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Abstract—The large number of surveillance cameras available
nowadays in strategic points of large cities aims to provide a safe
environment. However, the huge amount of visual data provided
by the cameras prevents its manual processing, requiring the
application of automated methods. Among such methods, pedes-
trian detection plays an important role in reducing the amount
of data. However, the currently available methods are unable to
process such large amount of data in real time. Therefore, there is
a need for the development of optimization techniques. Towards
accomplishing the goal of reducing costs for pedestrian detection,
this Master’s thesis proposed two optimization approaches. Our
first approach proposes a novel optimization that performs a
random filtering in the image to select a small number of
detection windows, allowing a reduction in the computational
cost. Our results show that accurate results can be achieved
even when a large number of detection windows are discarded.
The second approach consists of a cascade of rejection based
on Partial Least Squares (PLS) combined with the propagation
of latent variables through the stages. Our results show that the
method reduces the computational cost by increasing the number
of rejected background samples in earlier stages of the cascade.

Keywords-Pedestrian detection; random filtering; location re-
gression; cascade of rejection; partial least squares.

I. INTRODUCTION

Video surveillance has been around us for almost a century
and recently it suffered a huge growth due to the reduction
in prices of the cameras and the increasing network con-
nectivity [1]. Nowadays, we have a growing availability of
visual data captured by surveillance cameras, which provides
safer environments for people whom attend monitored environ-
ments. However, the large number of cameras to be monitored
and consequently the large number of images that must be
interpreted, precludes an effective manual processing and
require a significant number of people dedicated to analyzing
visual data. The ubiquity of video surveillance is advantageous
for protection, but it is harder to monitor.

Granted that the manual analysis of large amounts of visual
data is challenging, the automatic understanding and inter-
pretation of activities performed by humans in videos show
great interest because such information can assist the decision
making process of security agents. Among the automatic
approaches for understanding and interpretation, pedestrian
detection plays an important role, since pedestrians are the
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most important agents in the scene. They can be found in
several environments, representing a key information for nu-
merous applications. Given their importance, we are interested
in monitoring them to determine how they interact with the
environment. Therefore, we want to know their location and
what activities they are performing to infer whether they may
harm someone or something might harm them.

Although remarkable progress has been achieved in the past
years for pedestrian detection [2], the problem still remains
open due to its difficult nature [3], which includes changes
in appearance due to different types of clothing, illumination
changes and pose variations, low quality of the data acquired,
and the small size of the pedestrian, which make the detection
process harder. In addition, a large number of applications
require a high performance and reliable detection results, out-
lining the need for efficient and accurate pedestrian detection
approaches.

There are several optimization approaches to reduce the
computational cost of pedestrian detectors that may be grouped
into three major categories, namely, filtering, parallelization
and GPGPUs, and cascades of rejection [4]. We turn our
focus to filtering and cascade of rejection techniques, since our
proposed approaches fits into these two categories. Although
parallelization/GPGPU algorithms are not addressed by this
work, our proposed approaches may benefit from them since
they are complementary.

Among filtering approaches, there are several solutions to
reduce the amount of data to be processed. These approaches
are based on branch-and-bound techniques, saliency detectors,
among others [5]. Although most of the techniques allows to
reduce the amount of data and may be used as a preliminary
step to the classifier, they still might present unnecessary
evaluations.

Cascades of rejection are a widely employed approach to
reduce the computational cost in object detection. They are
composed of multiple stages, each one composed of a classifier
or an ensemble of them. The main idea behind this approach
is to use simple classifiers to discard detection windows that
are easy to classify, while the remaining windows advance
through the cascade, where more complex classifiers are used.
This process leads to a significant reduction in computational
cost [6], [7].

Moving towards the reduction of the computational cost in
pedestrian detection, this Master’s thesis proposed two novel
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Fig. 1. Fluxogram describing the proposed optimization approach, the random filtering combined with location regression, and the PLS Cascade.

optimization approaches for reducing the computational cost
of pedestrian detection, namely, the random filtering and the
PLS Cascade. These optimization approaches focus on the
generation of the detection windows and on the classifier.
Our random filtering approach, described in Section II-A,
aims at rejecting detection windows by evaluating only a
few of them; consequently, a large amount of windows are
preemptively discarded without cost. Later, we correct the
misplaced windows using location regression, which has a low
computational cost since it requires the extraction of simple
and sparse features. Therefore, our proposed filtering method
is able to achieve a considerably speedup.

Different from the previous approaches, the PLS Cascade
(described in Section II-B), proposes a cascade of classifiers
using a combination of Partial Least Squares (PLS) and
Variable Importance on Projection (VIP) aiming at reducing
the number of projections required by the PLS detector [8].
In addition, different from approaches such as [6] and [7],
the proposed cascade propagates information (without in-
creasing the computational cost) to later stages to increase
the discriminability of the classifiers instead of maintaining
all feature descriptors as candidates during all stages. Our
resulting approach is faster to train than the conventional
cascades; the usage of the VIP allows to reject more samples
in the earlier stages, and the computational cost of the PLS
Detector is considerably reduced.

The main contributions provided by this Master’s thesis are:
(1) A new filtering approach, which can be applied on any
sliding window based detector; (2) The application of location
regression to predict a pedestrian’s correct location, given a
shifted detection window; (3) Reduction of the computational
cost of the PLS Detector, a widely employed pedestrian
detector; (4) The application of VIP for feature ordering for
fast training cascades of rejection; and, (5) The usage of the
VIP for rejecting more samples in the earlier stages.

II. PROPOSED APPROACHES

The proposed optimization approach consists of the follow-
ing steps (shown in Figure 1). Given an input image, in the first
step we apply the traditional sliding window algorithm, which
scans the input image with a window of fixed size in a range of
scales, generating a set of detection windows. Such detection
windows are presented to the random filtering which selects

a random set of detection windows and adjusts them properly
using a location regression (described in Section II-A). Later,
the filtered and adjusted set of detection windows is presented
to the last step of our methodology, the PLS Cascade, to reject
detection windows that are easily classified as background,
while windows that are harder to predict advances through
the stages of the cascade (described in Section II-B).

It is worth noting that the proposed optimization approaches
are mutually independent, such that the random filtering is
optional for the execution of the PLS Cascade, and the
converse is also true. Therefore, we may use random filtering
with any other detector based on sliding window, and the
PLS Cascade might be employed stand-alone. In this work,
we focus on the PLS Detector [8] since it is widely used
in the literature and achieves high detection rates on several
pedestrian detection data sets.

A. Random Filtering

The sliding window algorithm generates detection windows
in a wide range of scales and strides, yielding a set of
overlapping windows with high redundancy, which highlights
the need for a filtering approach. To reduce the amount
of data processed by the pedestrian detector, we propose a
method based on a random filtering followed by adjustments
on the detection window locations. Here, we randomly select
a fraction of windows that will be presented to a classifier. To
ensure that every pedestrian is still detected, we rely on the
Maximum Search Problem (MSP) theorem [9]. The problem
of classifying windows as containing pedestrians or not may
be seen as the task of finding a subset of windows containing
pedestrians from a finite set of windows. Similarly to the
majority of maximum search problems, the exact solution is
computationally expensive (every sample has to be evaluated).
Instead, the Maximum Search Problem states that it is possible
to find almost optimal approximate solutions by randomly
selecting a percentage of the samples to be evaluated.

Although the random filtering can provide a small subset
of detection windows, such that almost every person in the
image is covered, these windows might not provide the exact
location of the pedestrian. Hence, this pedestrian might be
missed due to the low response achieved by the classifier.
Therefore, we employ an extra step before presenting the
window to the classifier to adjust the window location to the
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Fig. 2. Example of performing location regression to adjust the detection
window location.

pedestrian. Aiming at adjusting the bounding box delimited by
a detection window, we learn a regression model (referred to as
location regression) to correct it to the pedestrian’s location. In
this problem, we want to find displacements ∆x and ∆y such
that, when added to the centroid (Gx, Gy) of a given window,
they move the detection window to the correct position of
a pedestrian. Unlike [10], our proposed method learns the
regression model during an offline phase.

To create the location regression model, we first need
to generate a training set to be presented to the learning
algorithm. Given a training sample, we generate a set of
displaced windows with the respective differences (∆x,∆y)
to their correct position. This set of displaced windows is
generated in all directions, as long as the Jaccard coefficient
between the ground-truth bounding box and the displaced
window is greater than 50% [3]. This ensures that we have
a portion of the pedestrian within the window.

Once the training set is created, features descriptors are
extracted from the windows and associated to the displace-
ments. Ideally, such descriptors should be simple enough to
preserve a low computational cost. Then, a regression with two
dependent variables, ∆x and ∆y, is learned. Even though we
have employed a regression based on Partial Least Squares due
to its numerical stability and robustness to multicollinearity,
other methods could have been applied.

During the testing phase, the location regression corrects
the detection windows’ location before presenting them to the
classifier, as illustrated in Figure 2.

B. PLS Cascade

Designed to model relations between observed variables, the
Partial Least Squares method (PLS) constructs a set of predic-
tor variables (latent variables) as a linear combination of the
original predictors, represented in a matrix X (feature matrix),
containing one sample per row (the reader is referred to the
work of Rosipal et al. [11] for more details). The responses
associated with the samples are stored in a vector y, which
are the class labels in the pedestrian detection problem [12].
Although PLS allows accurate detection in high-dimensional
feature sets, the method presents a high computational cost [3],

[10]. To reduce this cost, we propose the application of Partial
Least Squares method in the context of a cascade framework,
referred to as PLS Cascade (depicted in Figure 3).

In the proposed cascade, the feature descriptors are ranked
by Variable Importance on Projection (VIP) so that more
discriminative descriptors are used first in the cascade aiming
at the rejection of a large number of samples in early stages.
Derived from PLS, the Variable Importance on Projection
(VIP) provides a score for each variable on the original feature
space (matrix X), so that it is possible to rank the variables
according to their predictive power in the PLS model. A higher
score indicates that the variable presents more importance [12].

As a side effect of ranking the feature descriptors, the later
stages will use less discriminative feature descriptors. Hence,
to improve the detection rate in later stages of the cascade,
we also propose to propagate the latent variables Ti from the
ith stage to the next (i + 1)th stage such that discriminative
information is also available in later stages without the need
for reconsideration of feature descriptors that were already
used in previous stages.

III. EXPERIMENTS

In this section, we present our evaluation of the proposed
approaches. Section III-A addresses the random filtering ap-
proach and evaluates the effectiveness of location regression.
Section III-B explores the PLS Cascade. The evaluation was
conducted in the INRIA Person Dataset [13], a widely em-
ployed dataset for pedestrian detection.

A. Random Filtering

We evaluate the performance of random filtering and lo-
cation regresion considering the following setup. We use the
PLS Detector [8] as our baseline (any other sliding window
based detector could be used instead). The detector was trained
using the same Histograms of Oriented Gradients (HOG) setup
used by Dalal and Triggs [13], i.e, a feature vector with 3,780
dimensions. To execute the location regression, we consider
two feature descriptors, namely, pixel intensity and HOG [13].

The first experiment examines the random filtering to deter-
mine whether it misses a pedestrian or not when used by itself,
which is shown by applying random filtering and evaluating
the results obtained with respect to the ground-truth (i.e. a
perfect classifier). Then, we evaluate whether the location
regression is able to improve the detection results when
applied after the random filtering. Afterwards, we evaluate the
detector’s behavior when presented to the windows selected by
random filtering and the ones adjusted by location regression.
Finally, we present the computational cost of the proposed
approach.

Ground-truth Comparison. To verify the applicability of the
Maximum Search Problem theorem, presented in Section II-A,
this experiment determines the ratio of pedestrians that are
covered1 by at least one detection window as a function of

1A window is considered covered when the Jaccard coefficient is greater
than 0.5.
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Fig. 3. Overall layout of the proposed PLS cascade using Partial Least Squares with latent variable propagation and Variable Importance on Projection
(VIP) for feature ranking. Initially, the descriptors are extracted from the image and sorted using VIP, which ranks variables by their discriminative power.
According to their rankings, the variables are set to stages, which allows to increase the number of discarded samples in the early stages. Each stage adds
features until it reaches a desired false positive and miss rates. Hence, a PLS model is created using these features to classify the samples presented to this
stage. Since features that have already been considered are not used in the later stages, the low-dimensional feature set Ti (latent variables) are propagated
to avoid using only features with less discriminative power.

Fig. 4. Results of the random filtering approach. Achievable recall as a
function of the number of selected windows, evaluated on the INRIA data set
(RF: random filtering, LR: location regression).

the percentage of selected windows. This can be verified
according to their correct position given by the ground-truth.
The random filtering, depicted in Figure 4 as RF (purple line),
shows that a random selection of 1.4% of detection windows
is enough to detect 83% of the pedestrians on the INRIA data
set (if we consider a classifier that provides perfect results).
Note that according to the MSP theorem, approximately 0.2%
would be enough to approximate the maximum (find at least
one pedestrian). However, since, on average, two people are
present in each image, this value increases. In addition, we
cannot achieve maximum recall score in this experiment
because we are not padding the images, which means that
people near to the edge of the images cannot be fit within a
detection window.

Location regression. After applying the random filtering, we

Fig. 5. Recall achieved at 1 FPPI when the selected detection windows are
presented to the PLS detector. The PLS detector is shown as a line because
it is executed with 100% of the detection windows (without filtering).

adjust the detection windows using location regression. Fig-
ure 4 reports the results achieved when applying the technique,
using either pixel intensity or HOG as feature descriptor. As
we can see, the regression is able to correct the position of
the detection windows and, consequently, increase the recall
achieved by the random filtering to a recall of 0.9 when
1.4% of the detection windows are selected. In addition, we
observe that both feature descriptors, pixel intensity and HOG,
obtained comparable results. Note that these results show the
maximum achievable recall if the detector provided perfect
results.

Pedestrian detector. Although random filtering misses only
few pedestrians, these windows still need to be presented to
a classifier, which may not obtain high accuracy due to some
displacement of windows regarding to the person’s location.



TABLE I
RELATIVE SPEEDUP ACHIEVED WITH THE PROPOSED METHOD WHEN COMPARED TO ORIGINAL DETECTOR ALONE

(RF: RANDOM FILTERING, LR: LOCATION REGRESSION USING HOG).

SETUP
PERCENTAGE OF SELECTED WINDOWS

1% 2.5% 5% 7.5% 10% 12.5% 15% 100%

PLS Detector – – – – – – – 1.00×
RF 67.91× 37.64× 21.81× 15.58× 12.10× 9.62× 8.45× –

RF+LR 64.83× 35.13× 20.40× 14.59× 11.39× 9.09× 7.97× –

This experiment evaluates how that may affect the accuracy
of the detector/classifier. In the following experiments, we
discuss only results achieved with HOG, because it has lower
dimensionality and consequently is less subject to issues
regarding the curse of dimensionality.

The results in Figure 5 show the recall obtained at one false
positive per image (FPPI). Even after executing the random fil-
tering, the accuracy is still comparable to the original detector
(black line), which considers 100% of the detection windows,
i.e., no windows are discarded. However, to achieve similar
results, the number of selected detection windows had to be
larger than the result achieved by the ground truth experiment
previously described. This indicates that, although the correct
detection windows have been selected, the PLS detector does
not provide high responses for all the correct windows. By
using the location regression, we could improve the random
filtering results, increasing the recall to 40.9% (close to the
45% achieved by the original detector).
Computational cost. The results in Table I show the speedup
for the experiments reported on Figure 5. The random filtering
was able to achieve significant reduction in the computational
cost, which also justifies its usage. In addition, by comparing
the last two rows in Table I one may note that the employment
of the location regression presents a low overhead.

B. PLS Cascade

We compared the PLS cascade with the cascade proposed by
Zhu et al. [7] (using PLS for classification, instead of SVM)
and with the PLS detector proposed by Schwartz et al. [8].
To establish a fair comparison, we have used the same 3,780
feature descriptors employed to learn the PLS cascade to learn
Zhu’s cascade and the PLS detector. The results are reported
in False Positives per Window (FPPW).

According to Figure 6, the miss rate achieved by the PLS
cascade (28.35% at 10−4 FPPW) is smaller than the one
achieved by Zhu’s cascade (40.16%). In addition, the number
of samples discarded in the early stages is greater when the
proposed cascade is considered (e.g., 67.45% of the detection
windows are rejected by PLS cascade at the first stage and
44.46% by the Zhu’s cascade), which makes the PLS cascade
a faster and more accurate method.

When compared to the PLS detector, the proposed cascade
achieved a higher miss rate at 10−4 (17.38% for the PLS
detector and 28.35% for the PLS cascade), according to
Figure 6. Even though the miss rate is higher, the proposed
cascade performs only 7.49% of the projections required
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Fig. 6. Results of the proposed PLS Cascade. We compare different setups of
the proposed cascaded and different pedestrian detectors. The plot is reported
in a detection error tradeoff plot (lower and left-most plots are better).

by the PLS detector (Figure 7), making the PLS cascade a
promising approach, which should focus mainly on the use
of a larger number of feature descriptors, an aspect that is
usually necessary for cascade approaches (e.g., as much as
98, 928 descriptors were used by Zhu et al. [7] to achieve
similar results obtained by Dalal and Triggs [13] with only
3,780 descriptors with their SVM-based detector).

C. Discussion and Remarks

Random filtering allowed a great reduction in the number of
detection windows processed, without significantly increasing
the computational cost. The percentage of selected windows
estimated by the Maximum Search Problem might be seen as
a lower limit of the real estimation of the number of selected
windows. Applying location regression to correct the windows
selected by random filtering allows to increase the detection
rate, which could be explored to select an even smaller number
of windows without greatly affecting the computational cost.
Random filtering was not able to achieve the same recall
obtained by the PLS Detector stand-alone, mainly due to the
generalization of the classifier for non-centralized pedestrians.

PLS Cascade allowed to reduce the number of projections
performed by the PLS Detector. The experiments have shown
that VIP allows faster training and rapid window rejection
in earlier stages of the cascade. The cumulative strategy of
propagation has obtained better results than the noncumulative,
since it incorporates features of every previous stage. Finally,
there is no extra cost on computing the feature space onto a
low dimensional one, since it is already done when performing
the PLS regression.
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IV. CONCLUSIONS

In this work, we proposed two novel optimization ap-
proaches to reduce the computational cost of pedestrian de-
tection. The first optimization is based on random filtering
approach to discard a large number of detection windows,
which is further improved by the application of a regression
to correct the window location to fit the persons in the image.
This approach can be applied as a early step of any sliding
window based detector. Compared to the application of a de-
tector method alone, our experimental evaluation demonstrated
that accurate results at a reduced computation cost may be
achieved by our method even when a large number of detection
windows are discarded.

The second optimization approach addresses the computa-
tional cost of the Partial Least Squares (PLS) Detector [8]
by proposing the usage of a rejection cascade based on
PLS. This method allows reducing the computational cost
by discarding less promising samples earlier. In order to
discard even more samples in earlier stages of the cascade, we
proposed the use of the PLS-based feature sorting method VIP
and to improve the detection rate, a latent variable propagation
scheme is employed. Results showed that the combination of
VIP and propagation of latent variables is promising due to
the significant reduction on the number of projections, even
when compared to a well-known cascade approach [7].
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