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Abstract—RGB-D cameras became part of our daily life
in applications such as human-computer interface and game
interaction, just to cite a few. Because of their easy programming
interface and response precision, such cameras have also been
increasingly used to 3D reconstruction and movement analysis.
In view of that, calibration of multiple cameras is an essential
task. On that account, the goal of this paper is to present
a preliminary study of methods which tackle the problem of
multi-view geometry computation using RGB-D cameras. A brief
overview of camera geometry is presented, some methods of
calibration are discussed and one of them is evaluated in practice;
finally, some important points are addressed about practical
issues involving the problem.
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I. INTRODUCTION

Often, parts of objects being observed by a camera are
occluded from the camera viewpoint, making it harder to be
detected or tracked. By using a world view from multiple
cameras, it is possible to cope adequately with such problem.
For example, two cameras can be used as a stereo vision,
mimicking the human vision, and capable to reconstruct a
scene by means of a triangulation scheme [1].

Nowadays time-of-flight sensors (such as RGB-D cameras)
have been largely exploited due to the low cost, presenting
an integration of a depth and an RGB cameras, which need
to be calibrated to provide a precise depth color map [2]. An
inconvenient effect of parallel projection of RGB-D cameras
are the occluded parts which create shadows of non-visible
regions in the image. A way to circumvent this inherent
drawback is to use multiple cameras that demands an extrinsic
calibration among them. Applications of such a vision setup
span fields like human movement analysis by a composite
skeleton [3] and 3D object reconstruction [14] (refer to Fig. 1
for examples of these applications).

Although calibration of RGB-D cameras overcome the
inherent problems of a single RGB-D camera, this is not a
simple task. Once these sensors are based on a matrix of
infra-red (IR) emitters and receptors, cross-talk problems with
serious interference on pair of cameras is surely presented.
Yet, due to the single sensor low range, there are limitations
when pointing cameras to see the same calibration reference
(that is, a checkerboard). The goal of this paper is then to
present a study about the existing methods of multi-view

calibration, discussing important points towards a robust multi-
view calibration method.

The reminder of this paper is structured as follows. Section
II presents a background on camera geometry, and its intrinsic
and extrinsic calibration parameters. Section IV address some
issues involved in calibration of multiple RGB-D cameras. In
Section V, an implemented method is described and discussed,
and, finally, Section VI draws some conclusion and future
works.

II. BACKGROUND ON CAMERA GEOMETRY

The main goal of camera calibration is to find camera
intrinsic and extrinsic parameters, which ultimately describe
the camera model and relate the image of one camera to
the real world. Focal length, aspect ratio of the image, and
principal point are the intrinsic parameters, while rotation and
translation parameters are the extrinsic ones.

Points inside a camera pinhole model (see Fig. 2) is usu-
ally represented in homogeneous coordinates, where a point
represented by (x, y)T in Cartesian coordinates is represented
in homogeneous coordinates by (x, y, w)T . After normalizing
all coordinates by w, we have (X,Y, 1)T . A point, P, in world
coordinates system is projected into a point, p, in a image
coordinate system, according

p = K[R|t]P (1)

Via a calibration procedure, it is necessary to find the
intrinsic and extrinsic parameters presented in the matrices
K and [R|t], respectively, where K is given by

K =

f.mw h uo
f.mh ah vo
0 0 1

 (2)

where K is composed of the focal length, f, skew coefficient,
h, and the principal point (uo, vo). mw and mh are the scaling
factors that relate pixels to distance.

In summary, the intrinsic parameters are defined as follows
[4]:

• Focal length: Describes how strongly the camera di-
verges or converges light (see, f , in Fig. 2).

• Skew coefficient: Determines the angle between the x
and y axes, usually close to zero.
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Fig. 1. Examples of multi-view camera applications. Left: A composite skeleton; right: A 3D reconstruction of a person.

• Principal point: The intersection of the principal plane
and the camera axis, ideally on the center of the image
(in Fig. 2, it is the point in the image plane where Zc

intersects).
• Lens distortion: A non-linear parameter used in most of

the calibration methods. It is a form of optical aberration
where straight lines get distorted in some way due to the
shape of the lens.

Extrinsic camera calibration consists in achieving a trans-
formation from camera-fixed Cartesian space to an arbitrary
3D coordinate system that whether the camera is located or
it is shared by multiple cameras [11]. Extrinsic calibration is
required by multiple cameras, and the goal is that a common
target is shared by the camera posed in different points of
view. [R|t] represents the matrix of extrinsic parameter, where
R is a rotation matrix, and t is a translation vector, defined
respectively as

R =

Rxx Ryx Rzx

Rxy Ryy Rzy

Rxz Ryz Rzz

 (3)

where R.. are the rotation parameter over each one of the pairs
of planes formed by x, y and z axes.

t =

txty
tz

 (4)

where t. is the translation parameter in each one of the x, y
and z axes.
t is the translation of the origin of the world coordinate

system expressed in coordinates of the camera-centered co-
ordinate system (CCCS) and R represents the rotation of the
world coordinate system regards the (CCCS).

More details about camera parameters can be found in [10],
[11].

III. MULTI-VIEW CALIBRATION METHODS: A REVIEW

When using multiple cameras, it is almost mandatory cam-
era calibration in order for the system to be used in some
applications. It is an absolute necessary step when a set of
camera aims to analyze the same scene to produce a 3D
information, for example.

Considering the recent advance and low price of RGB-D
cameras, calibration process of these devices requires special
procedures in order to tackle with inherent characteristics of
the sensor. There are two manners to calibrate multi-RGBD
cameras, that is, via depth map or infrared (IR) images. Both
considering the same camera in the sensor.

In [7], the authors accomplish a RGB-D camera external
calibration prior to reconstructing objects in a virtual environ-
ment. To do so, it was developed a custom-made calibration
object with three planar surfaces, to be registered by all of the
five sensors. The object is moved to various positions at a some
given time, and, in each captured frame, the planar surfaces are
acquired by all of the depth sensors. The pose estimated for
the sensors is obtained by refining an appropriate referenced
pose with optimization techniques.

The work in [6] attempts to register and reconstruct a
scene using four Kinect sensors. For that, it evaluates some
calibration methods. The authors ultimately use the IR output
of the sensors to perform a checkerboard-based calibration
using Bouguet’s toolbox [16]. The resulting scenario is capable
of real-time rendering of the merged data after an offline
calibration setup.

Considering the reference target used for calibration, there
are two types found in the literature, presenting each one of
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Fig. 2. Pin-hole camera model.

them certain particular aspects. Several of the existing camera
calibration works, such as in [6], accomplish calibration with
Bouguet’s toolbox [16] to calibrate IR images. In [8], the
proposed method performs calibration with a single shot, using
multiple checkerboards placed at different locations in the
image.

Most of the extrinsic calibration methods is based on
checkerboard references, working by comparing a pattern of
known geometry presented in the real-world environment from
different perspectives. These methods, however, require that
the camera setup never changes even slightly, or the calibration
parameters obtained are not likely to hold. Recent methods, as
in [9], propose automatic calibration; by taking advantage of
the perceived environment, the method is able to update the
calibration parameters of multiple cameras on-the-go, based on
the data that is being acquired. This procedure can be perfectly
matched with projects which require real-time feedback and
have no information of the position of the cameras. The
drawback of the auto calibration is that it often requires more
time to find the calibration parameters when compared to
manual calibration methods, with a special advantage of being
more flexible.

IV. PRACTICAL ISSUES ABOUT CALIBRATION OF RGB-D
CAMERAS

In this section, some issues about RGB-D sensor calibration
are addressed. This is important in order to characterize the
multiple problems involved the calibration of RGB-D cameras.

A. Depth calibration

If extrinsic calibration of the depth maps in RGB-D cameras
is required, it is not possible to use the checkerboard-based
calibration process as it is. There are several workarounds
to solve this issue, such as the one described in [6] which
uses the IR output of the Kinect instead of the raw depth, in
order to make it work with the classical checkerboard-based
calibration.

A common approach for depth calibration is the use
of different objects which contain depth-acquirable features.
A semi-transparent checkerboard, alternating between color
squares and transparent ones, is proposed by [17]. This so-
lution allows the checkerboard pattern to be perceived by
the depth sensor, therefore, allowing it to estimate the same
parameters using the classical checkerboard methods, as well.
Other solutions usually consist of modifying the calibration
objects, like [15], which uses a cylindrical shape in order
to calculate the same extrinsic parameters. Because these
approaches depend on different kinds of objects, many other
calibration methods can be created, unveiling a range of
possibly more efficient algorithms.

B. Cross-talk interference

One significant problem found in the calibration process by
using multiple RGB-D devices is the cross-talk interference.
Due to nature of RGB-D camera sensing, multiple infra-red
emitters may cause noise in the depth map captured. Berger
et al. [12] measured a high error in a experiment with motion
capturing and body joint calculation by using multiple RGB-D
cameras. In practice, errors due to noise can be easily observed



Fig. 3. Our camera setup with enumerated cameras. Camera 1 is considered
the ”Master Camera” and the other cameras are the slave ones. Homograph
is calculated among slaves and master camera in a pairwise manner.

with multiple sensors, (see fig 5), occurring even if the devices
are not directly pointing to each other. This problem happens
due to reflections of the IR from one device being captured
by the others [13]. In [18], a solution can be found to cope
with this problem.

C. Angle among the calibration cameras

When working with a multi-camera calibration, specially
when using a checkerboard pattern to calibrate, the angle
among the cameras should be considered. If the textured plane
is rotated too much with respect to some of the cameras, the
calibration methods are likely to fail in recognizing the pattern.

V. PRELIMINARY EVALUATION OF A PRACTICAL
CALIBRATION

This section describes an attempt to realize calibration of
multiple Kinects using an RGB calibration. The offset between
the Depth and RGB camera was considered zero, and a test
using skeleton stream data was realized. With the goal of
finding calibration parameters of the three RGB-D cameras
in the setup, with respect to the ”master” camera (camera 1 in
Fig. 3), the AMCC Toolbox [5] was used considering the RGB
part of the RGB-D cameras. The toolbox is a modified version
of Bouguet’s Camera Calibration Toolbox for Matlab and
the Robust Automatic Detection Of Calibration Chessboards
(RADOCC) toolbox. The toolbox extends automatic checker-
board detection to multiple cameras and implements entirely
automated monocular and stereo calibration procedures.

A data set creator system was developed, which automati-
cally takes image samples from all cameras at the same time
to create synchronized checkerboard images between pair of
cameras (see fig. 4). With the data set in hands, the toolbox
was used to generate the necessary calibration.

A checkerboard (see fig. 4) with 99.5mm by 100.6mm
squares was used. To be a rectangle is not a problem, for
the toolbox, as it has configuration parameters for the square

Fig. 4. Sample of the used checkerboard used. Data set .

dimensions. Using the checkerboard, a calibration was per-
formed between pairs of cameras, with the setup depicted in
Fig. 3. Camera 1 was chosen as the ”master camera”, Camera
2 and 3 (slaves) were calibrated in pairs with Camera 1. After
achieving the results, an early version of a composite skeleton
system was used to transform a point in the left hand position
found in the Cameras 2 and 3 coordinate systems into the
same point in the master camera coordinate system, using
extrinsic calibration parameters obtained by our checkerboard
RGB calibration. The system considers the offset between the
RGB and depth cameras equal to zero, which was proved to
be a poor assumption.

To evaluate the calibration system performance, the points
considered in each one of the slave cameras were mapped
into the master camera coordinate system (MCCS) and the
Euclidean distance was calculated among the mapped points
and the reference point in the MCCS. The results were 79 cm
and 19 cm, from Cameras 2 and 3, respectively, indicating a
high error of point mapping.

A. Discussion

The parameters found in the RGB calibration show to have
a correlation with the real world camera setup. According to
the setup position, cameras are located in such a way that it
is only necessary to be rotated in the Y axis to have a perfect
alignment among them. In practice, rotation parameters were
close to zero except on the Y axis. Also, the distances given
by the translation vectors had some relation with real world
observation, with almost no translation in the Y axis, since the
cameras are at the same level, and close to one meter distance
in the x axis.

The distances measured between transformed points and
the ground truth point captured by the master camera were
very high, with almost one meter of error in some cases.
The calibration parameters were coherent with real world
measures, and the calibration was repeated two times with
different data sets, resulting in almost the same values. It is
very likely that our error comes from the consideration that



Fig. 5. Cross-talk interference among the RGB-D cameras. (a) deformed skeleton with wrongly placed joint position, and (b) pervasive holes in a point
cloud reconstruction.

the offset within the RGB and depth sensors is zero. The small
offset between the RGB and depth camera was considerable
propagated into high measurement error when transforming
depth points using RGB calibration.

VI. CONCLUSION

A brief camera calibration survey and a implementation of
an RGB camera calibration method, using AMCC toolbox,
was presented in this paper. An RGB calibration was proved
not to be adequate for the composite skeleton construction.
High error in hand position measurements occurred between
transformed points and the ground truth point in Camera 1
coordinate system were found. A depth calibration will be
necessary by using the depth map or IR images to continue
our work.

A. Future Work

We are working to create a composite skeleton, made of the
fusion of body tracking data from three cameras, following the
work of [3]. This composite skeleton would be immune to self-
occlusion and much more accurate than the one generated by
only one RGB-D camera.
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