
Scene Conversion for Physically-based Renderers
Luiza Hagemann

Instituto de Informática - UFRGS
Porto Alegre, RS, Brazil
lahagemann@inf.ufrgs.br

Manuel M. Oliveira
Instituto de Informática - UFRGS

Porto Alegre, RS, Brazil
oliveira@inf.ufrgs.br

Fig. 1: Example of automatic scene conversion obtained with our system. Coffee Maker rendered with PBRT v3 (left). Rendering
produced by Mitsuba (center) and LuxRender (right), using converted scenes (from PBRT v3) for these rendering systems.

Abstract—Physically-based rendering systems use proprietary
scene description formats. Thus, by selecting a given renderer for
the development of a new technique, one is often constrained to
test and demonstrate it on the limited set of test scenes available
for that particular renderer. This makes it difficult to compare
techniques implemented on different systems. We present a solu-
tion for automatic conversion among scene description formats
used by physically-based rendering systems. It enables algorithms
implemented on different renderers to be tested on the same
scene, providing better means of assessing their strengths and
limitations. Our system can be integrated with development
and benchmarking APIs, lending to full orthogonality among
algorithms, rendering systems, and scene files.

I. INTRODUCTION

Monte Carlo ray tracing provides an effective solution for
simulating global illumination effects in complex environ-
ments. Due to its high computational cost, several techniques
have been introduced to reduce rendering time through im-
proved sampling [1], [2] and reconstruction strategies [3]–[6].
When developing such new techniques, researchers often im-
plement them on top of existing rendering systems as a way of
leveraging available infrastructure to perform functions (e.g.,
ray-traversal acceleration, ray-primitive intersections, etc.) that
are orthogonal to the proposed methods.

Unfortunately, the various rendering systems use proprietary
scene description formats. While modeling visually-pleasing
scenes requires artistic skills, manual conversion between
proprietary formats requires knowledge of the specific formats
and tends to be extremely time consuming (up to several days
per scene [7]). Thus, by selecting a given rendering system
one is often constrained to test and demonstrate the proposed
techniques on the limited set of test scenes available for that

renderer. This apparently simple limitation has profound im-
plications, as it constrains a direct comparison between Monte
Carlo (MC) rendering techniques that have been implemented
using different rendering systems. Thus, one often has to
compare the quality of algorithms by evaluating them on
disjoint sets of test scenes.

We present a system for automatic conversion among scene
file formats used by Monte Carlo physically-based rendering
systems. Our solution significantly expands the repertoire of
scenes available for testing, validation, and benchmarking
of MC rendering algorithms. Currently, our system handles
conversions among PBRT v3 [8], Mitsuba [9], and LuxRen-
der [10], which are three of the most popular physically-based
renderers (PBR). Extending it to support additional renderes
is straightforward. Our solution consists of importing a source
scene description into a canonical representation, which can
then be exported to other scene formats. Figure 1 illustrates the
use of our system to perform automatic conversion of a scene
represented in the PBRT v3 format. The images at the center
and on the right show, respectively, the renderings produced
by Mitsuba and by LuxRender, from converted scenes files.
Note the correct representation of the various materials (glass,
plastic, and metal).

Our work does not introduce a new physically-based ren-
dering technique per se. Instead, it was designed to facilitate
and improve the research process. These kinds of systems are
quite common in computer graphics [11]–[14] and computer
vision [15]–[18], where they have led to significant progress
in these fields. Recently, Santos et al. [11] introduced a
framework for developing and benchmarking MC sampling
and denoising algorithms. This is achieved by providing an



API the decouples the developed techniques from the used
rendering system. While it allows a technique to be tested on
any rendering system that supports the proposed API, each
rendering system is still constrained to a limited set of test
scenes. Our system is orthogonal to and complements the
API described in [11], lending to full orthogonality among
algorithms, rendering systems, and scene files.

The contributions of our work include:
• A system for automatic conversion among scene file

formats used by Monte Carlo physically-based rendering
systems (Section III). It enables algorithms implemented
on different rendering systems to be tested on similar
scene descriptions, giving developers and end users a
better assessment of the strengths and limitations of MC
rendering techniques;

• A mechanism for achieving full orthogonality among MC
rendering algorithms, rendering systems, and scene files
(Section III). This is achieved in combination with the
API provided in [11].

II. RELATED WORK

To the best of our knowledge, no previous system has
performed automatic scene conversion among the major MC
rendering systems. Bitterli used scripts to convert 32 scenes
of various complexities and origins from Tungsten to PBRT
v3 and Mitsuba [7]. These scripts, however, are specific
for conversions from Tungsten to these two renderers and
are not publicly available. Our system can convert scene
descriptions among multiple systems and is freely available
for download [19].

RenderToolbox3 is a MATLAB tool developed for assisting
vision research [20]. It imports a scene containing geometric
objects described as COLLADA XML files, to which one can
associate reflectance measurements taken from a MATLAB
Psycophysics Toolbox [21]. Such reflectance measurements
are converted to multispectral reflectance representations com-
patible to PBRT and Mitsuba. A script then renders the
objects with the associated multispectral representations using
PBRT or Mitsuba. RenderToolbox3 is a visualization tool for
exploring the impact of different reflectance and illuminating
properties on human perception. The system does not convert
scene files among rendering systems.

A. Meta-Research Systems in Computer Graphics

Several systems have been developed to support research
in computer graphics. Some well-known examples include
Cg [14], Brook [13], and Halide [12]. Cg is a general-purpose
programming language designed to support the development
of efficient GPU applications, and has stimulated a lot of
research efforts in shader-based rendering techniques [22]–
[25]. Brook [13] is system for general-purpose computation
that allows one to exploit the inherent parallelism of modern
GPUs without having to deal with GPU architecture details.
These kinds of systems were an inspiration that led to the
development of CUDA [26]. Halide [12] is a system designed

to optimize image-processing applications on multiple hard-
ware platforms by separating the algorithm description from
its schedule. The system has been recently extended to support
differentiable programming for image processing and deep
learning [27]. All these systems focus on generating efficient
code while freeing the user from GPU architectural details.
All goal, in turn, is to make high-quality scenes availability
independent of one’s choice of rendering system.

Santos et al. have recently presented a framework for
developing and benchmarking MC sampling and denoising
algorithms [11]. They use an API to decouple algorithms from
rendering systems, allowing for the same algorithm to be tested
on multiple rendering systems. By doing so, they also increase
the set of scenes an algorithm can be tested with. However,
in order to use a given test scene, the rendering system for
which the scene was created would have to be used as well.
Our scene-conversion solution complements the API described
in [11], lending to a desirable full orthogonality among MC
algorithms, rendering systems, and scene files.

III. AUTOMATIC SCENE CONVERSION

Our system consists of two main components: an import
module that reads an arbitrary scene file format and generates
an equivalent description in a canonical scene representation;
and an export module that takes our canonical representation
and exports it to a target rendering system file format. The
complete process is illustrated in Figure 2. Currently, our sys-
tem supports PBRT v-3 [8], Mitsuba [9], and LuxRender [10],
as these are among the most popular rendering systems. This
architecture, however, is quite flexible. Supporting additional
rendering systems only requires specializing the import and
export methods to handle the new formats. Next, we describe
the main components of our system.

Fig. 2: Our scene conversion pipeline. An input scene descrip-
tion is imported into a canonical representation, which, in turn,
can be exported to a target rendering system format.

A. The Import Module

Most physically-based renderers subdivide the scene de-
scription in two main sections: scene-wide rendering options



and world block. The former defines the rendering settings,
while the latter describes the scene geometry and materials.
The import module parses the input scene files and translates
each directive into a canonical representation. Since rendering
systems use proprietary file format, both import and export
modules have to be specialized for each renderer.

PBRT and LuxRender scene descriptions consist of struc-
tured text statements. We generated parsers for these sys-
tems using PLY [28], a Python implementation of Lex and
Yacc. Mitsuba, in turn, is a heavily optimized, plugin-oriented
renderer. Its file format is, essentialy, an XML description
of which plugins should be instantiated with the specified
parameters. Since there are several XML-parsing libraries for
Python, we chose to use ElementTree [29], a Python XML
parsing tool.

B. Canonical Scene Representation

While most renderers have a similar structure, they differ
in a few supported features and in the parameters used to
configure the rendering process. Thus, we need a canonical
representation that covers the features supported by all ren-
derers. COLLADA [30] is an XML schema intended as a
representation for exchanging digital content among graphics
applications. However, COLLADA files only include infor-
mation about scene geometry. No information about other
rendering options, such as camera positioning or integration
techniques, is available. In order to establish a common ground
for conversion, we defined a canonical scene representation. It
is illustrated in Figure 3 and can be easily extended to incorpo-
rate any directives not covered in our current implementation.

Our canonical representation mirrors the general structure
of scene files and divides the scene data into scene-wide
rendering options and world block. This is illustrated in
Figure 3, where the attributes stored for each scene component
are shown on the rectangles on the right.

Fig. 3: Structure of our canonical scene representation, consist-
ing of rendering options and scene data. The attributes stored
for each component are shown on the rectangles on the right.

The Rendering Options specify the integration and sampling
techniques used for rendering, as well as camera and film prop-
erties. These include, for instance, camera position, camera
matrix, image resolution, field of view, etc. Table I summarizes

Component Type Parameters Others

camera

environment,
orthographic,
perspective,
realistic

focal distance, fov,
lens aperture,
near/far clip,
shutter open/close

view matrix

sampler halton, random,
sobol, stratified

samples per pixel,
scramble -

film hdr, ldr

file extension
(png, ...), filter,
image height,
image width

-

integrator

bidirectional path
tracer, direct
lighting,
metropolis light
transport, path
tracer, photon
mapping

max depth,
number of
iterations, number
of Markov chains,
photon count,
photon mapping
lookup radius,
russian roulette
depth

-

materials

glass,
matte/diffuse,
metal,
substrate/glossy,
translucent, uber

η, id, IOR, k, kd,
ks, reflectance,
roughness,
transmittance, ...

texture (id,
type,
params)

emitters

directional,
distant,
environment
mapping, sky,
spot, sun

filename, from
(origin), intensity,
radiance, to
(direction)

model
matrix

shapes mesh (ply/obj) filename
model
matrix, area
emitter,

rectangle, disk,
triangle mesh,
cube, sphere

center, normals,
points, radius, uv
mapping, ...

unnamed
material

TABLE I: Types, parameters and additional attributes of the
components in our canonical scene representation (Figure 3).

all types, parameters, and additional attributes associated with
each component of our canonical scene representation.

The World Block describes the materials, global emitters,
and shapes present in the scene. A material (e.g., glass,
plastic, metal, etc.) may have one or more associated textures.
Global emitters represent all kinds of light sources, except
area light sources, which are represented as shapes. These
include conventional environment, spot, directional, and point
light sources, as well more specific ones such as sun and sky.
A shape can be a polygonal mesh or a geometric primitive
such as a rectangle, disk, cube, or sphere, for instance.

C. The Export Module

The export module is at the core of our system, being
responsible for producing the target scene representation.
Matrix transformations, native shapes, environment mapping
coordinates and, mostly, materials are some of the components
that vary greatly between renderers. Our system tries to gener-
ate an output scene representation which, once rendered with
the target system, best approximates the results obtained by the
source rendering system applied to the input scene description.
Achieving such results required extensive experimentation
with parameters of the various systems. Next, we discuss a
few relevant aspects one should consider.



Matrix Conversion: There are several issues to consider
when handling matrices. Does the renderer use a left-hand
or right-hand coordinate system? Does it represent matrices
(in the scene file) using a direct representation or its inverse-
transpose? How is the object-world transformation represented
for shapes?

Mitsuba uses a right-hand coordinate system, while PBRT
and LuxRender use a left-hand one. This means that, when
converting between Mitsuba and the other two, one has to
mirror the x-axis of all camera matrix transformations. This
is also the case for environment map positioning and object-
world transformations. Moreover, Mitsuba’s scene files contain
a world-to-camera transformation matrix (i.e., view matrix),
while PBRT and LuxRender scene files use the view matrix
inverse transpose. In addition, LuxRender uses a different
texture parameterization (reversed direction of the v parameter)
with respect to PBRT and Mitsuba.

Material Conversion: materials are the most delicate aspect
of scene conversion. Materials have spectral and roughness
properties that absolutely must be correctly mapped. How-
ever, most renderers have very different implementations for
common subsurface scattering models (BSDFs).

Mitsuba uses a more physics-oriented approach: a material
can be diffuse, conductor, dielectric, plastic, translucent, or a
bumpmap. It also has other types of materials, but those are
not supported in the current implementation of our system.
The material type in Mitsuba changes as the material contains
any form of surface roughness, becoming a “rough” version of
itself (for instance, a rough metal becomes a roughconductor).
PBRT and LuxRender materials have roughness parameters,
making it unnecessary to change the material’s name.

To describe a metal’s reflectance spectra, PBRT and Mitsuba
use one index of refraction (η) and one absorption coefficient
(k) per color channel. LuxRender, however, uses a so-called
Fresnel texture, specifying a single value of η and k for all
channels. Alternatively, LuxRender allows the specification of
a single RGB color value for the material’s reflectance. There-
fore, correctly converting metal colors between LuxRender and
PBRT or Mitsuba is not well defined, and is not supported in
the current implementation of our system.

Shape Conversion: shape directives can be split into two
categories: primitive shapes, which can be used to specify
primitives such as rectangles, disks, cubes, and spheres; and
3D meshes, which are stored in external files. Converting prim-
itive shapes requires more attention than converting external
3D meshes. Mitsuba has directives for rectangle, disk, cube
and sphere, while PBRT and LuxRender do not. Mitsuba’s
primitives are defined by some parameters (e.g., vertex po-
sitions, radius) which can be modified by a transformation
(model) matrix. To reproduce these primitives in PBRT and
LuxRender, an internal triangle mesh must be used. This
is done by specifying the position, normal, and texture co-
ordinates for each vertex in the mesh representing a given
primitive. One should note that these internal meshes do not
use the same representation as the 3D meshes stored in files.

Converting external 3D meshes is simple, as all rendering

systems have directives for this purpose. PBRT, however, does
not support Object File Wavefront 3D (.obj) files. In this case,
our system issues a warning, making the user aware of the
need to convert .obj files off-line.

Global Emitter Conversion: global emitters can be used
to emulate environment lighting, such as the sun, the sky, or
an environment map. Converting global emitters can be tricky,
mainly because different rendering systems do not implement
the same algorithms and directives. For instance, Mitsuba and
LuxRender implement sun and sky directives, while PBRT
does not. A sun directive can be simulated in PBRT using
a distant light. A sky directive can be simulated using an
environment map of a clear sky. While PBRT and LuxRender
access environment maps using spherical coordinates, Mitsuba
uses a latitude-longitude format. Thus, a conversion between
the two representations is required.

Converting a PBRT distant light into a sun directive for
Mitsuba or LuxRender is straightforward. However, converting
a PBRT environment map into a sky directive lends to an
ambiguous situation, as the converter would require additional
information to decide whether the environment map should be
treated as a regular environment map, or as a sky directive.
Our system solves this ambiguity by asking the user if the
environment map should be converted to a sky emitter.

IV. RESULTS

Our system is available on-line [19]. We have tested it on
a large number of scenes, including the 32 scenes available at
Bitterli’s rendering resources website [31]. Here, we include
a few examples to illustrate its results on scenes that explore
different types of materials, 3D meshes and primitive shapes,
image and procedural textures, and various lighting styles.
They include most elements typically found in scenes used
by physically-based rendering systems. The time required to
convert a scene is about 0.5 seconds on a typical PC (Intel
i5 3.8 GHz). The scenes were rendered using Mitsuba 0.5.0,
PBRT v3, and LuxRender v1.6 on Ubuntu 14.04 LTS. All
Mitsuba scenes were rendered using 4,098 samples per pixel
(spp), while all PBRT v3 and LuxRender scenes were rendered
using 8,192 spp.

Figure 1 shows a coffee maker containing various materials,
including glass, plastic, and metal, as well as textures. The
input scene description was provided in the format for PBRT
v3, whose rendering is shown on the left. The images at
the center and on the right were produced by Mitsuba and
LuxRender, respectively, from scene representations automat-
ically converted by our system. Note how the object details
have been faithfully preserved in these renderings.

The Wooden Staircase scene (Figure 4) contains many
geometric objects and textures. A LuxRender scene description
was provided as input and its rendering is shown in (a). The
images shown in (b) and (c) were produced by PBRT v3
and Mitsuba, respectively, from scene representations auto-
matically converted by our system.

The Teapot scene (Figure 5) contains a shiny object,
environment lighting, and a procedural texture. The input



(a) LuxRender (b) PBRT v3 (c) Mitsuba

Fig. 4: The Wooden Staircase scene. Input scene description for LuxRender (a). Renderings produced by PBRT v3 (b) and
Mitsuba (c), from scene descriptions converted by our system.

scene description was also provided in the LuxRender format.
Figures 5b and 5c show the renderings produced by PBRT v3
and Mitsuba, respectively, from scene descriptions converted
by our system.

Figure 6 shows two scenes, Veach Bidir Room and Cornell
Box. The first includes caustics, while the second only contains
diffuse surfaces. A Mitsuba scene description was provided
as input for each of these scenes, whose renderings are
shown on the first column of Figure 6. Columns (b) and (c)
show, respectively, the renderings produced by PBRT v3 and
LuxRender using scene descriptions converted by our system.

A. Discussion

The renderings produced by different rendering systems
may exhibit significant differences in color or shading due to
features unsupported by some renderers. For instance, consider
the use of a light source to emulate the sun. In PBRT and
LuxRender, this directive is implemented as a distant white
light. Mitsuba, in turn, emulates the sun using a distant envi-
ronment light implemented according to a technique described
in [32], which produces a warm-colored, distant light source.
Thus, when the sun directive is used, Mitsuba renderings
present a different color compared to the other two. This
situation is illustrated in Figure 7.

LuxRender does not properly handle a combination of sun
directive and local light sources. This is illustrated in Fig-
ure 8c, where hard shadows have turned soft. The difference
in colors are due to the sun directive, as discussed above.

To better showcase the differences between images rendered
from converted scene files and the original ones, we provide
some quantitative and qualitative comparisons for all results
shown in the paper. Table II shows the PSNR values for the

images obtained by rendering scene descriptions automatically
converted by our system. For each case, the reference image
was obtained by rendering the input scene using the source
system (first column of Table II). The renderers used to gen-
erate the compared images are PBRT v3 (P), Mitsuba (M), and
LuxRender (L). One should note, however, that Monte Carlo
ray tracing uses random sampling to estimate pixel values and
PSNR is computed from pixel-wise differences. Thus, given
a different initialization, one should expect differences even
between images generated by the same renderer and using the
same number of samples per pixel. This is illustrated in the
last column of Table II, as the PSNR for two identical images
should be infinite. The values in Table II were computed using
MATLAB’s native function psnr.

Figure 10 shows a qualitative comparison of the results
presented in the paper. Each row shows images computed
as 5 × |Ia − Ib|: absolute per-channel, pixel-wise differences
between images Ia and Ib. These absolute difference images
have been scaled by a factor of 5× to emphasize the dif-
ferences. For columns 2 and 3 (Converted1 and Converted2),
Ia is the reference image (first column) and Ib is an image
rendered from a converted scene description. For column 4
(Converted1,2), both Ia and Ib are images rendered from
converted scene descriptions. As in Table II, the letters under
each image indicate the used scene format and renderers:
PBRT v3 (P), Mitsuba (M), and LuxRender (L). Note that,
except for the cases where features are not supported by
some renderers, which include scenes such as Breakfast Room,
Veach MIS, and Little Lamp, differences between images
rendered from source and converted scene description files are
hardly noticeable. The full-resolution versions of all images
shown in the paper, including the ones shown in Figure 10



(a) LuxRender (b) PBRT v3 (c) Mitsuba

Fig. 5: Utah Teapot scene. Input scene description for LuxRender (a). Renderings produced by PBRT v3 (b) and Mitsuba (c),
from scene descriptions converted by our system.

(a) Mitsuba (b) PBRT v3 (c) LuxRender

Fig. 6: Veach, Bidir Room (top) and Cornell Box (bottom). Input scene descriptions for Mitsuba (a). Renderings produced by
PBRT v3 (b) and LuxRender (c), from scene descriptions converted by our system.

are available on our project website1.

B. Limitations

Scene-description directives found in one rendering system
but without correspondence in the other two renderers are
not handled by our system. That is the case, for instance, of
Mitsuba-only materials like phong and blendbsdf.

The current version of our system does not support the
conversion of hair or participating media. As discussed in
Section III, LuxRender treats material reflectance differently
from PBRT and Mitsuba. Thus, properly converting metal
colors to LuxRender is a challenging task, not currently
supported by our system. This is illustrated in Figure 9, where

1http://www.inf.ufrgs.br/∼oliveira/pubs files/SC/scene conversion.html

the rendering of metal obtained from a scene converted to and
rendered with LuxRender looks darker.

V. CONCLUSION

We presented a system for automatic conversion among
scene file formats used by Monte Carlo physically-based
rendering systems. It enables algorithms implemented using
different renderers to be tested on similar scene descriptions,
providing better means of assessing the strengths and limita-
tions of MC rendering techniques. Our system can be easily
integrated with the API recently introduced by [11], allowing
researchers and developers to exploit full orthogonality among
MC algorithms, rendering systems, and scene files.

We have demonstrated the effectiveness of our system by
converting scene description among three of the most popular



(a) LuxRender (b) PBRT v3 (c) Mitsuba

Fig. 7: The Breakfast Room scene. Input scene description for LuxRender (a). Renderings produced by PBRT v3 (b) and
Mitsuba (c), from scene descriptions converted by our system. Mitsuba’s sun directive produces a warm-colored lighting.

(a) Mitsuba (b) PBRT v3 (c) LuxRender

Fig. 8: Little Lamp scene. Input scene description for Mitsuba
(a). Renderings produced by PBRT v3 (b) and LuxRender (c),
from scene descriptions converted by our system.

(a) PBRT v3 (b) Mitsuba (c) LuxRender

Fig. 9: Veach, MIS. Renderings by PBRT v3 (a), Mitsuba (b),
and LuxRender (c). Converting metal colors to LuxRender is
a challenging task, not currently supported by our system.

Input Scene PSNR PSNR PSNR
(source system) (target 1) (target 2) (source)
Breakfast Room (L) 11.85 (M) 17.58 (P) 28.34 (L)
Coffee Maker (P) 24.54 (M) 20.90 (L) 37.78 (P)
Cornell Box (M) 35.51 (P) 22.07 (L) 39.03 (M)
Little Lamp (M) 27.79 (P) 14.10 (L) 42.35 (M)
Utah Teapot (L) 16.40 (M) 17.29 (P) 39.30 (L)
Veach, Bidir (M) 30.35 (P) 21.81 (L) 38.42 (M)
Veach, MIS (P) 16.57 (M) 13.52 (L) 39.93 (P)
Wooden Stairase (L) 25.86 (M) 24.83 (P) 36.48 (L)

TABLE II: PSNR values for images rendered from scene
descriptions automatically converted by our tool to two target
systems. The reference images were obtained by rendering the
input scenes with the source systems shown on the left. For
comparison, the right column shows the PSNR of an additional
rendition of the input scene produce by the source system. The
renderers used to generate the compared images are PBRT v3
(P), Mitsuba (M), and LuxRender (L).

MC rendering systems: PBRT v3, Mitsuba, and LuxRender.
Providing support to additional renderers only requires special-
izing the import and export modules described in Section III
for the given renderers. Our system is freely available and we
encourage developers to provide support for other renderers.

In the future, we would like to add support for the con-
version of hair and participating media, as well as for other
rendering systems. By documenting limitations and incom-
patibilities found among different renderers, our work might
stimulate efforts to reduce these differences.

ACKNOWLEDGMENT

This work was sponsored by CNPq (grants 306196/2014-0,
423673/2016-5).

REFERENCES

[1] D. Heck, T. Schlömer, and O. Deussen, “Blue noise sampling with
controlled aliasing,” ACM Trans. Graph., vol. 32, no. 3, pp. 25:1–25:12,
2013.

[2] A. Pilleboue, G. Singh, D. Coeurjolly, M. Kazhdan, and V. Ostro-
moukhov, “Variance analysis for Monte Carlo integration,” ACM Trans.
Graph., vol. 34, no. 4, pp. 124:1–124:14, 2015.

[3] P. Sen and S. Darabi, “On filtering the noise from the random parameters
in Monte Carlo rendering,” ACM Trans. Graph., vol. 31, no. 3, pp. 1–15,
2012.

[4] F. Rousselle, M. Manzi, and M. Zwicker, “Robust denoising using
feature and color information.” Comput. Graph. Forum, vol. 32, no. 7,
pp. 121–130, 2013.

[5] N. K. Kalantari, S. Bako, and P. Sen, “A machine learning approach
for filtering Monte Carlo noise,” ACM Trans. Graph., vol. 34, no. 4, pp.
122:1–122:12, jul 2015.

[6] B. Bitterli, F. Rousselle, B. Moon, J. A. Iglesias-Guitián, D. Adler,
K. Mitchell, W. Jarosz, and J. Novák, “Nonlinearly Weighted First-order
Regression for Denoising Monte Carlo Renderings,” Computer Graphics
Forum, vol. 35, no. 4, pp. 107–117, jul 2016.

[7] B. Bitterli, “The Tungsten renderer,” 2014, https://benedikt-bitterli.me/
tungsten.html.

[8] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering,
from Theory to Implementation, 3rd ed. Morgan Kaufmann, 2016.

[9] W. Jakob, “Mitsuba: Physically based renderer,” 2014, http://www.
mitsuba-renderer.org/.

[10] J.-P. Grimaldi and T. Vergauwen, “Luxrender v1.6,” 2008, http://www.
luxrender.net/.

[11] J. D. B. Santos, P. Sen, and M. M. Oliveira, “A framework for developing
and benchmarking sampling and denoising algorithms for Monte Carlo
rendering,” The Visual Computer, vol. 34, pp. 765–778, 2018.

[12] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand, “Decoupling algorithms from schedules for easy optimization
of image processing pipelines,” ACM Trans. Graph., vol. 31, no. 4, pp.
32:1–32:12, Jul. 2012.

[13] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, “Brook for gpus: Stream computing on graphics hardware,”
ACM Trans. Graph., vol. 23, no. 3, pp. 777–786, Aug. 2004.



Reference Difference Difference Difference
Converted1 Converted2 Converted1,2

C
of

fe
e

M
ak

er

PBRT v3 (P ) 5× |P −M | 5× |P − L| 5× |M − L|

B
id

ir
R

oo
m

Mitsuba (M ) 5× |M − P | 5× |M − L| 5× |P − L|

C
or

ne
ll

B
ox

Mitsuba (M ) 5× |M − P | 5× |M − L| 5× |P − L|

Te
ap

ot

LuxRender (L) 5× |L−M | 5× |L− P | 5× |M − P |

B
re

ak
fa

st

LuxRender (L) 5× |L−M | 5× |L− P | 5× |M − P |

M
IS

PBRT v3 (P ) 5× |P −M | 5× |P − L| 5× |M − L|

L
itt

le
L

am
p

Mitsuba (M ) 5× |M − P | 5× |M − L| 5× |L−M |

W
oo

de
n

St
ai

rc
as

e

LuxRender (L) 5× |L−M | 5× |L− P | 5× |M − P |

Fig. 10: Per-channel, pixel-wise differences between ref-
erence images (left) and ones rendered from converted
scene descriptions produced by our system (Converted1 and
Converted2), and between the scenes converted by our system
(Converted1,2). The absolute differences have been scaled by
a factor of 5 to emphasize them.

[14] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: A
system for programming graphics hardware in a c-like language,” ACM
Trans. Graph., vol. 22, no. 3, pp. 896–907, Jul. 2003.

[15] D. Scharstein, R. Szeliski, and H. Hirschmller, “Middlebury Stereo
Vision Page,” 2002. [Online]. Available: http://vision.middlebury.edu/
stereo/

[16] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski,
“Middlebury Flow Accuracy and Interpolation Evaluation,” 2011.
[Online]. Available: http://vision.middlebury.edu/flow/eval/

[17] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and
P. Rott, “Alpha matting evaluation website,” 2009. [Online]. Available:
http://www.alphamatting.com/eval 25.php

[18] M. Erofeev, Y. Gitman, D. Vatolin, A. Fedorov, and J. Wang,
“Videomatting,” 2014. [Online]. Available: http://videomatting.com/

[19] “PBR scene converter,” https://github.com/lahagemann/pbr scene
converter.

[20] B. S. Heasly, N. P. Cottaris, D. P. Lichtman, B. Xiao, and D. H. Brainard,
“Rendertoolbox3: Matlab tools that facilitate physically based stimulus
rendering for vision research,” Journal of Vision, vol. 14, no. 2, p. 6,
2014.

[21] D. H. Brainard, “The psychophysics toolbox,” Spatial Vision, vol. 10,
pp. 433–436, 1997.

[22] F. Policarpo, M. M. Oliveira, and J. a. L. D. Comba, “Real-time relief
mapping on arbitrary polygonal surfaces,” in Proc. the ACM Symposium
on Interactive 3D Graphics and Games, 2005, pp. 155–162.

[23] F. Policarpo and M. M. Oliveira, “Relief mapping of non-height-field
surface details,” in Proc. ACM Symposium on Interactive 3D Graphics
and Games, 2006, pp. 55–62.

[24] C. Wyman, “An approximate image-space approach for interactive
refraction,” ACM Trans. Graph., vol. 24, no. 3, pp. 1050–1053, 2005.

[25] M. M. Oliveira and M. Brauwers, “Real-time refraction through de-
formable objects,” in Proc. ACM Symposium on Interactive 3D Graphics
and Games, 2007, pp. 89–96.

[26] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” in ACM SIGGRAPH 2008 Classes, ser.
SIGGRAPH ’08. New York, NY, USA: ACM, 2008, pp. 16:1–16:14.

[27] T.-M. Li, M. Gharbi, A. Adams, F. Durand, and J. Ragan-Kelley,
“Differentiable programming for image processing and deep learning
in Halide,” ACM Transactions on Graphics, vol. 37, no. 4, 2018.

[28] D. Beazley, “Ply (python lex-yacc),” 2001. [Online]. Available:
http://www.dabeaz.com/ply/

[29] “The ElementTree XML API,” https://docs.python.org/3/library/xml.
etree.elementtree.html.

[30] R. Arnaud and M. C. Barnes, Collada: Sailing the Gulf of 3D Digital
Content Creation. AK Peters Ltd, 2006.

[31] B. Bitterli, “Rendering resources,” 2016, https://benedikt-bitterli.me/
resources/.

[32] A. J. Preetham, P. Shirley, and B. Smits, “A practical analytic model for
daylight,” in Proc. SIGGRAPH ’99, 1999, pp. 91–100.


