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Abstract— Frauds involving illegal modifications to the printed
circuit boards from fuel pump controllers are a serious problem,
which not only harms customers, but also connects to other
crimes, such as money laundering and tax evasion. The current
state-of-practice for inspecting these boards is a visual analysis
performed by a human. In this paper, we introduce an image-
based approach that can provide support to the human inspector
by automatically detecting suspicious regions in the boards.
The proposed approach aligns a photograph of the inspected
board to a reference view, partitions the image in sub-regions,
extracts features using a variation of the popular Scale-Invariant
Feature Transform, classifies the features against previously
trained Support Vector Machines, and integrates the results for
presentation. In experiments performed on a dataset containing
649 images from a board, with and without modifications, our
approach achieved a precision of 0.7739, a recall of 0.9434, and
an F -measure 0.8503. These results indicate that our approach
can effectively identify suspicious regions, providing invaluable
help to the human inspector.

I. INTRODUCTION

Modern society is highly dependent on gasoline and oil-
based transportation vehicles. A gas station can be seen as a
worthwhile and lucrative business. Moreover, in Brazil, there
are many taxes on the fuel businesses (production, distribution,
selling, and others), making it a great source of income for
the government. This scenario opens room for many sorts of
frauds. The first kind of fraud that usually comes to peoples’
minds is chemical adulteration, e.g. adding ethanol to gasoline,
which increases fuel volume at a fraction of the cost. However,
chemical adulterations can be easily discovered, and hence,
criminals create other ways to deceive their victims.

Currently, the most common type of fraud encountered in
Brazilian gas stations is volumetric. Volumetric frauds are
presented in two variations: (i) to buy fuel without invoice,
i.e. the selling operations are invisible to the government
taxation departments; and (ii) to charge for a wrongful fuel
volume, i.e. during fueling, the gas pump registers a higher
amount in comparison with the actual fuel volume filled in
the vehicle’s tank. Criminals adopt the latter strategy because
this volumetric fraud is more difficult to be discovered. It is
also more lucrative, since the gas station receives the payment
proportional to the wrongful volume sold, and the government
is not able to issue the taxation properly.

In both cases, the criminals must hide the difference in
the registered fuel volume. They often use means to fake
the values (related to the fuel volume expelled by the gas

pump) that are registered and informed to both the customer
and the government. During regular inspections, Brazilian
inspectors from a government agency have discovered ille-
gal modifications on the printed circuit boards (PCBs) that
control gas pumps. These modifications include substitution
of components in order to add functionalities, addition of new
components in order to modify the original system’s behavior,
and even the replacement of the whole board by an uncertified
(and illegal) clone board.

The current state-of-practice for inspection is simply a
visual analysis performed by a human. He/she inspects the
board in order to find suspicious elements onto the printed
circuit board. Suspicious boards are then compared with a
sample of the original board at an official analysis laboratory.
Once the inspectors determine that the board has any illegal
modification, legal action is taken. Figure 1 shows an example
of modification (zoomed in in Fig. 2). As one can see, it is
very difficult to identify illegal adulterations due to the large
amount of small components in the PCB.

In this paper, we introduce an image-based approach for
automatically detecting modifications in PCBs from fuel pump
controllers. Our final aim is developing a tool that can be used
to support the work of a human inspector, allowing her to
focus her attention in suspicious regions of the board. That
aim has guided some design choices we made, regarding the
type of image capture equipment that can be expected (which
is different, for example, from what would be reasonable in a
production line setting), as well as the fact that false detections
are more acceptable than not detecting some modification. Al-
though we are dealing with PCBs from fuel pump controllers,
the work is also applicable to other similar scenarios.

The proposed approach follows the steps shown in Fig. 3.
The input image is aligned to a reference that shows a board
of the same model from an ideal position. This is done using
the popular SIFT method [1] and a standard image registration
algorithm [2]. The registered image is partitioned into smaller
sub-regions, and a feature descriptor is extracted from each
sub-region, using a variation of SIFT [1]. These descriptors
are then classified by Support Vector Machines (SVM) [3],
which were previously trained to detect features that differ too
much from those found in an unmodified board. The results
can then be integrated and presented to the human inspector.

The proposed approach was tested on a dataset containing
572 photographs of an unmodified board, as well as 77



(a) Original PCB.

(b) Modified PCB.

Fig. 1. An original and a modified PCB. There is a thin wire connecting
hidden components near the bottom right corner, but locating it is challenging
for a human, given the amount of detail in the images. Note how the color of
the components also changes, due to differing lighting conditions when the
pictures were taken. A closer view of the modified area is shown in Fig. 2

photographs of the same board, after being modified. The pho-
tographs were taken under conditions similar to those found
in a practical situation, where the human inspector uses a
handheld camera, without additional equipment. Experiments
using cross-validation produced a precision of 0.7200 and a
recall of 0.9782 when we favor a high detection rate, and
a precision of 0.7739, a recall of 0.9434 when we try to
maximize the F -measure. Although not high enough for a
completely automated solution, these values indicate that our
approach can provide invaluable help to the human inspector,
pointing at suspicious regions that can be further analyzed.

The rest of this paper is organized as follows. In Sec. II,
we discuss related work. Section III describes the proposed
approach in depth. In Sec. IV, we describe the experiments
performed to evaluate our approach and the obtained results.
Section V concludes the paper and points to future work.

(a) Original PCB (detail).

(b) Modified PCB (detail).

Fig. 2. A closer view of the modified region from Fig. 1

Fig. 3. Steps of the proposed approach.

II. RELATED WORK

We have performed an extensive and comprehensive re-
view on the current state-of-the-art and state-of-the-practice
for printed circuit board inspection. We have found many
algorithms for PCB inspection, but only a few of them focus
on finding modifications on the assembled board. This section
discusses some of these works.

Ardhy et al. [4] propose a system that uses low cost devices
(e.g. Raspberry Pi and Arduino) to detect imperfections on
PCBs. For that, the system compares an image of the board
being analyzed with a reference image. They analyze grayscale
images, which are median filtered and binarized using adaptive
Gaussian thresholding. The algorithm then extracts edges
using the Sobel operator, to reduce the impact of lighting



variations. The final analysis is based on a simple subtrac-
tion between the processed image and the reference. Their
algorithm was able to detect complex borders and missing
components, but they have a major drawback in that the images
must be obtained from the same viewpoint, with very similar
positioning and lighting — even a slight displacement may
lead to a number of false negatives.

Xie et al. [5] present a visual inspection software that is
able to automatically detect defects on an assembled PCB.
The proposed method is based on genetic programming and
does not require previous knowledge about the board layout,
lighting conditions, or visual features from the components.
The authors claim their software was able to identify 100%
of the defects, while also highlighting some suspicious areas
of the board that could present defects. The same way as in
[4], the approach from Xie et al. [5] uses a reference image
of the board without defects, and compares it with images of
the boards being analyzed. These images must be aligned, but
small alignment differences can be tolerated. One disadvantage
of their approach is the excess of information necessary to train
the system. When using the complete image for the genetic
programming training phase, the amount of components, as
well as the size and distance between components, generate an
enormous amount of information that leads to a long training
time.

Bhardwaj [6] proposes an algorithm named Automated Op-
tical Inspection (AOI) that detects defects on the components’
holes during the manufacturing process of PCBs. The proposed
method includes several steps: low-pass Gaussian filtering,
binarization for background separation, and morphological
operators to remove undesired image parts. Particle-based
analysis is performed on the resulting image in order to detect
circles and measure the holes. Results are given in terms of the
radius and the position of the holes in the board. This work
presents two limitations: (i) the algorithm can identify only
defects on the components’ holes, not defects associated with
soldering or the board components; (ii) the approach works
only on boards without any mounted component, i.e. it is
useless with assembed printed circuit boards.

An inspection system based on pattern matching and mor-
phological operators is presented in [7]. The proposed method
comprises a preprocessing phase that includes several filters;
histogram-based segmentation, morphology-based skeletoniza-
tion, descriptor extraction, and classification by an artificial
neural network. The neural network is able to classify an
image in four categories: (i) correct component; (ii) missing
component; (iii) displaced component; (iv) inverted compo-
nent. A drawback of this approach is that the system requires
segmentation information for each component as input. This
is done manually, leading to a high cost when the number of
distinct components is large. In addition, the authors suggest
using cross-correlation in the first stage in order to decrease the
amount of false negatives. However, this technique is sensitive
to lighting variations as well as to scratches on the surface of
components.

III. PROPOSED APPROACH

In this section, we describe the proposed approach for
detecting modifications in PCBs from fuel pump controllers.
Our approach follows the steps previously depicted in Fig. 3.
The following subsections detail each of these steps.

A. Input Images

Our approach does not place strict demands on how input
images must be captured, but they must show the PCB being
analyzed from an overhead view. Some degree of perspective
distortion, noise, and lighting variations are expected, but
higher resolutions and better lighting conditions will likely
lead to better results. In smaller resolutions, certain PCB
modifications may become indistinguishable from noise; and
unfavorable lighting may create shadows and reflections that
are detected as modifications. In our experiments, we used
8-bit grayscale images, with 4272× 2878 pixels.

B. Image Registration

The proposed approach begins by aligning the input image
to a reference view of the target circuit board. This reference is
an image showing the whole board, captured under good con-
ditions, and with minimal perspective distortion. A different
reference must be used for each target PCB model.

Image registration is performed using a standard feature-
based method [2]. Sparse sets of image features are detected
and described using the Scale-Invariant Feature Transform
(SIFT) [1]. Correspondences are located between features
extracted from the input and the reference images based on
the Euclidean distance in the SIFT feature space. The located
correpondences are then filtered using the Random Sampling
Consensus (RANSAC) algorithm [8].

RANSAC produces a matrix that describes a homography
— a plane-to-plane projective transformation [9]. That allows
us to put the PCB observed image in approximately the same
perspective as the reference view, as shown in Fig. 4. However,
two limitations of this method must be highlighted. The first
is that, since our distortion model only describes plane-to-
plane transformations, components protruding from the board,
such as capacitors or thick chips, can have distortions in
position and aspect. The second limitation is that, due to these
distortions, as well as inherent imprecisions from the feature
extraction and matching methods, the alignment is not perfect
— components usually appear in slightly different positions,
and with slightly different aspects. These limitations were kept
in mind when defining the remaining steps — for example, a
simple image difference would not work in this scenario for
detecting modifications, as the number of differences will be
large even for an unmodified board.

C. Image Partitioning

After the initial registration, the input image is partitioned
in smaller sub-regions, which are handled independently. This
step is needed because PCBs contain a large number of
components, and building a single model capable of describing
all the necessary information would require high dimensional



(a) Reference image.

(b) Input image.

(c) Registered input image.

Fig. 4. Image registration.

descriptors and classifiers. The smaller sub-regions also make
it easier to determine the position of a detected modification.

In our experiments, we take images aligned to a reference
with 4096 × 2816 pixels, and split them into 31 × 21 sub-
regions of 256× 256 pixels. The sub-regions are separated by
128 × 128 pixels, so they overlap, as shown in Fig. 5. The
technique chosen for overlapping the sub-regions increase the
computation time and required memory, since each pixel from
the original image appearing in up to four sub-regions, but the
redundant data may improve robusness to variations introduced
during image registration or capture.

Depending on the point of view, some sub-regions will have
many pixels falling outside the original input image. These

Fig. 5. Example overlapping sub-regions extracted from an image.

sub-regions must be discarded, so to detect modifications in
the entire PCB, it must be contained in the image, or multiple
images must be analyzed.

D. Feature Extraction

For each sub-region from the input image, we extract a
descriptor, which encodes information about the properties
of the sub-region. We employ a variation of the SIFT [1]
descriptor. First, we compute the gradient magnitude G and
orientation θ for each pixel (x, y) inside region f :

G(x, y) =
√
Gx(x, y)2 +Gy(x, y)2 (1)

θ(x, y) = tan−1(Gy(x, y)/Gx(x, y)) (2)

where Gx and Gy are the partial derivatives:

Gx(x, y) = f(x+ 1, y)− f(x− 1, y) (3)

Gy(x, y) = f(x, y + 1)− f(x, y − 1) (4)

The region is then split into a grid of 12x12 blocks — for
example, a region with 256 × 256 pixels will have blocks
with 21 × 21 pixels. A histogram of gradient orientations
is computed for each block, with 8 orientation bins per
histogram. The magnitude at each pixel position is divided into
up to 8 histogram bins using trilinear interpolation. The final
descriptor is obtained by concatenating all the values from the
histograms from each block, resulting in a vector with 12x12x8
= 1152 dimensions. To make the descriptor more robust to
lighting variations, we normalize it to a unit vector, truncate
any values above 0.2, and re-normalize it. More details on
these steps can be found in the original SIFT paper [1].

Note that, although we compute descriptors as described
above, the general idea of the proposed approach is not



Fig. 6. Left: a negative training sample. Right: artificially generated positive
training sample.

dependent on the specific descriptor, so other alternatives could
be employed, such as Histograms of Oriented Gradients [10]
or Local Binary Patterns [11].

E. Feature Classification

The descriptors extracted from each sub-region are classified
as “normal” (negative) or “modified” (positive) by a Support
Vector Machine (SVM) [3]. Here, we must divide the pipeline
into training and operation phases.

For training, we take a set of images, and follow the same
steps described in the previous subsections to obtain a set of
training samples (descriptors) for each sub-region. As sub-
regions are handled independently, a different SVM will be
trained for each sub-region from each PCB model we wish to
analyze. One practical limitation faced in the problem domain
we are attacking is that obtaining negative examples (normal
regions from unmodified PCBs) is easy, but positive examples
(modified regions) are rare. More than that, the number of
possible modifications is extremely large, so we must prevent
the SVM from learning to describe specific modifications —
instead, it must describe a normal region, and any sample that
is deemed “too different” must be classified as a modification.

With that in mind, we first build the training set using only
images from a normal, unmodified board. For each negative
training sample, we artificially generate a positive sample, by
placing over it small square patches, randomly taken from
other regions from other images in the training set. Up to 10
patches may be added to an image, each being 5 to 15 pixels
wide. Figure 6 shows one positive sample generated by that
approach.

Features are extracted from the training set, and are then
used to train an SVM, with positive and negative samples
targeting outpus of 1 and -1, respectively. The SVM uses
a Radial Basis Function kernel, and its parameters were
automatically defined using a grid-based parameter selection
algorithm [3].

Once the SVM for a sub-region is trained, it can be used for
classifying the descriptor extracted from the same sub-region
from an input image in operation time. We do not take as
output a binary positive/negative classification, but the distance
to the SVM decision margin multiplied by -1 — that results
in a “score”, so that the higher the score, the more likely

Fig. 7. Final results, encoded as a “heat map” for visualization. “Warmer”
colors indicate a higher probability of a modification (best viewed in color).

the region is modified. We leave to the human inspector the
decision about how low the SVM output must be for being
taken a sign of a modification.

F. Result Integration

The results obtained for each image sub-region can be
combined in a simple manner by setting the output for a pixel
to the average, median, or minimum output from all the sub-
regions containing the pixel (each pixel may appear in up to
four sub-regions). It may also be interesting to produce an
output image for visualization. Pixel values can be mapped to
different colors, simulating a “heat map” that uses “warmer”
colors to indicate a higher probability that a modification is
present, as exemplified in Fig. 7.

This output is only created for presenting results to the
human inspector, and all the relevant data is already present at
an individual sub-region level. For that reason, in Sec. IV we
evaluate our approach considering only isolated sub-regions.

IV. EXPERIMENTS

The proposed approch was implemented and experimentally
evaluated. Implementation is in the Java language, and uses
basic functions from the OpenCV1 library. The following
sections detail the tests and the obtained results.

A. Dataset

Our dataset contains 572 images showing an unmodified
board, with 4272× 2878 pixels. A single board was used, but
we must remind that each image sub-region is treated inde-
pendently — i.e. there are 651 regions showing different parts
of the same board. The images were captured using a Canon
EOS 1100D camera, with 18-55mm lenses. The same way as
would be expected in practice, no other special equipment is
required for capturing the images, and the perspective slightly
changes between captures. Moreover, lighting conditions were
changed during the capture procedure.

1www.opencv.org



(a) (b)

(c) (d)

Fig. 8. (a) and (c): unmodified boards. (b): an easily detected modification
(an integrated circuit). (d): a more complex case (thin wire connecting hidden
components).

In addition to the images from the unmodified board,
we have also obtained 77 images showing the board with
modifications. These modifications were manually added by
the authors, and are meant to be representative of situations
commonly encountered in practice. Figure 8 shows some
examples of images containing modifications. It is important
to note that these examples will not be used for training the
SVMs — that way, we know the SVMs will not learn to
describe specific modifications.

B. Experiment design

To evaluate our approach, we have first selected 6 image
sub-regions in which the manually added modifications are
visible. Then, each sub-region was tested using a cross-
validation method.

For each test iteration, we divide the negative samples
(descriptors extracted from images of the unmodified board)
into a training and a test subset. The training subset contains
90% (515) of the samples, which are randomly selected, with
the remaining 10% (57) of the samples being used as the test
subset. Any samples obtained from images that do not contain
the target sub-region are removed from the sets. Positive
samples for the training subset are artificially generated as
explained in Sec. III. Positive samples for the test subset are
extracted from the imges of the modified board. We randomly
pick these samples so that the number of positive and negative
samples remains the same. The SVM for the region is then
trained, and the outputs produced for the test set are saved,
along with the expected labels (1 for positive samples, -1

Fig. 9. ROC curve obtained in the experiments.

for negative samples). The above procedure was repeated 10
times for each of the selected sub-regions, resulting in 60 test
iterations.

Having the SVM ouptuts and labels for all the samples
from all the test iterations, we define a decision threshold
τ . Any output above τ is deemed as positive, with the
remaining outputs being deemed as negative. By comparing
the thresholded outputs to the expected labels, we count the
number of true positives (TP ), true negatives (TN ), false
positives (FP ) and false negatives (FN ). These values allow
us to compute precision (P ) and recall (R) metrics, as well as
the F -measure:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

F = 2 · P ·R
P +R

(7)

We obtain several different values for the above metrics by
testing all possible values for τ in the [−2.6,+2.6] interval,
with increments of 0.05. Each tested τ can then generate one
point in a receiver operating characteristic (ROC) curve. Note
that these values are important so that we can objectively
evaluate our approach, but in a practical scenario, we can leave
to the human inspector any interpretation about the outputs.

C. Results

The graphic in Fig. 9 shows the ROC curve produced by
our experiments. The graphic in Fig. 10 shows how the F -
measure changes as the decision threshold τ increases. The
best F -measure was 0.8503, obtained for τ = −0.2500. The
precision was 0.7739, and the recall was 0.9434.

Given the nature of the problem we are attacking, a high
detection rate can be desirable, even if that leads to some false
positives. The threshold τ = −0.7500 resulted in a precision



Fig. 10. Values for the F -measure, for different decistion threholds τ .

Fig. 11. ROC curve obtained for the region with the best results. Note the
scale was adjusted, for better visualization.

of 0.7200, and a recall of 0.9782, which we see as a good
compromise.

We have also analyzed the results obtained for each in-
dividual region. The graphics in Fig. 11 and Fig. 12 show,
respectively, the ROC curve and the F -measure evolution as
τ increases for the region with the best results. For that region,
we obtained an F -measure of 0.9854, with a precision of
0.9828 and a recall of 0.9879. That region is shown in Fig. 13.
It contains an LED protruding from the board, and a chip
that takes a considerable portion of the region in the modified
board. Even though the LED appearance changes between the
images, and even with a variation in aligment, our approach
was capable of detecting a chip that was not observed during
training.

The graphics in Fig. 14 and Fig. 15 show, respectively, the
ROC curve and the F -measure evolution as τ increases for the
region with the worst results. For that region, we obtained an
F -measure of 0.6843, with a precision of 0.5386 and a recall
of 0.9378. That region is shown in Fig. 16.

The results described above were obtained considering 6

Fig. 12. Values for the F -measure, for different decistion threholds τ , for
the region with the best results.

(a) (b)

Fig. 13. Region for which the best results were obtained, with and without
modifications. (a) unmodified board. (b) modified board.

Fig. 14. ROC curve obtained for the region with the worst results.

regions in which the modified board had the modifications
clearly visible. In some cases, the modifications may appear
at the edges of the region, and even leave the region, due to
variations during the registration phase. We performed some
tests considering these types of regions and, as expected, there
were severe losses in performance. That would be a problem if



Fig. 15. Values for the F -measure, for different decistion threholds τ , for
the region with the worst results.

(a) (b)

Fig. 16. Region for which the worst results were obtained, with and without
modifications. (a) unmodified board. (b) modified board.

a modification appeared between two regions. However, since
we use an overlapping grid to partition the image, our approach
guarantees that each modification will be visible in at least one
region, avoiding the problem.

V. CONCLUSION

We have introduced an approach for detecting modifications
in printed circuit boards, keeping in mind the particularities of
PCBs used in fuel pump controllers. The proposed approach
was tested on a dataset containing 572 photographs from
an unmodified board, as well as 77 photographs from a
modified board. Experiments using cross-validation produced
a precision of 0.7200 and a recall of 0.9782 when we favor
a high detection rate, and a precision of 0.7739, a recall of
0.9434 when we try to maximize the F -measure. We consider
these promising results, which indicate that our approach can
provide invaluable help to the human inspector, pointing at
suspicious regions that can be further analyzed.

Future work will focus on improving the obtained results.
That includes testing alternative descriptors, such as HOG [10]
and LBP [11], as well as different classifiers, and proposing
a more “realistic” method for generating positive training
samples. We may also replace the descriptor and classifier by
a deep convolutional neural network. Combining the results

obtained from multiple photographs of the same board is also
a possible line for future work.
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