
Exploded View Diagrams of 3D Grids
Zamir Martins Filho

University of Calgary
Calgary, Canada

Email: zamirmf@gmail.com

Emilio Vital Brazil
University of Calgary

Calgary, Canada
Email: evbrazil@ucalgary.ca

Mario Costa Sousa
University of Calgary

Calgary, Canada
Email: smcosta@ucalgary.ca

Fig. 1. Exploded View Diagrams applied to a Corner-Point grid which represents a geological model (left to right): the whole model; the objects of interest;
the final result.

Abstract—We present a system for creating interactive ex-
ploded view diagrams in generalized 3D grids. The primary
difference between our approach and existing ones is that our
technique neither requires geometrical information of the whole
model nor any information regarding the relationship among
model parts; instead our implementation depends on which grid
cells are considered as object of interest, and which view angle
to use. To achieve this, we introduce the Explosion Tree, a
data structure closely related to a BSP tree, which supports
the explosion view diagrams technique based on the relationship
between disjoint convex polygons. In this paper we discuss the
application of this technique to Corner-Point Grid which has been
extensively used for geological modeling and flow simulation. All
the data presented in this work consists of real data currently
used in the industry.

Keywords-Computational Geometry; Computer Graphics;

I. INTRODUCTION

3D grids have been widely used to represent data in various
domains [1]. The oil & gas domain massively uses 3D
grids and among their different type of grids the Corner-
Point Grid is one of the most challenge grid types (see
Figure 3). In the realm of reservoir engineering, those grids are
used to model geological features, therefore, domain experts
are constantly looking for better ways of visualizing those
grids. Through an insightful visualization, domain experts
can explore, identify, and analyze information which might
be crucial in decision making, in a domain where mistakes
on the interpretations can cost millions of dollars. One of
the challenges of visualizing 3D grids, and more particularly
irregular grids is that their visualizations are often faced with

problems caused by occlusion in 3D space. The fact that they
are irregular and often have discontinuities implies that general
techniques for volumetric data cannot be applied (due to the
fact that it assumes the regularity of the data). In addition
to that, grid cells represent properties values (e.g., porosity,
permeability) through color mapping, therefore transparency-
based techniques make difficult to correlate grid cells with a
respective color map or legend (see Figure 2).

A. Corner-Point Grid

3D grids have been extensively used by various domains,
turbulence modeling, wind and water tunnel modeling, flow
simulation and geological modeling are some examples [1].
Moreover, the last two domains are usually based on the
corner-point grid [2]. In comparison to regular grids, corner-
point grids reduce the numerical error by adjusting themselves
closer to the actual geometry, therefore, geological features are
modeled through a corner-point grid because of the benefits
from the engineering point of view, not from a computer
science perspective. Corner-point grid has been defined as
standard by the flow simulation industry, thus there is an
extensive amount of data to be analyzed [3]. Corner-point grid
can be classified as a distorted grid and also as a flexible grid.
As a non-regular grid it can represent irregular geometries in
a more precise way than a regular grid. Although it contains
eight vertices (see Figure 3 right), no spatial assumption can
be made regarding them, two or more vertices can have the
same location and they can also contain discontinuities [2](see
Figure 3 left). While in regular grids, it is feasible to predict
spatial location based on the cell size and the amount of cells,



Fig. 2. Transparency makes difficult to correlate grid cell with the legend:
(top) the legend and its actual colors; (bottom-left) occluded grid cells colors
are unclear while it is possible to correlate the remaining cells colors with
the legend; (bottom-right) in order to make occluded grid cells colors easy to
be correlated, the remaining cells colors become unclear.

it is not possible with the corner-point grid. An introduction of
this grid from a computer graphic point of view can be found
at [4]. It is important to remark that apart of its qualities,
nowadays corner-point grids have a key role in the industry
due by the huge number of existing models.

Fig. 3. The corner-point grid (from left to right): An instance of a corner-
point grid which includes discontinuities, representing a geological model and
its faults; a diagram of corner-point grid cells depicting the irregularity among
the grid cells caused by the uneven distribution of vertices that represent their
corners.

One approach toward the analysis is by selecting cells with
similar behavior, i.e., cells with properties within a specific
range of values [4]. It is useful to identify outliers and how
an specific property is behaving among a grid cell and its
neighbors. Therefore, by selecting a range of values, a domain
expert wants to focus on the grid cells which fall into this
range. Those cells are considered as primary objects, while the
remaining as secondary objects (see Figure 4). The number of
primary objects can go from zero to the total number of cells
in the grid. Since the criteria of selection can be changed, the
number of primary objects can change at anytime.

Although the domain expert has decided to focus on primary
objects, it does not mean that secondary objects can be
discarded from the visualization. For the expert, it is still
important to be able to explore the surroundings of those
primary objects from different angles. Each grid cell clipped
by the visualization technique implies that some part of the
information is also lost. This aspect plays an important role
into the deciding of which visualization technique should be
used.

B. Explosion Diagrams

One of the main challenges of 3D objects is occlusion.
Most proposed solutions to this problem classify objects of
interest as primary and the remaining as secondary, keeping all
the primary object data while compromising on some amount
of data related to the secondary objects. Depending on the
type of application, partial visualization is acceptable and
for those cases, illustrative visualization techniques such as
Ghost-view [5] and Cut-away view [6], [7] can be applied.
An application of cut-away view technique in corner-point
grids can be found at [4]. On the other hand, in the case of
applications where partial data visualization is not acceptable
other techniques need to be explored and one such technique is
exploded view diagrams. In this technique secondary objects
are displaced and even split, however all data and its overall
correlation are kept. Although much has been done toward
volumetric data and CAD models, there is a lack of work
applied to non-regular grids.

Originally, exploded view diagrams have been applied in
models where all information regarding their geometry is well
known. Most previous approaches perform this technique by
using an additional information regarding how model’s parts
are related to each other (part hierarchies). Also it is important
to note that in the previous applications parts were static,
meaning that their geometry never change, hence the relation-
ship between parts was also static. Exploded view diagrams [8]
have been proposed to solve the occlusion problem in CAD
models and volumetric data.

In Li et al. [8], object parts and its hierarchy are used as in-
put data, then based on how parts are related to each other, the
direction and displacement magnitude are calculated to achieve
the final effect. They assumed that camera positions are limited
and those are pre-computed to speed up the interaction with the
data by reducing the amount of calculation. The data structure
used is a complementary to the one proposed by Agrawala
et al. [9]. The main difference in our approach is that we
do not require object parts, part hierarchy, information related
to secondary objects nor pre-computation to produce the same
effect. Some other work related to exploded view diagrams are:
Li et al. [10] that presents a solution to 2D exploded view for
images; Bruckner and Groller [11] applied physical equations
to add extra effect to the exploded view and in most cases
they split the secondary object into fixed number of pieces;
Karpenko et al. [12] explores exploded view diagrams applied
to parametric surfaces and Tatzgern et al. [13] extends [8] in
the sense of choosing which parts to be exploded. Different
from the exploded view, some approaches try to tackle the
problem of occlusion by applying a spherical force field;
Elmqvist [14] presents a prototype which is suitable when
unrelated 3D objects share the same scene and user can use
a 3D pointer to explore the space. McGuffin et al. [15] use
the concept of semantic layers to create the concept of parts
in volumetric data.

While just a few of them would be applicable to regular
grids (as volumetric data can be seen as), none of them takes in



Fig. 4. Selection based on property (i.e., pressure) values (from left to right): The whole model ranging from 186 kPa to 1317kPa; When the range is
between 13100 and 13137 kPa the amount of primary object is reduced; Changing the range to values between 186 and 1023 kPa, also change how many
and which cells are defined as primary objects.

consideration the possible irregularity and discontinuities of an
irregular grid. Also none of them consider that the relationship
between primary and secondary objects can be changed.

C. Contributions

In this work we propose a technique to show occluded
objects inside 3D grids (including non-regular grids) based on
illustrative exploded view diagrams [16].We propose a solution
which only information regarding the primary objects and gaze
are required, supporting the exploded view technique in a
dynamic environment, it means that the relationship between
primary and secondary objects can change anytime. It is
important to observe that we do not use information regarding
secondary objects as the previous approaches for computing
explosion diagrams. Thus we believe that in the realm of
explosion diagram techniques, our approach is different.

As a core of our approach, we have created Explosion
Tree, a data structure which receives a set of disjoint convex
polygons (derived from primary objects) as input and returns
a final position to all vertices (including those that belong
to the secondary object) as an output. The data structure is
the core of our application and it contributes to the major
goal of creating a final effect similar to technical illustration
based on the traditional exploded views technique [16], having
limited amount of information in a dynamic environment.
Our data structure (i.e., Explosion Tree) is an extension of a
binary space partitioning tree (i.e., BSP-tree) that is basically a
binary tree of planes which subdivide the space [17]. Instead
of considering all nodes similar, we extend this concept by
categorizing nodes into two different classes and by adding
a key operation which traverse the tree setting the offset
values for all node, where those offsets are responsible to
translate each vertex in order to find its final position avoiding
overlapping, and exposing all primary objects.

This work has two contributions. The first is a new data
structure (i.e., Explosion Tree) which calculates final vertex
positions for exploded views diagrams supporting conventions
from traditional illustration. This data structure requires less
information than any of the previous approaches. The second
is the application of the exploded diagrams technique to 3D
grids where there is limited amount of information, also not
supported by previous approaches.

The rest of the paper is organized as follows: section II
presents a system which wraps our data structure and propose
an effect similar to the Exploded Diagrams applied to 3D
grids; finally we present the results and conclusion on sections
III and IV respectively.

II. SYSTEM ARCHITECTURE

We developed a system that on the same time that it wraps
our data structure, Explosion Tree, it applies the exploded
diagram effect to corner-point grids. The system supports
the grid geometry in a dynamic scenario, i.e., the user can
select different ranges of property values so then changing
the primary objects. Using the range we classify objects as
primary and secondary, our system use the primary object
geometry to calculate the final position (exploded diagram)
of the whole model. Animation between the initial and final
positions and a context line are provided in order to improve
the visual correlation between primary and secondary objects.
In addition, the user can lock the effect and navigate in the
3D scene.

A. Primary and Secondary Objects Definition

Grid cells can be selected as primary objects based on
different constraints. In this work we focus on the same criteria
that is used in the oil & gas domain, i.e., as each grid cell is
associate to at least one property value (i.e., pressure, porosity,
permeability), the selection is performed by specifying a range
of values of a property and cells which values fall in this
range are selected as primary objects. The remaining cells
or cells properties with values outside of the selected range
are considered as secondary objects (see Figure 4). After the
selection is performed all grid cells are going to fall under one
of the two previous mentioned categories. It is important to
note that the only grid cells that are going to be taking into
further consideration are those classified as primary objects.

B. Convex Polygons Definition

After having all grid cells classified, a 3D clustering algo-
rithm is applied only to those cells set as primary objects.
The goal of the algorithm is to define which primary objects
compose each cluster. More specifically, it runs through all
primary objects and those which share at least one vertex are
defined into the same cluster. Having clusters defined, the next



step is to convert 3D clusters into a set of 2D convex polygons,
and it is achieved by projecting (orthographic projection) each
cluster to view plane following by storing each of them into
one buffer. For each buffer a pixel-based convex hull is created
and then, an intersection verification is performed between
all convex polygons. In cases where there is an intersection
between two or more convex polygons a new convex polygon
is calculated based on all intersecting polygons and from now
on it will be used replacing those intersecting convex polygons
(see Figure 5). The meaning of merging intersecting convex
polygons is to reduce the total number of objects passed to our
data structure and to isolate the processing of each view angle
from the general processing. Therefore, while 3D clusters
remain unchanged, the convex polygons arrangement is going
to depend mainly on the view angle. Changes in the view
angle require the projection and intersection test steps to be
performed.

Fig. 5. Convex polygons (originated from 3D clusters): (left) two non-
intersecting convex polygons, red lines; (right) the same 3D clusters projected
from a different gaze originate two intersecting convex polygons (red lines),
which are going to be replaced as one (blue line).

C. Initializing the Explosion Tree

As it is going to be described in this section, a set of planes
is created based on the relation between convex polygons and
the order of comparison implies in the arrangement of planes
that happens inside the data structure. In this work, convex
polygons are sorted based on the lexicographic sorting in (x,y),
i.e., first it takes into consideration the x-axis and then the y-
axis (if a draw on the x-axis occurs). Therefore, the last step
before sending data as input to the Explosion Tree is to sort
the disjoint convex polygons.

So far, as secondary objects are not taken into consideration,
performance is influenced by the number of 3D clusters and
the total amount of primary objects among them. The sorted
disjoint convex polygon set is the input data to our data
structure and the first step performed by this data structure
is to find a set of 2D planes minimizing the number of convex
polygons per region. Similar to a BSP-tree, each plane is
going to define two regions (one at each side), then regions
are subdivided until there one convex polygon per region or
until there is no more valid planes (our stopping criteria). A
valid plane is a plane which divide a region in two non-empty
regions and does not intersect any convex polygon. In order to
keep an aesthetic aligned to the exploded view technique, we
define a plane in the point x0 between two convex polygons 1
and 2, in a way that the point x0 is the middle point of the line

segment l−{Ω1∪Ω2} (see Figure 6). Also, we define the first
normal n as a vector between the convex polygon centroids
(i.e., {c2x − c1x , c2y − c1y}), and while there is no valid plane
we keep rotating the normal in a thirty degree increment (see
Figure 7). Note that if there is no valid plane between two or
more convex polygons they are going to share the same region.
Afterwards, more planes are added to the tree until one of our
stopping criteria is reached (see Figure 8). The data structure
now stores which convex objects belongs to each region and
also the sequence of nodes to reach it from the root downward.

Fig. 6. Point x0 is defined as the point in the middle of the line segment
l − {Ω1 ∪ Ω2}.

X

Fig. 7. Plane definition:(left) the first normal n is defined as c2−c1, however
when it intersects polygons belonging to the same region it is rotated by thirty
degrees and a new test is performed; (right) this plane does not intersect any
polygon therefore, there is a valid plane between convex polygon Ω1 and Ω2.

Fig. 8. Build sequence (a) the first plane, A, is defined between convex
polygons 1 and 2; (b) on the left side of plane A, a plane B is defined
between 1 and 4; (c) on the right side of A no plane is found between 2 and
3; (d) still on the right side of A plane C is defined between 2 and 5.



Fig. 9. Plane arrangement (from left to right): initial grid; 3D clusters within a subdivided space (non-extended planes); extended planes related to one or
more 3D clusters, defining how they will be exposed; after the effect has been applied.

D. Extending the Explosion Tree

The second step performed by the data structure is the
unprojection of all 2D planes from screen coordinate system
to 3D object space, so in each node, 2D planes are replaced
by 3D planes. So far, the data structure has a tree of nodes
(representing planes) which subdivides the space in many
regions and in an optimum case there is only one 3D cluster
per region. Those planes, regions and their 3D clusters are
depicted in the second image of Figure 9. Assuming that, for
this example, their order of creation is represented by a color
scale from blue to green, a correlation between those planes
that perform the last level of division between the regions
and those nodes which have less than two children can be
made. Therefore, each of these planes are going to give birth
to one or more new planes, which we call extended planes.
The idea behind the transition between ordinary planes and
extended ones is that while the former subdivides the space
among regions, the latter lies within the region having the role
of exposing 3D clusters within each region (see third image
of Figure 9). A node which contains an extended plane is
also called extended node, its plane normal is inherited by its
immediate parent and its planes location is defined by the 3D
resultant centroid of one or more 3D clusters (in the case there
is more than one cluster per region). Summarizing this step,
after unproject all 2D planes to 3D one, some nodes originate
one or two extended nodes.

E. Calibrating the Explosion Tree

After defining extended and non-extended planes, the data
structure is able to give the final direction of all grid cells
(based on the normal vectors of the planes). The missing
information though, is how much each plane is influencing
each vertex position. To keep track of this information each
plane has two offset values (one to each side). While the
planes were calculated in a top-down approach, offsets are
calculated from the bottom up to the root. First, the offset
needed to expose the convex polygons in each extended node
is calculated, and as extended nodes, they do not require
information of any other node apart from themselves. As

we cannot assume that convex polygons have a symmetric
relationship with their immediate planes, two offset values are
required, one makes the influence in the normal direction and
the other in the opposite direction. Having all extended nodes
updated, all non-extended nodes have their offsets calibrated
based on their children where the final goal is to expose all
convex polygons objects without creating any overlay between
primary and secondary objects. All nodes have their offset
calibrated based on the following steps:

• Through a post-order algorithm, each node (non-
extended) takes in consideration its children by calcu-
lating how much offset those children will apply in its
direction. For instance, if a child C of P has an offset
αC in its parent direction (i.e., the dot product between
the two normal vectors is less than zero), the parent
node’s offset need to compensate with an offset of at least
αC〈nP , nC〉 in an opposite direction, where nP and nC
are the normal of the planes P and C respectively. This
is done for all non-extended nodes up to the root node.

• Still based on a post-order traversal, but instead of
updating the parent nodes just based on their immediate
children, it gets all nodes that belong to the paths that of
the current node down to all its related leaf nodes. For
each path it sums all the components which turns into its
direction and compare with the current offset value. The
current offset is updated only if the total sum is greater
than its current value.

F. Obtaining the final position

After all previous steps, the final position of each vertex
can be taken from the Explosion Tree. Either primary or
secondary objects, our data structure gives the final position
for all vertices in two levels. First, we use the non-extended
nodes to calculate the final position for the primary objects
and the partial position for secondary ones. The final position
of the secondary objects is then calculated adding the offsets
of the extended nodes. As a result of these steps, the exploded
view diagrams effect can be achieved (see Figures 1 and 9).



G. Final Rendering

The meaning of final position is the place where all
primary objects are exposed with no overlapping between
either primary or secondary objects. To improve the visual
correlation between primary and secondary objects regarding
their initial and final positions, a line is drawn connecting the
original convex polygon (centroid) position in each half of the
respective secondary objects (see Figure 10). In addition, in
order to provide a smooth transition our prototype animates
the final effect by a linear interpolation between initial and
final positions in ten steps (see Figure11).

Fig. 10. Detail of the lines used to improve the visual correlation between
primary and secondary objects.

III. RESULTS AND DISCUSSIONS

We have used our prototype to successfully generate ex-
ploded views for corner-point grids (see Figure 12). Besides
primary and secondary objects, the final result also depends
on the view direction. We compute the time to build the tree
and perform the effect to different models and for different
primary/secondary object arrangements. Tests were performed
with an Intel I5 CPU (2.53GHz) PC with 4GB RAM memory.
In this work, the corner-point grids are real data currently used
in the industry.

In order to evaluate the tree’s performance, some measure-
ments were taken and we concluded that the bottleneck to
build the tree is the total amount of comparisons to find all
planes. In a higher level, this amount of comparisons depends
mainly on the gaze and the number of 3D clusters. For our
typical case (i.e., up to 20 clusters), the time to build the tree
is insignificant (less than 2 ms), so to evaluate this bottleneck
we created artificial examples with larger numbers of primary
objects. In the worst case in terms of number of comparisons,
it took 10 ms to build a tree with 270 comparisons for a grid
with 33,655 cells and 148 clusters.

Apart from the time to build the tree we have also measured
the total time to achieve the effects. This time can be split
into two parts, while the first one happens before building the
tree, the second one happens after it. Our tree requires convex
polygons as input and therefore, the time to convert grid
cells into convex polygons might be taken into consideration.

This is the first part and it is mainly influenced by the total
amount of vertices of all 2D convex polygons. In this way, the
screen resolution does not affect the performance as we are not
dealing with pixels. After the tree is built, the system is ready
to perform the exploded views effect to all vertices, therefore,
the total number of vertices (including secondary objects) is
the major factor that affects the performance in this second
part. For instance, when applying the effect to a grid with
269,240 vertices, the time taken during the conversion (from
primary objects to convex hulls) and to update all vertices are
370 and 90 milliseconds respectively. To finalize our workflow
we use a ten-step interpolation between initial and final vertex
positions, in our worst animation case, a grid with 228,056
vertices, a 37 fps animation was achieved.

Fig. 12. Explosion View Diagrams: (top to bottom) original grid; seven
clusters exposed.

The exploded diagrams effect was supported in an interac-
tive time for all our grids. In our approach, we define planes
to subdivide the 3D space, however when there is a large
amount of 3D clusters it creates more empty space than would



Fig. 11. Sequence of six animation steps (from a total of ten steps).

be required to just exposed the primary objects (Figure 13).
A possible solution to overcome this limitation is the use of
flexible surfaces to subdivide the space in a more optimized
way. A functionality which might be useful to investigate the
data is to apply the exploded diagrams from one gaze and
varying the view angle to explore the model from different
perspective (Figure 14).

IV. CONCLUSION

We have created a system and a data structure, Explosion
Tree, to work with limited amount of information regarding the
grid geometry and in dynamic scenarios. For some applications
to consider the whole geometric information is too expensive.
Using this data structure we reduce the amount of calculation,
thus we do not compromise the interactive effects. Similarly,
for dynamic scenarios, where primary and secondary objects
are not the same all the time, we cannot rely on a pre-
processing stage. As a consequence, each of the steps to build
the tree need to be performed every time that the objects
relationship or the view angle change, and in order to achieve
the goal of having the effect in interactive time, a light data
structure is required. To build the tree we assume that there is a
collection of disjoint convex polygons, which are derived from
primary objects. The main purpose of the tree is to guarantee
that we can translate grid cells without any overlapping.

Further work is required in order to create a better calibra-
tion method wherein we can reduce the extra space between
planes still maintaining that no overlap would occur. We intend
to investigate different surface representations to subdivide
the space in a more optimum way, we also plan to improve
our data structure to support more general geometries, e.g.,

hexagonal and tetrahedrons. We are planing to incorporate an
automatic optimum camera positioning given a set of primary
objects and to allow properties to change in time. The second is
a great challenge because we will have two different dynamics;
one when the user change the properties-value range and
another when the time steps of the properties change.

ACKNOWLEDGMENT

We would like to thank our colleagues for their useful dis-
cussions and advice. We also thank the anonymous reviewers
for their careful and valuable comments and suggestions. This
research was supported by the NSERC / Alberta Innovates
Academy (AITF) / Foundation CMG Industrial Research Chair
program in Scalable Reservoir Visualization.

REFERENCES

[1] J. F. Thompson, B. K. Soni, and N. P. Weatherill, Handbook of Grid
Generation. CRC Press, 1999.

[2] D. K. Ponting, “Corner point geometry in reservoir simulation,” in The
Mathematics of Oil Recovery. EAGE, July 1989.

[3] Y. Ding and P. Lemonnier, “Use of corner point geometry in reservoir
simulation,” Society of Petroleum Engineers, vol. 29933-MS, 1995, http:
//dx.doi.org/10.2118/29933-MS.

[4] Z. Martins, E. V. Brazil, M. C. Sousa, F. de Carvalho, and R. Marroquim,
“Cutaway applied to corner point models,” in Workshop on Industry Ap-
plications (WGARI) in SIBGRAPI 2012 (XXV Conference on Graphics,
Patterns and Images), Ouro Preto, MG, Brazil, August 2012.

[5] M. Luboschik and H. Schumann, “Discovering the covered: Ghost views
in information visualization,” in Proc. Int. Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision, 2008.

[6] J. Diepstraten, D. Weiskopf, and T. Ertl, “Interactive cutaway illustra-
tions,” in Computer Graphics Forum, 2003, pp. 523–532.

[7] W. Li, L. Ritter, M. Agrawala, B. Curless, and D. Salesin, “Interactive
cutaway illustrations of complex 3d models,” ACM Trans. Graph.,
vol. 26, no. 3, p. 31, 2007.



Fig. 14. Changing the perspective: (left to right) original grid; grid after exposing primary objects; the same effect from a different perspective.

[8] W. Li, M. Agrawala, B. Curless, and D. Salesin, “Automated
generation of interactive 3d exploded view diagrams,” in ACM
SIGGRAPH 2008 papers, ser. SIGGRAPH ’08. New York, NY,
USA: ACM, 2008, pp. 101:1–101:7. [Online]. Available: http:
//doi.acm.org/10.1145/1399504.1360700

[9] M. Agrawala, D. Phan, J. Heiser, J. Haymaker, J. Klingner,
P. Hanrahan, and B. Tversky, “Designing effective step-by-step
assembly instructions,” in ACM SIGGRAPH 2003 Papers, ser.
SIGGRAPH ’03. New York, NY, USA: ACM, 2003, pp. 828–837.
[Online]. Available: http://doi.acm.org/10.1145/1201775.882352

[10] W. Li, M. Agrawala, and D. Salesin, “Interactive image-based
exploded view diagrams,” in Proceedings of Graphics Interface
2004, ser. GI ’04. School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada: Canadian Human-Computer
Communications Society, 2004, pp. 203–212. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1006058.1006083

[11] S. Bruckner and M. E. Groller, “Exploded views for volume
data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 5, pp. 1077–1084, Sep. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2006.140

[12] O. Karpenko, W. Li, N. Mitra, and M. Agrawala, “Exploded view
diagrams of mathematical surfaces,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, no. 6, pp. 1311–1318, Nov. 2010.
[Online]. Available: http://dx.doi.org/10.1109/TVCG.2010.151

[13] M. Tatzgern, D. Kalkofen, and D. Schmalstieg, “Compact explosion
diagrams,” in Proceedings of the 8th International Symposium on
Non-Photorealistic Animation and Rendering, ser. NPAR ’10. New
York, NY, USA: ACM, 2010, pp. 17–26. [Online]. Available:
http://doi.acm.org/10.1145/1809939.1809942

[14] N. Elmqvist, “Balloonprobe: Reducing occlusion in 3d using interactive
space distortion,” in In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, 2005, pp. 134–137.

[15] M. J. McGuffin and m. c. schraefel, “A comparison of hyperstructures:
Zzstructures, mSpaces, and polyarchies,” in Proceedings of 15th ACM
Conference on Hypertext and Hypermedia, August 2004, pp. 153–162.

[16] J. A. Dennisson and C. D. Johnson, Technical Illustration: Techniques
and Applications. Goodheart-Wilcox, 2003.

[17] A. Dumitrescu, J. S. Mitchell, and M. Sharir, “Binary space partitions
for axis-parallel segments, rectangles, and hyperrectangles,” in In Proc.
17th Annu. ACM Sympos. Comput. Geom. ACM Press, 2001, pp. 141–
150.

Fig. 13. Limitation: large amount of 3D clusters might imply in more empty
space than required. (top) original grid; (bottom) grid after the effect.


