX library and

Frame #10 Frame #50

Frame #170 Frame #230

Figure 4: Some animation frames of a dynamic simulation

of deformable Utah Teapots with a reflective sphere using

the ray tracer module in CUDA.

as a standalone CUDA implementation. When compared to

images generated by a complete solution based on ray tracing,

the images have a very realistic visual quality with minimal

artifacts, which are practically imperceptible. The metric

SSIM was helpful to analyze the quality of the dynamic

Frame #10 Frame #50

Frame #170 Frame #230

Figure 5: Some animation frames of a test including multiple

recursive rays in a dynamic simulation of reflective rigid

bodies using the ray tracer module in CUDA.

images along the walkthrough animation in a precise and

automated way.

The possibilities of using this solution are many, such

as: plugins integrated to game engines, tools for realistic

simulation of reflections at interactive rates, a module running

together with other library to compose a development kit

aimed at realistic rendering, among others. Finally, we expect

hybrid solutions, similar to the one presented in this work,

to become a trend within the Computer Graphics and that

ray traced solutions running at interactive rates, or even in

real time, become a reality very soon, either by software,

dedicated hardware or both.

VI. PUBLICATIONS

Six publications were directly related to this phd thesis:

1) Fast and Realistic Reflections using Screen Space

and GPU Ray Tracing - A Case Study on Rigid and

Deformable Body Simulations, ACM Computers in

Entertainment, 2018. [9]

2) Real-time Dynamic Reflections for Realistic Rendering

of 3D Scenes, The Visual Computer Journal, 2016. [7]

3) Comparison of Acceleration Data Structures for High

Quality Fast Reflections of Static and Deformable

Models in Walkthrough Animations, SBC Journal on

3D Interactive Systems, 2016. [8]

4) Realistic Rendering in 3D Walkthroughs with High

Quality Fast Reflections, in XIV SBGames, 2015. [6]

5) Desenvolvimento de Aplicações Gráficas Interativas

com a Unreal Engine 4, RITA, 2015. [15]

6) A Hybrid Rendering Engine Prototype for Generating

Real-Time Dynamic Shadows in Computer Games, in

XIII SBGames, 2014. [5]

Finally, the following six other publications in qualified

Conferences and Journals also contributed to the technical

knowledge acquisition and assisted in the study and devel-

opment of this work: [16], [17], [18], [19], [20], and [21].

ACKNOWLEDGMENT

Daniel Valente de Macedo was supported by CAPES under

grant No. 157.257/2012-6 and would like to thank for the

financial support.

REFERENCES

[1] S. Parker, W. Martin, P. Sloan, P. Shirley, B. Smits, and
C. Hansen, “Interactive ray tracing,” in Symposium on Inter-
active 3D Graphics, ser. I3D ’99. ACM, 1999, pp. 119–126.

[2] P. Ganestam and M. Doggett, “Real-time multiply recursive
reflections and refractions using hybrid rendering,” The Visual
Computer, vol. 31, no. 10, pp. 1395–1403, 2015.

[3] D. V. Macedo, “Uma nova metodologia para renderização
hı́brida a taxas interativas combinando reflexões em espaço de
tela com ray tracing em gpu,” Ph.D. dissertation, Doutorado
em Informática Aplicada - Universidade de Fortaleza, 2017.

[4] T. Sousa, N. Kasyan, and N. Schulz, “Secrets of cryengine
3 graphics technology,” Advances in Real-Time Rendering in
3D Graphics and Games Course (SIGGRAPH), 2011.

[5] D. V. Macedo and M. A. F. Rodrigues, “A Hybrid Rendering
Engine Prototype for Generating Real-Time Dynamic Shadows
in Computer Games,” in XIII SBGames, Computação, 2014,
pp. 938–941. [Online]. Available: http://tinyurl.com/jambreg

[6] ——, “Realistic Rendering in 3D Walkthroughs with High
Quality Fast Reflections,” in XIV SBGames, Computação,
2015, pp. 9–15. [Online]. Available: http://tinyurl.com/zeqsl93

[7] ——, “Real-time Dynamic Reflections for Realistic Rendering
of 3D Scenes,” The Visual Computer Journal, vol. 34,
no. 3, p. 337–346, 2016. [Online]. Available: https:
//tinyurl.com/y7nh3hwk

[8] ——, “Comparison of Acceleration Data Structures for High
Quality Fast Reflections of Static and Deformable Models in
Walkthrough Animations,” SBC Journal on 3D Interactive
Systems,, vol. 7, no. 1, pp. 28–37, 2016. [Online]. Available:
http://tinyurl.com/h6xhmur

[9] D. V. Macedo, Y. R. Serpa, and M. A. F. Rodrigues, “Fast and
Realistic Reflections using Screen Space and GPU Ray Tracing
- A Case Study on Rigid and Deformable Body Simulations,”
ACM Computers in Entertainment, vol. 16, no. 4, 2018.

[10] R. Fernando and M. Kilgard, The Cg Tutorial - The Definitive
Guide to Programmable Real-time Graphics. Addison-Wesley,
2003.

[11] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha, “Fast BVH construction on GPUs,” Computer
Graphics Forum, vol. 28, no. 2, pp. 375–384, 2009.

[12] L. Shapiro and G. Stockman, Computer Vision. Prentice Hall,
2001.

[13] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE TIP, vol. 13, no. 4, pp. 600–612, 2004.

[14] R. Hyndman and A. Koehler, “Another look at measures of
forecast accuracy,” International Journal of Forecasting, pp.
679–688, 2006.

[15] D. V. Macedo, Y. Serpa, and M. A. F. Rodrigues,
“Desenvolvimento de Aplicações Gráficas Interativas com a
Unreal Engine 4,” RITA, vol. 22, no. 2, pp. 181–202, 2015.
[Online]. Available: http://tinyurl.com/gs4zbph

[16] D. V. Macedo and M. A. F. Rodrigues, “Experiências com
desenvolvimento ágil de um jogo casual para plataformas
móveis usando o motor gráfico Unity,” in XI SBGames,
Computação, 2012, pp. 148–156. [Online]. Available:
http://tinyurl.com/zt4exbb

[17] D. V. Macedo, H. Pontes, and M. A. F. Rodrigues,
“Criação de arte usando um dispositivo háptico para
pintura digital interativa,” in XV Symposium on Virtual and
Augmented Reality, 2013, pp. 288–291. [Online]. Available:
http://tinyurl.com/jhnlxv8

[18] M. A. F. Rodrigues, D. V. Macedo, Y. Serpa, and et al.,
“Combatendo a halitose: Um Serious Game multiplataforma
em saúde bucal,” in XIII SBGames, Arte e Design, 2014, pp.
210–219. [Online]. Available: http://tinyurl.com/h2scjnz

[19] ——, “Um Serious Game em saúde bucal contra o tártaro,”
in XIV SBGames, Arte e Design, 2015, pp. 699–702. [Online].
Available: http://tinyurl.com/j8ao2k4

[20] ——, “Beyond fun: An interactive and educational 3D
traffic rules game controlled by non-traditional devices,” in
30

th ACM SAC, 2015, pp. 239–246. [Online]. Available:
http://tinyurl.com/zr3ep6q

[21] M. A. F. Rodrigues, D. V. Macedo, H. P. Pontes, Y. Serpa, and
Y. R. Serpa, “A serious game to improve posture and spinal
health while having fun,” in 4

th International Conference on
Serious Games and Applications for Health (SeGAH 2016),
2016, pp. 1–8. [Online]. Available: http://tinyurl.com/zxsraw4

