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Abstract—We propose a new approach for segmenting a
document image into its page components (e.g. text, graphics
and tables). Our approach consists of two main steps. In the
first step, a set of scores corresponding to the output of a
convolutional neural network, one for each of the possible page
component categories, is assigned to each connected component in
the document. The labeled connected components define a fuzzy
over-segmentation of the page. In the second step, spatially close
connected components that are likely to belong to a same page
component are grouped together. This is done by building an
attributed region adjacency graph of the connected components
and modeling the problem as an edge removal problem. Edges
are then kept or removed based on a pre-trained classifier. The
resulting groups, defined by the connected subgraphs, correspond
to the detected page components. We evaluate our method on the
ICDAR2009 dataset. Results show that our method effectively
segments pages, being able to detect the nine types of page
components. Furthermore, as our approach is based on simple
machine learning models and graph-based techniques, it should
be easily adapted to the segmentation of a variety of document
types.

I. INTRODUCTION

Documents are constituted by structural elements arranged
both spatially and hierarchically following some layout to fa-
cilitate understanding by humans. Layout analysis is therefore
an important step in machine based document understanding,
and it strongly depends on the detection of structural elements
contained in the documents. When restricted to document
pages, structural elements correspond to the page components
such as blocks of text, tables, graphics, photos, among others.
Recognizing these components is in general referred to as
page segmentation or document image segmentation [1]. In
this work we address the page segmentation problem.

The page segmentation problem is sometimes divided into
two parts [2]: (i) partitioning an image into homogeneous
regions according to some criteria, where each region is
regarded as a page component, and (2) classifying each of
these regions to attribute them a class label. Page segmentation
is also sometimes referred to as page layout analysis [3], [4].
To avoid confusion, we use the term page segmentation to refer
to the problem of recognizing, i.e., detecting and labeling, the
structural elements of a document page. We understand layout
analysis as a broader process that not only performs page

segmentation but also establishes the spatial and hierarchical
relation among the page components (for instance, reading
order, or a hierarchical relation between a text and a diagram
when the text is a sentence inside the diagram). Examples
of page segmentation, highlighting six distinct categories of
page components, are shown in Figure 1. All images of page
documents shown is this manuscript are from the ICDAR2009
dataset [5].

Fig. 1. Examples of page segmentation (images from the ICDAR2009
dataset [5]). Polygons overlaid on the original input image delimit its page
components. Class labels are highlighted in red.

A major challenge in page segmentation is layout complex-
ity. Complexity arises not only due to layout variability, but
also to the variability of the structural components (e.g., text
in different fonts, sizes and styles, multiple page component
categories, orientation of the components) as well as imaging
conditions (e.g., noise, skew, perspective distortion, uneven il-
lumination). This diversity has affected the diversity of existing
methods for page segmentation and layout analysis [1], [6] and
most of them are tailored for very specific cases. For instance,
works that mention page segmentation are usually restricted
to the segmentation of specific types of components [7]–[9].

In this work, we propose a new flexible method for page
segmentation. From the input-output point of view, our method
receives a document page image and outputs a list of polygons
that delimit the regions corresponding to each of the recog-
nized page components (see Figure 1). The main steps of the
proposed method are:



1) Computation of building blocks (in our case, connected
components) and their classification as part of one of
the classes (category of page components);

2) Grouping of the building blocks (taking into considera-
tion their spatial relations and class labels) and assign-
ment of a unique class label for each group; polygons
are then computed as the enclosing contour for each of
the groups.

The main idea of the method is to first attribute the most
likely class labels for each building block in the document
image. In this work we consider connected components as the
building blocks. However, it is noteworthy to mention that
other components such as pixels, superpixels or flat zones
can be also considered. Then, in the second step the main
idea is to explore structural information aiming to (i) solve
the classification ambiguities and errors, and (ii) group the
building blocks into larger regions so that the resulting final
regions correspond to the expected page components.

Although similar two-step methods are not new in pattern
recognition problems, we are not aware of any method similar
to our formulation for the page segmentation problem. We
highlight two features of the proposed method that make
it suitable to tackle issues related to layout complexity and
diversity. First, we model spatial relationships and similarities
among the building blocks by means of a region adjacency
graph. Graphs are known to be suitable to represent struc-
tural information in general, including structures of document
images [10]. Grouping building blocks that correspond to a
page component can then be viewed as a graph segmentation
problem, where each connected subgraph would define a
page component. The second aspect to be highlighted is the
fact that both of the steps in our method are modeled as
machine learning problems. In the first step, classification of
the building block is done using a machine learned classifier
and, in the second step, subgraphs corresponding to page
components are obtained by removing undesired edges while
keeping the desired ones. This is also done by means of a
machine learned classifier. Machine learned classifiers add
flexibility regarding the adaptation of the method to diverse
types of layouts and page components. Details of the proposed
method are presented in Section II.

In spite of some efforts in the research community to
provide venues for comparative analysis of different meth-
ods [11], existing page segmentation algorithms are still
mostly developed for specific cases and validated on particular
datasets. The same holds with respect to available ground-
truth annotations (for instance, they are either at pixel level,
or at region level with bounding boxes or at region level
with enclosing polygons, and usually limited to a few page
component categories) and evaluation metrics [12].

One of the few available datasets with structural annota-
tions is the PRImA Layout Analysis Dataset (https://www.
primaresearch.org/datasets/Layout Analysis). Part of it has
been used in the ICDAR Page Segmentation and Layout
Analysis competitions in the last years [11]. There is no
separation of the dataset into training and test sets and different

subsets have been used as test images in distinct editions of
the competition. Besides that, although there are annotations
for nine page component types, we did not find works that
address the segmentation of all of them simultaneously. Thus
we have opted to evaluate our method on the ICDAR2009
dataset [13], since it is the one we have used in our previous
work [14]. We use the same evaluation metrics described
in [11]. Our results, although not directly comparable as noted
above, are competitive with the ones achieved in the last
competition [11]. The experimental setup including dataset
description, training and evaluation procedures, as well as the
results of the experiments are described in Section III.

Conclusions are presented in Section IV.

II. PROPOSED APPROACH

In this section we detail the method proposed for page
segmentation. As briefly described in the introduction, it
includes two main steps: (i) classification of building blocks
of the images, which we assume in this work to be the
connected components, and (ii) page component recognition
based on a graph representation of the connected components.
The method is outlined in the pipeline presented in Figure 2.

The input of the pipeline is a document page image to be
segmented and the output is its segmentation result. The path
in the top part of the diagram corresponds to the first step
where connected components are individually classified. The
other path, in the bottom part of the diagram, corresponds to
the second step. Information regarding the connected com-
ponents and classification labels generated in the first step
are used to build a graph representation of the image. Page
components are then computed on the graph and a list of the
recognized components is generated. Details of the two steps
are presented in the next subsections.

A. Connected Components Classification

In this step of the process, prior to connected component
computation, images must be binarized. We used the well
known Otsu’s method. Connected components are labeled with
unique identification numbers to allow easy retrieval later.
Then each connected component is individually classified,
with class labels corresponding to the categories of page
components of interest. For instance, in the ICDAR2009
dataset there are nine page components, namely text, chart,
graphic, image, maths, noise, separator, table and other. Six
of them occur in the images shown before in Figure 1.

Works that explore connected components in document
image analysis usually perform connected component classifi-
cation based on its features (related to, for instance, shape,
size, color, or texture) or based on small image patches
containing the component [8], [14]–[16]. For classification of
the connected components we follow the same idea proposed
in our previous work [14].

The main idea is to crop, for each connected component,
a square image patch containing the component at the center
together with its surroundings. Since connected components
may present a large range of sizes, a size normalization is



Fig. 2. Outline of the method proposed for page segmentation.

also employed. For each connected component a scaling factor
to fit the component inside a 8× 8 square, without changing
its aspect ratio, is first determined. Then the input image is
cropped around the connected component in such a way that
the rescaled size of the cropped patch reduces to 40× 40 and
the connected component stays at its center inside a 8 × 8
square. Note that the scaling is applied only if the connected
component does not fit inside a 8 × 8 square. The area
surrounding the connected component carries some context
information and that is why these patches are called context
image patches. Figure 3 shows examples of context image
patches.

Context image patches are then classified using a convo-
lutional neural network (CNN). The main differences from
our previous work [14] are: (i) in this work we consider the
nine page component categories listed above, whereas in our
previous work we have considered only two classes (text and
non-text), and (ii) we use RGB images as the input to the CNN
classifier whereas in our previous work we have considered
binary images. Additional information regarding the training
of the CNN classifier is presented in Section III-B. Since the
CNN is trained with softmax function on its output layer, given
an input context image patch, it outputs a likelihood score for
each of the nine class labels.

The final result of the first step of the method is the assign-
ment of the nine scores to each of the connected components
in the image.

B. Page Segmentation based on a Graph Representation

After connected components are individually classified,
those that are part of a same page component must be
grouped. This problem could be addressed, for instance as
a clustering problem, where not only the features but also the
spatial coordinates of the connected components would play an
important role in the clustering process. However, clustering
is essentially based on similarities computed between pairs

of elements and there is no simple way to enforce structural
properties to the resulting clusters. Graphs, on the other
hand, are generally accepted as adequate models for encoding
structural information. Thus, we adopt a graph representation
of document pages to perform the grouping.

In our representation, connected components are the nodes
of a graph G. Edges can be added between any pair of
two nodes. If we were able to add only edges linking pairs
of nodes that belong to a same page component, then page
segmentation would be reduced to the problem of computing
the connected subgraphs of G. Conversely, we could also start
from a complete graph and remove all edges that link nodes
that are in distinct page components. In both cases, adding or
removing edges can be modeled as a classification problem:
given an edge, in the first case, one must decide whether the
edge should be added or not, and in the second case, one
should decide whether it should be removed or not.

A region adjacency graph (RAG) where the connected
components are the nodes can be built by first computing the
area Voronoi diagram [2] and then linking the nodes that share
a common edge in the area Voronoi diagram. This results in
a connected planar graph. Assuming that page components do
not overlap each other, RAGs seem to be an adequate choice.
Figure 4 shows part of a RAG corresponding to a page image.

Given the RAG representation of a page as described above,
we model the problem of page segmentation as a problem
of removing edges that link nodes belonging to distinct page
components. After removal, it is expected that any two nodes
in a connected subgraph belong to a same page component.
The task of removing edges would be relatively easy if all
connected components were classified correctly in the previous
step (Section II-A). However, in a general case there is no
such guarantee and there might be nearby components with
conflicting labels. Therefore, to remove edges, we rely on
machine learning and train an edge classifier. To that end,
we assign geometric information of the connected components
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Fig. 3. Examples of context images (3b, 3c and 3d) with the connected
component rescaled within a 8× 8 square at the center of a 40× 40 image
(patches extracted from the image in Fig. 3a). The binary images 3e, 3f and
3g correspond to the connected components of the patches 3b, 3c and 3d,
respectively.

to its corresponding nodes in the graph. We consider the
following geometric features1 related to size and shape of the
connected components.

• Height: Connected component bounding box height,
• Width: Connected component bounding box width,
• Aspect Ratio: Width divided by height,
• Elongation: Ratio between the height and the width,

computed as min(height,width)/max(height,width),
• Solidity: Area of the connected component (in pixels)

divided by the area of its convex hull,
• Area: Number of pixels in the connected component.

1Note that if images are of different resolution or size, then size metrics
should be normalized across images.

Fig. 4. Part of the region adjacency graph, restricted to a cropped region of
the image shown in Fig. 3a.

In addition to these geometrical features, each node also
carries the nine likelihood scores relative to the nine page
component categories which were attributed by the CNN
classifier in the previous step of the pipeline. We have then a
binary classification problem, where each edge (u, v) must be
classified as positive or negative, based on the set of features
consisting of:

• the nine likelihood scores of node u,
• the nine likelihood scores of node v,
• the geometrical features of u,
• the geometrical features of v,
• the Euclidean distance between the centroids of u and v,
• absolute value of the angle between the X-axis and edge

(u, v),
Positive edges are those that we would like to keep whereas
negative are those that we would like to remove from the
graph.

An important characteristic of the RAGs created as de-
scribed above is the fact that we generally obtain a high
quantity of edges linking connected components belonging to
a same page component (e.g., characters within a paragraph) –
positive edges, and a small quantity of edges linking connected
components belonging to distinct page components – negative
edges. Training classifiers with these data would tend to favor
the correct classification of positive edges. However, in the
context of our problem the false positives are more important
than false negatives. For instance, in Figure 4, we can see
many edges linking pairs of characters that are part of a same
text component in the page. Even if most of those edges were
classified as negative, the accuracy of the segmentation would
not be affected if enough edges were classified as positive.
In contrast, a false positive would group nodes that belong
to distinct page components, resulting in a single large mixed
group. In the example of Figure 4, any edge linking a letter
and part of the image should be classified as negative because
otherwise it would join a text and an image page components.



This problem of highly unbalanced classes can be partially
mitigated by training classifiers with a weighted cross entropy
cost function. The weight, denoted w, penalizes more one type
of the error over the other. Additional details on training edge
classifiers are given in Section III-B.

Figure 5 shows examples of false positives. In the first image
the set of edges is correct, whereas in the second image edges
shown in red correspond to false positives. Note, however,
that in this case although the false positives end up joining
two paragraphs, this is a less critical error since both page
components are of the same type.

(a)

(b)

Fig. 5. Edge classification: (a) Ground-truth of the image in Fig. 3a, (b)
example of classification result (false positives in red).

After edge classification, a set of connected subgraphs will
emerge. Each of these subgraphs will be regarded as a detected
page component. As there might be conflicting class labels
assigned to the nodes of a subgraph, a majority vote based
on the highest score label of each connected component is
used to decide the final page component label. The polygon
that delimits each detected page component is computed
as the polygon enclosing all of its connected components.

In this work, we calculate the convex hull to serve as an
approximation of the enclosing polygon.

III. EXPERIMENTAL RESULTS

The proposed method has been implemented using the
Python programming language, together with Tensorflow
library for the classifiers, NetworkX library for building the
RAG and Scikit Image library for image processing.

A. Dataset

We evaluated our approach on the ICDAR2009 competition
dataset [13]. Recall that reasons for this choice are explained
in the introduction. We considered the same 53 images used
in [14], where 28 images (almost half of the data) are for
training and 25 are for testing. Unlike in [14], where only two
classes (text and non-text) were considered, here we considered
all 9 classes of page components: text, chart, graphic, image,
maths, noise, separator, table and background.

B. Training and selection of classifiers

1) Connected component classification: A total of 137, 862
connected components from the training images were ex-
tracted, and they were randomly divided into validation (20%)
and training sets (80%). To train a CNN, we used the same
architecture and hyperparameters of the CNN that achieved the
best validation results in our previous work [14]. It consists
of two sequences of convolution–ReLU–max-pooling layers,
followed by two fully connected layers, plus an output layer
with softmax function. We kept the dropout regularization in
the penultimate layer and used the Adam algorithm [17] for
optimization, as done before. We also evaluated larger patch
sizes, but since no significative gain was observed on the
validation set, we decided to keep the 40× 40 patch size.

The results of this CNN and the results achieved in our
previous work are shown in Table I. It should be noted,
however, that while here we used RGB input patches and
considered all the nine classes, in our previous work we used
binary input patches and considered only two classes (text and
non-text). Nevertheless, the overall accuracy has improved as
well as the precision and recall with respect to the text class.
These results indicate that color information is relevant for the
classification of the connected components.

TABLE I
CONNECTED COMPONENT CLASSIFICATION RESULTS ON THE VALIDATION

SET

CNN classifier Accuracy Precision Recall
(over all classes) (text class) (text class)

Previous [14] 98.68 (2 classes) 99.30 98.88
Current work 99.31 (9 classes) 99.59 99.89



2) Edge classification: To train the edge classifier, RAGs
were built for each of the training images as described in
Section II-B, and then edges from all of the training images
were pooled together and randomly split into two subsets, 20%
for validation and 80% for training, keeping the percentage
of positive and negative examples in both subsets. We used
standard neural networks (Multilayer Perceptron Networks) for
edge classification.

Since there are more positive examples than negative ones
and since false positives are critical (see Section II), we
adjusted the edge classifier to favor true negatives (correct
classification of edges linking components in distinct regions)
by playing with the positive class weight w in the cost
function.

More specifically, we varied the weight parameter w in
the range [0.01 − 0.9] and found out that best results with
respect to the validation set were in the range [0.01 − 0.09].
This means that errors in classifying positive edges have
small importance while errors in classifying negative edges
are heavily penalized. Recall and accuracy for weights in this
range are shown in Figure 6. We denote negative edges (those
that link connected components belonging to different page
components) as class 0 and positive edges (those that link
connected components within a same page component) as
class 1. Note that the overall accuracy is close to the recall of
the positive class since most of the edges are positive ones.

Fig. 6. Class balancing parameter w ∈ [0.01−0.09]: recall of negative edges
(Recall-0), recall of positive edges (Recall-1), and accuracy.

After this preliminary evaluation, the ten classifiers corre-
sponding to weight range [0.01−0.09] were further evaluated
to choose one final classifier. The second evaluation aimed
at choosing the classifier that generates the best page seg-
mentation results. To quantify page segmentation we used a
score based on the segmentation + classification metric defined
in [11]. The metric is used to define a success rate score that
represents the percentage of area overlap between regions of
the detected page components and the ones defined by the
ground-truth. This score also takes into consideration the class
label of the regions.

Figure 7 shows the mean success rate, with respect to a
subset of four training images, of each of the ten classifiers.
Based on this evaluation, we find that the class balancing

weight parameter w = 0.07 yields better results and thus the
corresponding classifier was chosen as the final edge classifier.
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Fig. 7. Success rate at segmentation + classification level for weights w in
the range [0.01− 0.09] over a subset of four training images.

C. Results

Results presented in this section were computed on the
test set employing the proposed method, with connected
component classifier and edge classifiers trained and chosen
as detailed above.

Figure 8 shows the segmentation and segmentation + clas-
sification success rates per image on the test set. The segmen-
tation success rate is similar to the one computed based on
segmentation + classification except that it does not consider
class labels. Success rates, for both metrics, on individual
images are all above 80%. Furthermore, scores based on both
metrics are very close each other for every image, indicating
that only a small percentage of the correctly detected regions
are classified wrongly.
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Fig. 8. Success rate with respect to segmentation and segmentation +
classification metrics for each of the 25 test images.

As we mentioned in the introduction, our results are not
directly comparable to the ones reported in the last competi-
tion [11] because, to the best of our knowledge, none of the
methods in the competition and others described in the related
literature attempted classification of all nine page component
types and also because the test set we have used is not the
same used in the competition. Nevertheless, we point that
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Fig. 9. Examples of results: ground-truth at the top row (9a - 9d) and respective results below (9e - 9h). Images 9g and 9h correspond to the two worst
results. See details in the text.

some of our test images are included in the last competition’s
test set and, therefore, comparison provides some information
on how our method is performing. The success rates based
on the segmentation and segmentation + classification metrics
reported in [11] are in the ranges [75− 92]% and [72− 90]%,
respectively. The results we obtained for individual test im-
ages are all in these ranges. The average segmentation and
segmentation + classification success rates of our method on
the 25 test images was 89.83% and 89.64%, respectively. This
is a very interesting result, considering that we have considered
all nine page component classes and we have not implemented
some immediate improvements ss the ones described below.

By visual inspection, we note that some errors are due to
the use of the convex hull to compute the enclosing polygon,
which ends up including all the undesired area corresponding
to the concave parts. Error of these type can be seen for
instance in Figures 9e and 9f, where some page components
of type text (for instance, the one that has a large bold “T” at
the beginning) is described by a convex polygon that overlaps
another page component. We also note that a simple post-
processing could fix some of the errors. For instance, in Fig-
ure 9f, multiple components of type image are detected inside
another large image component. These interior components
could be removed by applying non-maximum suppression-like

techniques.
The two worst results, shown in Figures 9g and 9h, were

due to the misclassification of separators as image or as
text components. In Fig. 9g, note the large green rectangle
covering almost the entire image, and in Fig. 9h, there is
a large triangular component at the right side detected as a
text. These errors could be solved, for instance, by adding
additional shape information to the set of component features.
Concave polygons would also reduce the spurious overlapping
areas.

IV. CONCLUSIONS AND FUTURE WORK

We proposed an effective, simple, and flexible machine
learning based method for page segmentation. All 25 tested
images resulted in success rates above 80% with regard to the
segmentation and segmentation + classification scores. This
is an important result since all nine page component types
available in the ICDAR2009 dataset [13] were considered.

The proposed method is flexible with respect to several
aspects. First, although we have used connected components as
the building blocks in the first step of the pipeline, alternative
components such as superpixels or regions of a oversegmenta-
tion can be used as well. These latter ones may be interesting
when distinct page components touch each other. Secondly,



both building block classifier in the first step as well as the
edge classifier in the second step are trained using machine
learning techniques. This allows an easy adaptation of the
method to different types of documents and page components.

Several points of the method are amenable to improvements.
We used the Otsu binarization to compute the connected
components but other algorithms can be employed as well. For
edge classification, we did not evaluate how distinct features
affect the results. There is room for exploring additional
features and classification algorithms, including deep learning
approaches. Replacing the convex hull algorithm with any
other that computes a more tight polygon will definitely
improve the results.

To better evaluate the potential of the method, in addition
to the improvements above, we plan to evaluate our method
on other datasets. A challenging future work is to include
structural constraints in the second step of the method, so that
not only local but more global information is also considered
for edge removal.
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