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Abstract—This paper presents a halftoning-based watermark-
ing method. This method enables the embedding of a color image
into a binary black-and-white halftone, while maintaining the
image quality. The proposed technique is capable of embedding
watermarks of three color channels into a binary halftone. To
achieve high quality halftones, the method maps colors to halftone
channels with homogeneous dot patterns which in turn use
different binary texture orientations to carry the watermark.
They are obtained by solving a minimization problem in which
the objective function is the binary distance between the original
binary halftone and the available patterns. To restore the color
information, we scan the printed halftone image and compute
the inverse information (considering the dot pattern). Using
the mapped information, we restore the original color channels
from the halftone images using a high-quality inverse halftoning
algorithm. Experimental results show that the method produces
restorations with a superior quality than other methods found
in the literature and increases the embedding capacity.

Keywords-Embedding, Halftone, Color Restoration, Water-
mark, Inverse Halftoning.

I. INTRODUCTION

Transmitting side information using printed media is a
challenge due to the distortions introduced by the print-
and-scan (PS) process [1]. Some of these distortions occur
because the displayed digital color may differ from its printed
representation. One of the causes for these differences is the
fact that the digital image is converted to a halftone represen-
tation before being printed [2]. This halftone representation
is generated from a mathematical model that produces colors
using a combination of colored dot patterns [3]. The halftone
images are perceived as continuous tone images when viewed
from a distance due to a low-pass property of the Human
Visual System (HVS). Many different halftoning methods have
been developed, including Direct Binary Search (DBS) [4, 5],
Ordered Dithering (OD) [6, 7], Error Diffusion (ED) [8]–[10],
and Dot Diffusion (DD) [11]–[13]. Although there is a great
diversity of image halftoning methods, most of them modify
the coding information of the printing process.

The scanning process performs the inverse task of the
printing process. Scanner devices read the printed halftone
and restore a multi-level image via an inverse halftoning
algorithm [14, 15]. Although the inverse halftoning algorithm
recovers the distinct intensity levels of the original image, the

reconstructed image may present distortions like noise [16]
and blur [17]. Therefore, PS processes make hardcopy water-
marking more challenging than digital watermarking.

Many works in the literature address the document hardcopy
problem by trying to keep the hidden information on a PS
channel more robust. Most prior work on image data hiding
target color and grayscale images with a wide range of
intensity values [18]–[20]. These methods differ from each
other in terms of efficiency, capacity, and robustness. Brassil
et al. [21] propose authentication methods based on shift
coding. To increase the robustness, their methods require the
use of uniformly spaced centroids, which are often difficult
to obtain. Tan et al. [22] extended these methods using a
directional modulation technique for watermarking of Chinese
text images. More recently, other methods were proposed for
specific applications [23]–[26].

Among the available methods, those that embed information
into binary images are very promising because the pixel
binarization is the last step process of the printing process.
When the scanner reads the paper, the data is first collected
as a binarized halftone which increases the robustness of PS
process. It is worth pointing out that, since binary images
have less capacity to hide information, embedding data in
binary images is more difficult than in color or grayscale im-
ages [27]. Although more difficult, the demand for this kind of
technique is increasing and several binary-image watermarking
techniques have been developed [28]–[32]. However, as stated
by Hou et al. [27], these methods have several limitations that
include a limited data capacity and the presence of noticeable
artifacts.

Some approaches have been proposed to increase the em-
bedding capacity of binary-images embedding. Pan et al.
propose a low-capacity watermarking scheme for halftone
image authentication, exploiting an image hash as a fragile
watermark [33]. Guo and Liu [34] developed a higher ca-
pacity watermarking technique that uses a block truncation
code. Son and Choo [35] proposed a watermarking method
for clustered halftone dots in which the embedded binary
data is recovered using dictionary learning. Guo et al. [36]
proposed a halftoning-based approach capable of embedding
watermarks using direct binary search to encode the binary
data. Guo and Liu [37] propose a method for embedding a



multi-tone watermark that, as a consequence, produces a lower
quality image. Although all these methods have a reasonable
embedding data capacity, they are restricted to a specific type
of dithering that limits their performance and application.

More recently, Son et al. proposed some techniques [38, 39]
to restore color channels from a black-and-white halftone
image that has homogeneously distributed dot patterns. This
work represents an improvement for the reversible color-
to-grayscale conversion problem [40]–[42]. This conversion
problem is specific to watermarking techniques that aim to re-
cover the original color channels from watermarked grayscale
images submitted to a PS process. This application involves
a large amount of embedded data because it inserts two
chrominance images (color channels) into a luminance channel
(grayscale image) [43].

Given these halftoning and watermarking challenges, we
propose a binary image watermarking method that uses min-
imum distance of binary patterns. The method encodes color
images into dithering patterns of halftone images with a similar
goal to the work done by Son et al. [38, 39]. However, contrary
to their algorithms, that only allow self-embedding of a color
channels into its halftone version, the proposed algorithm is
far more flexible and it is able to embed any content (another
image or itself).

The rest of this paper is organized as follows. Section II
gives a brief overview of binary vector dissimilarity measures.
Section III describes the proposed method, detailing encoding
(embedding) and decoding (recovering) of watermarks. The
experimental results are presented in Section IV. Finally, the
conclusions are drawn in Section V

II. DISTANCE OF BINARY PATTERNS

A binary vector Z with n dimensions is defined as

Z = {z1, z2, · · · , zn}, (1)

where zk ∈ {0, 1}, ∀ k ∈ {1, 2, . . . , n}. Given two vectors
X ∈ Ω and Y ∈ Ω, where Ω is the set of all n-dimensional
binary vectors, let Sij , ∀(i, j) ∈ {0, 1}, be the number of
matching occurrences of i in X and j in Y , at corresponding
positions. As indicated by Zhang and Srihari [44], there exist
several measures that can be used to evaluate the similar-
ity, S(X,Y ), between X and Y . Among these similarity
measures, the most common are Dice, Jaccard-Needham,
Sokal-Sneath, Kulzinsky (Matching), Rogers-Tanimoto, Sokal-
Michener, Russell-Rao, and Yule.

For each similarity measure there is an associated dissimilar-
ity measure D(X,Y ). While some similarity measures are not
normalized, i.e. their values are not necessarily in the interval
[0, 1], the dissimilarity measures are typically normalized [45].
In this paper, normalized dissimilarities are called distances
when they are computed for a collection of raw observation
vectors stored in a rectangular array.

III. PROPOSED METHOD

The proposed method consists of decomposing the RGB
color channels of an image watermark (W ) into three binary

channels. Each color channel of W is treated as a grayscale im-
age and a halftoning algorithm is used to generate R = {rij},
G = {gij}, and B = {bij}, where rij , gij , bij ∈ {0, 1}.
Using a combination of each pixel of these binary channels,
we map a binary mask that is used to encode the host halftone.
The method, therefore, involves three steps: generation of
masks, color encoding of the watermark, and restoration of
the original color watermark (decoding). We describe these
three steps.

A. Mask Generation

The encoding masks are generated by computing the finite
n-ary Cartesian Product of the set X that is defined as:

Xn =

n∏
k=1

X = {(x1, . . . , xn) : ∀k ∈ N∗
n : xk ∈ X} , (2)

where Xn is a set of all ordered n-tuples {xk} and each
element xk is a basis element of Xn. For X = {0, 1} we
have a total of 2n distinct n-tuples. Each tuple is equivalent
to a binary vector (defined in Eq. 1) and is used to map the
combinations of each pixel of a halftoned RGB channel. Since
each pixel of the R, G, and B halftones has only two possible
values, the result of this Cartesian product is a set of 23 = 8
triplets.

Next, using Eq. 2, we compute a larger set of tuples to
represent the distribution of points in the halftone. The higher
the number of tuples, the larger is the distribution of distinct
dots, which means that there are more options to represent
the distribution of original pixels in the grayscale halftone
(i.e. higher fidelity to unmarked halftone). On the other hand,
the more distinct tuples there are, the more space is required
to represent them. For simplicity, in this paper we adopt
n = 9, which gives a total of 512 distinct nonuples. Since
we have 8 distinct triplets and 512 distinct nonuplets, each
triplet is used to map a subset of these nonuplets. More
specifically, each triplet tk maps a set of 64 distinct nonuplets
Lk = {lk1 , lk2 , · · · , lk64}. For our application, the nonuplets are
geometrically distributed in 3× 3 matrices called ‘masks’.

B. Watermark Embedding (Encoding)

Once generated the masks from nonuplets, we use the set of
triplets to encode the color information into the masks. First,
we compute the halftone of each color channel independently,
generating R, G, and B. For each pixel in these planes, we
extract a triplet,

τi,j = {rij , gij , bij}, (3)

where rij , gij , bij ∈ {0, 1}. These extracted triplets are com-
pared with the triplets used as key to map a set of masks (see
previous section). Then, we chose the set of nonuples Lk such
that τi,j = tk.

After each pixel of W is mapped into a set of binary masks,
we have to decide which masks to choose. Since the masks
are adjusted to 3 × 3 blocks, the replacement of each pixel
with a mask implies a 3 times magnification. Therefore, we
magnify the host image H by a factor of 3 and compute its



Fig. 1. Steps for embedding the color watermark into the halftone.

Fig. 2. Extraction of color watermark from encoded halftone.

halftone Hh from its grayscale Hg . This magnified halftone
image is sliced into M ×N patches pij of 3×3 pixels, where
M and N are the dimensions of W .

After these steps, we have two matchable sets P = {pij}
and Ξ = {τi,j 7→ Lk}. For each pij , we choose the mask
among the 64 available masks in each set by solving the
following optimization problem:

arg min
Y

D(X,Y )

subject to X = pij

Y ∈ Lk,

(4)

where D is the distance measured between X and Y. Since
this minimization problem is performed for each patch, the
encoded halftone image C is built by placing the computed
masks at the corresponding position of the host halftone image
(Hh). Fig. 1 depicts the steps of encoding the watermarked
halftone C using the hidden information W and the host
content H .

C. Watermark Extraction (Decoding)

The decoding process is depicted in Fig. 2. First, the
encoded halftone C is sliced into M ×N patches qij of 3× 3
pixels. For each patch extracted from C, we recover the triplet
τ̂i,j using the inverse mapping of Lk. In other words, we take
τ̂i,j = tk given that tk 7→ Lk, where qij ∈ Lk. In this manner,
instead of applying the inverse halftone algorithm to recover
grayscale levels, the information is extracted directly from
the dot pattern of the printed image. Therefore, each restored
triplet contains the bits of restored channels at position i, j:

τ̂i,j = {r̂ij , b̂ij , ĝij}, (5)

where r̂ij , ĝij , b̂ij ∈ {0, 1}. After these steps, we distribute the
recovered bits to the respective halftone color channels R̂, Ĝ,
and B̂.

After recovering the halftones versions of the RGB chan-
nels, we use an inverse halftoning algorithm to restore the
multilevel representation of these color channels: R̄, Ḡ, and
B̄. Finally, the color watermarked image Ŵ is restored after
combining the restored channels.



IV. EXPERIMENTAL RESULTS

The experiments were performed using a laptop with an
Intel i7-4700MQ processor, 32GB of RAM, and a multi-
functional Aficio MP C4501 (printer and scanner). The code is
implemented in Python 3, with some extensions in Fortran 90
and Cython (to avoid performance issues). The proposed meth-
ods is tested using a set of 8 natural color images taken from
the “Miscellaneous” set of USC-SIPI Image Database [46].
The original images are depicted in the first column of Fig. 3.

The proposed method is able to embed any content, related
or not to the host image content. However, in our simulations
we use the same image content for both image and host. The
test consists of recovering the color channels from a printed
halftone that was previously watermarked.

A. Performance of Color Restoration Method

The performance of the proposed method is compared with
two state-of-the-art methods: Queiroz [40] and Ko et al. [41].
Since the proposed algorithm magnifies the original image by
a factor of 3, in our experiments the grayscale images encoded
with Queiroz’s and Ko’s methods are also magnified by a
factor of 3. This way, all printed and scanned halftones have
the same size for all tested methods.

We test the performance of the algorithms by Queiroz and
Ko using three configurations for each method. In the first
configuration, the images are not printed and scanned (NoPS).
In the second configuration, the PS process is used. In the last
configuration, the PS process is used in combination with a
color enhancement (CE) algorithm to the restored color im-
ages. The scanned halftoning images are restored to grayscale
by using the Kite et al. inverse halftoning algorithm [17]. The
software GNU Image Manipulation Program (GIMP) is used
to process the CE algorithm and to adjust the orientation of
scanned images.

Fig. 3 shows the experimental results for the test images
produced by the different methods. In this figure, the first
column shows the original images (Fig. 3.(a)). The second,
third and fourth columns show the restoration of color im-
ages with Queiroz’s method and the PS process without CE
(Fig. 3.(b)), with CE (Fig. 3.(c)), and without PS (Fig. 3.(d)),
respectively. Likewise, the fifth, sixth, and seventh columns
show the restorations using Ko’s method with PS process
without CE (Fig. 3.(e)), with CE (Fig. 3.(f)), and without PS
(Fig. 3.(g)), respectively. The last column shows the restoration
of the color image using the proposed method without CE or
other post-processing techniques (Fig. 3.(h)).

As expected [40, 41], results obtained directly from the
scanned images have faded colors, as depicted in Figs. 3 (b)
and (e). The faded colors of these restored images can be
intensified using a CE algorithm, as depicted in Figs. 3 (c)
and (f). From these results, we can notice that Ko’s method
produces results with fewer color artifacts, but the colors are
still different from the colors in the originals. In this case,
color differences are not only due to the PS process, given
that the colors of Figs. 3 (d) and (g) also differ from the
original colors. For these methods, the color distortions are

the consequence of the subsampling of the color channels that
is performed during the encoding process (watermarking). On
the other hand, in the proposed method the RGB channels are
equally subsampled (from 24 bits per pixel to 3 bits per pixel)
and a good inverse halftoning algorithm is used to restore the
content [17]. Therefore, distortions are less prominent, as can
be noticed from the results in Fig. 3 (h).

TABLE I
OBJECTIVE EVALUATION OF STRUCTURAL SIMILARITY BETWEEN THE

ORIGINAL COLOR WATERMARKS AND THE RESTORED WATERMARKS
USING THE TESTED METHODS (CMSSIM).

Image
Queiroz Ko

Proposed
PS PS+CE NoPS PS PS+CE NoPS

Airplane 0.561 0.315 0.456 0.600 0.323 0.336 0.734
Baboon 0.343 0.442 0.525 0.432 0.525 0.456 0.751

Girl 0.287 0.394 0.432 0.285 0.397 0.357 0.855
House 0.533 0.578 0.758 0.539 0.606 0.727 0.876
Lena 0.138 0.243 0.238 0.148 0.232 0.243 0.948

Peppers 0.340 0.625 0.782 0.339 0.683 0.794 0.933
Sailboat 0.390 0.529 0.803 0.490 0.594 0.782 0.825
Splash 0.334 0.628 0.830 0.256 0.479 0.854 0.901

Average 0.366 0.469 0.603 0.386 0.480 0.569 0.853

TABLE II
OBJECTIVE EVALUATION OF COLOR FIDELITY BETWEEN THE ORIGINAL

COLOR WATERMARKS AND THE RESTORED WATERMARKS USING THE
TESTED METHODS (∆E∗).

Image
Queiroz Ko

Proposed
PS PS+CE NoPS PS PS+CE NoPS

Airplane 09.95 17.29 17.02 12.02 21.67 21.35 07.52
Baboon 17.30 18.00 14.09 17.15 18.92 16.55 10.20

Girl 18.65 22.22 24.65 17.35 21.64 27.39 10.37
House 12.98 14.41 10.49 12.19 14.93 11.95 06.24
Lena 22.31 24.63 20.75 22.48 24.31 22.82 05.40

Peppers 22.01 18.22 15.63 21.05 16.42 17.15 05.54
Sailboat 17.52 16.59 11.54 16.97 17.47 13.37 08.58
Splash 20.62 18.66 9.52 22.23 23.37 09.27 06.47

Average 17.67 18.75 15.46 17.68 19.84 17.48 07.53

We use two objective quality metrics to quantitatively
evaluate color distortions. The first metric is the Color Multi-
scale Structural Similarity Index (CMSSIM) [47]. CMSSIM
is used to measure the overall similarity between original and
restored images. The second metric is the CIE color difference
measure (∆E∗) [48] that is used to measure the accuracy of
the recovered colors. The higher the value of CMSSIM, the
better the quality of the reconstructed image, while the smaller
∆E∗ is the better the quality of the reconstructed image. In
Tables I and II, the values of CMSSIM and ∆E∗ are shown
for all images. Notice that the proposed method presents the
best performance, in accordance with the qualitative results
presented in Fig. 3. The CMSSIM values shown in Table I
suggest that the proposed method recovers the original im-
age with high similarity of luminance, color, or both. The
performance differences between proposed and conventional
methods are more clearly shown by examining the ∆E∗ values
in Table II, which gives estimates of the perceptual color
difference. Therefore, from these results, we can conclude



(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 3. Comparison of recovered color: (a) Original, (b) color image recovered from printed and scanned images using Queiroz’s method without color
enhancement, (c) color image recovered from printed and scanned images using Queiroz’s method with color enhancement, (d) color image recovered from
the textured grayscale image in simulation mode using Queiroz’s method, (e) color image recovered from printed and scanned images using Ko’s method
without color enhancement, (f) color image recovered from printed and scanned images using Ko’s method with color enhancement, (g) color image recovered
from the textured grayscale image in simulation mode using Ko’s method, and (h) color images recovered from halftone using the proposed method.

that the proposed method provides superior results for both
structural and color fidelity.

B. Visual Impact of Halftoning Watermarking Algorithm

We tested the visibility of possible degradations caused
by the embedding techniques using 14 dithering techniques.

Halftone images generated with these techniques (without data
embedding) are shown in Fig. 4. There has been relatively little
research on the quality assessment of halftone images with the
goal of better designing the printing and imaging system [55].
The use of image quality metrics to assess the quality of
halftone images is not straightforward. Usually, image quality



(a) ATK (b) BUR (c) F&S (d) JAR (e) SHI (f) SI1 (g) SI2

(h) SI3 (i) STU (j) BCP (k) CWP (l) CLU (m) DOM (n) DIS
Fig. 4. Halftone versions of the ‘Airplane’ image computed using several algorithms. The error diffusion algorithms used are (a) Atkison [49], (b) Burkes [50],
(c) Floyd-Steinberg [10], (d) Jarvis [8], (e) Shiau-Fan [51], (f)-(h) variants of Sierra’s algorithm [52], and (i) Stucki [9]. The ordered dithering algorithms
used are (j) Balanced centered point, (k) Central white point, (l) Clustered dots, (m) Diagonal ordered matrix, and (n) dispersed dots [2, 53, 54].

metrics are designed to assess multi-level images (grayscale
or color). However, these metrics are not effective to assess
binary images (halftones), so we used the human visual peak
signal to noise ratio (HPSNR) [12, 56] to assess the quality of
halftone images. This metric is basically a weighted version
of PSNR that incorporates the low-pass filtering characteristics
of the HVS. This metric exploits the perceptual limitations of
the HVS to determine if the dot patterns are being perceived
as continuous gray levels [53].

TABLE III
HPSNR VALUES COMPARING MARKED HALFTONE AND ORIGINAL

GRAYSCALE IMAGE.

Image
Dice,

Jaccard,
Sokal-Sneath

Matching,
Rogers,

Sokal-Michener
Russell Yule

Airplane 43.74401 39.35379 39.83867 11.10960
Baboon 43.36772 35.89738 38.78762 14.51172

Girl 40.99878 42.46510 38.45246 10.41496
House 42.37456 39.30285 37.68586 12.28634
Lena 40.31220 40.98477 35.94697 16.46699

Peppers 42.80871 36.12626 40.95991 14.55234
Sailboat 42.63261 38.18374 39.35358 13.98017
Splash 43.88915 38.05749 41.10926 17.71411

Average 42.51597 38.79642 39.01679 13.87953

We tested the proposed method using the following dissim-
ilarity measures: Dice, Jaccard-Needham, Matching, Rogers-
Tanimoto, Russell-Rao, Sokal-Michener, Sokal-Sneath, and
Yule. These dissimilarity measures are detailed by Zhang and
Srihari [44]. We use these measures as the comparison criteria
(D) for the minimization problem of Eq. 4. Table III shows
the HPSNR of the test images, corresponding to the halftone
visual quality.

From Table III, we observe that the same HPSNR values
were obtained for the Dice, Jaccard-Needham, and Sokal-
Sneath measures. In other words, although these measures
produce distinct numbers, the selected mask is the same and,
therefore, the watermarked halftone is exactly the same when
we use these 3 measures. Similarly, the Matching, Russell-
Rao, and Sokal-Michener measures produce the same HPSNR
results. From all tested measures, Dice, Jaccard-Needham,
and Sokal-Sneath are the most suitable as selection criteria,
given that all watermarked halftones generated with these
measures have HPSNR above 40dB. These results suggest that

the watermarked halftones are visually acceptable and have a
quality comparable to the quality of the corresponding original
grayscale image.

Fig. 5 shows the visual difference produced by distinct
dissimilarity measures for the ‘Lena’ image. Fig. 5 (a) shows
the unmarked grayscale image and Fig. 5 (b) shows the
grayscale converted to halftone using Floyd-Steinberg [10] (no
watermarking). Figs. 5 (c), (d), (e), and (f) show the result of
embedding color watermarks to Fig. 5 (b) using Dice, Match-
ing, Russel, and Yule dissimilarity measures, respectively.

(a) Grayscale (b) Unmarked (c) Dice

(d) Matching (e) Russel (f) Yule
Fig. 5. Effect of dissimilarity measure on marked halftones.

Fig. 6 shows the result of a pairwise comparison using
the tested halftoning algorithms for the ‘Lena’ image. In this
figure, the horizontal axis corresponds to the algorithm used to
compute the host halftone image, while the vertical axis cor-
responds to the algorithm used to compute the color channel
halftone. The darker blocks represent the combinations that
provide higher HPSNR values. From this figure, we observe
that the dithering algorithm used to compute the halftone of
the host has a bigger influence on quality than the dithering
algorithms used to compute the halftone of the watermark
color channels. Moreover, the quality of the coded halftone
is higher when Atkinson’s algorithm is used. This pairwise
comparison was performed for all tested images and results
are very similar. Therefore, the performance of the dithering
combination does not seem to be affected by image content.
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40.43 36.57 37.68 36.46 34.78 37.72 38.72 37.18 37.35 37.39 37.40 37.48 37.55 37.57

40.41 36.58 37.65 36.48 34.80 37.70 38.73 37.21 37.36 37.41 37.38 37.48 37.57 37.58

40.43 36.52 37.67 36.42 34.75 37.67 38.71 37.19 37.37 37.36 37.39 37.48 37.55 37.59

40.44 36.51 37.67 36.44 34.80 37.76 38.65 37.18 37.37 37.37 37.35 37.51 37.56 37.56

40.47 36.51 37.68 36.46 34.79 37.74 38.69 37.19 37.37 37.39 37.36 37.50 37.57 37.59

40.44 36.56 37.66 36.48 34.78 37.64 38.71 37.19 37.38 37.42 37.38 37.51 37.55 37.57

40.47 36.49 37.68 36.43 34.80 37.76 38.67 37.17 37.38 37.37 37.33 37.49 37.56 37.60

40.15 36.62 37.66 36.55 34.88 36.36 38.53 37.35 37.29 37.64 37.51 37.44 37.53 37.50

40.32 36.74 37.69 36.92 34.87 36.62 38.91 37.39 37.29 37.69 37.57 37.49 37.58 37.55

40.10 36.78 37.69 36.81 34.94 36.39 38.81 37.33 37.30 37.65 37.49 37.42 37.53 37.51

40.15 36.57 37.65 36.77 35.14 36.43 38.94 37.34 37.29 37.64 37.49 37.42 37.52 37.51

40.45 36.53 37.67 36.43 34.77 37.71 38.73 37.17 37.36 37.37 37.38 37.50 37.54 37.57

40.14 36.58 37.66 36.63 34.95 36.37 38.82 37.34 37.28 37.64 37.50 37.41 37.53 37.50

40.31 36.60 37.71 36.43 34.68 37.77 38.78 37.20 37.37 37.41 37.44 37.51 37.57 37.60

Fig. 6. Pairwise comparison between the dithering algorithm used on host
halftone image and the dihering algorithm used to compute the binary version
of RGB channels of embedded watermark. In this case, the halftone of ‘Lena’
image is used as both host and embedded image.

C. Computational Cost

Halftoning and inverse halftoning algorithms are usually
implemented on embedded hardware, where clock speeds and
memory sizes tend to be lower than in desktop-class machines.
Consequently, the number of operations required to execute the
algorithm and the amount of memory consumed are important
issues. Using the ‘Dice’ distance measure as the optimization
criterion and the Floyd-Steinberg as the halftoning algorithm,
we evaluated the computational cost of the proposed method.
We performed all simulations under the same conditions. Color
enhancement was not considered in this test. For each image,
we performed the simulation 10 times, collecting the encoding
and decoding running time and, at the end, calculating the
average times. This avoids the bias caused by other processes
running at the same time on the computer.

TABLE IV
RUNTIMES OF TESTED ALGORITHMS (IN SECONDS).

Image
Queiroz Ko Proposed

Encode Decode Encode Decode Encode Decode
Airplane 2.871 3.251 2.778 2.823 288.006 0.738
Baboon 2.933 3.211 2.823 2.806 279.809 0.698

Girl 2.861 3.187 2.812 2.955 270.514 0.687
House 2.851 3.195 2.865 2.832 269.090 0.695
Lena 2.848 3.234 2.768 2.924 268.655 0.700

Peppers 2.821 3.180 2.783 2.857 269.939 0.695
Sailboat 2.840 3.277 2.897 2.882 282.386 0.797
Splash 2.862 3.193 2.766 2.807 337.060 0.781

Average 2.861 3.216 2.812 2.861 283.182 0.724

Table IV shows the average elapsed time obtained for the
proposed method and two other algorithms (Queiroz and Ko).
Notice that the algorithms by Queiroz and Ko have similar
encoding running times. The proposed algorithm has a much
higher encoding time, with the optimization problem being
responsible for a big percentage of this time (see Eq. 4).

The optimization problem can be solved in approximately
0.001s per pixel, resulting in an average of 283.182s for an
image of 512×512 pixels. Although the encoding time of the
proposed algorithm is higher than for the other two methods,
the decoding time is faster because the triplets are recovered
using a simple hash table. After recovering the triplets and
reconstructing the halftone color channels, the inverse halftone
must be performed three times. But, since the chosen inverse
halftoning algorithm is fast, the decoding time is tiny.

V. CONCLUSIONS

We have presented a method for directly embedding and
recovering a color image watermark into a halftone image.
This method challenges previous works because it enables
embedding a color image into a binary (black-and-white)
image. It gives the halftone channel a higher capacity. Ex-
perimental results show that the recovered colors have higher
fidelity than that obtained using ‘color-to-grayscale and back’
methods. In addition, the proposed method is not limited to
color reconstruction. Since the triplets containing the RGB
information are embedded and recovered from the masked
halftone, we can use the proposed approach to embed any
color content into a binary host image (halftone). The proposed
method can be used in applications, such as steganography,
hardcopy data hiding, etc.

Although the quality of the colors restored with the pro-
posed method is superior, the required processing time is
significantly higher. To reduce the computation time, two
approaches can be investigated in the future. Firstly, the
implemented mask construction process is not fully optimized.
Therefore, we can use machine learning algorithms to obtain
an efficient distribution of the mask groups. With optimized
mask groups, redundant processing can be avoided and the
minimization problem can be simplified. Secondly, the pro-
posed method can be parallelized in order to be used in real-
time applications.
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[1] D. Muselet and A. Trémeau, “Recent trends in color image watermark-
ing,” Journal of Imaging Science and Technology, vol. 53, no. 1, pp.
10 201–1, 2009.

[2] D. E. Knuth, “Digital halftones by dot diffusion,” ACM Transactions on
Graphics (TOG), vol. 6, no. 4, pp. 245–273, 1987.

[3] J. S. Viggiano, “Modeling the color of multi-colored halftones,” in Proc.
TAGA, vol. 42, 1990, pp. 44–62.

[4] D. J. Lieberman and J. P. Allebach, “Efficient model based halftoning
using direct binary search,” in Image Processing, 1997. Proceedings.,
International Conference on, vol. 1. IEEE, 1997, pp. 775–778.

[5] S. H. Kim and J. P. Allebach, “Impact of hvs models on model-based
halftoning,” Image Processing, IEEE Transactions on, vol. 11, no. 3, pp.
258–269, 2002.

[6] R. Ulichney, “The void-and-cluster method for dither array generation,”
SPIE MILESTONE SERIES MS, vol. 154, pp. 183–194, 1999.

[7] X. Liu, Y. Geng, and Z.-J. Li, “Compression method for ordered dither
halftone image [j],” Journal of Computer Applications, vol. 1, p. 039,
2011.

[8] J. F. Jarvis, C. N. Judice, and W. Ninke, “A survey of techniques for
the display of continuous tone pictures on bilevel displays,” Computer
Graphics and Image Processing, vol. 5, no. 1, pp. 13–40, 1976.

[9] P. Stucki, MECCA: a multiple-error correction computation algorithm
for bi-level image hardcopy reproduction. IBM Thomas J. Watson
Research Division, 1981.



[10] R. W. Floyd, “An adaptive algorithm for spatial gray-scale,” in Proc.
Soc. Inf. Disp., vol. 17, 1976, pp. 75–77.

[11] C. Schmaltz, P. Gwosdek, A. Bruhn, and J. Weickert, “Electrostatic
halftoning,” in Computer Graphics Forum, vol. 29, no. 8. Wiley Online
Library, 2010, pp. 2313–2327.

[12] J.-M. Guo and Y.-F. Liu, “Improved block truncation coding using
optimized dot diffusion,” Image Processing, IEEE Transactions on,
vol. 23, no. 3, pp. 1269–1275, 2014.

[13] P. Gwosdek, C. Schmaltz, J. Weickert, and T. Teuber, “Fast electrostatic
halftoning,” Journal of Real-Time Image Processing, pp. 1–14, 2014.

[14] M. Mese and P. P. Vaidyanathan, “Look-up table (lut) method for inverse
halftoning,” Image Processing, IEEE Transactions on, vol. 10, no. 10,
pp. 1566–1578, 2001.

[15] Y.-F. Liu and J.-M. Guo, “New class tiling design for dot-diffused
halftoning,” Image Processing, IEEE Transactions on, vol. 22, no. 3,
pp. 1199–1208, 2013.

[16] P. G. Freitas, M. C. Farias, and A. P. de Araújo, “Fast inverse halftoning
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