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Abstract—Deaf people use systems of communication based
on sign language and finger spelling. Manual spelling, or finger
spelling, is a system where each letter of the alphabet is
represented by an unique and discrete movement of the hand.
RGB and depth images can be used to characterize hand
shapes corresponding to letters of the alphabet. The advantage
of depth cameras over color cameras for gesture recognition
is more evident when performing hand segmentation. In this
paper, we propose a hybrid system approach for finger spelling
recognition using RGB-D information from KinectTM sensor.
In a first stage, the hand area is segmented from background
using depth map and precise hand shape is extracted using both
depth data and color data from KinectTM sensor. Motivated by
the performance of kernel based features, due to its simplicity
and the ability to turn any type of pixel attribute into patch-
level features, we decided to use the gradient kernel descriptor
for feature extraction from depth images. The Scale-Invariant
Feature Transform (SIFT) is used for describing the content of
the RGB image. Then, the Bag-of-Visual-Words approach is used
to extract semantic information. Finally, these features are used
as input of our Support Vector Machine (SVM) classifier. The
performance of this approach is quantitatively and qualitatively
evaluated on a dataset of real images of American Sign Language
(ASL) hand shapes. Three experiments were performed, using
a combination of RGB and depth information and also using
only RGB or depth information separately. The database used
is composed of 120,000 images. According to our experiments,
our approach has an accuracy rate of 91.26% when RGB and
depth information is used, outperforming other state-of-the-art
methods.

Keywords-sign language; finger spelling; support vector ma-
chine (SVM); bag-of-visual-words.

I. INTRODUCTION

Sign language is a complex way of communication in
which hands, limbs, head, facial expression and body language
are used to communicate a visual-spatial language without
sound, mostly used between deaf-mute people. Deaf people
use systems of communication based on sign language and
finger spelling. In sign language, the basic units are composed
by a finite set of hand configurations, spatial locations, and
movements. Their complex spatial grammars are remarkably
different from the grammars of spoken languages [1], [2].
Hundreds of sign languages, such as ASL (American Sign
Language), BSL (British Sign Language), Auslan (Australian
Sign Language) and LIBRAS (Brazilian Sign Language) [1],
are in use around the world and are at the cores of local

deaf cultures. Unfortunately, these languages are barely known
outside of the deaf community, meaning a communication
barrier.

Manual spelling, or finger spelling, is a system where each
letter of the alphabet is represented by a unique and discrete
movement of the hand. The finger spelling integrates a sign
language due to many reasons: when a concept lacks a specific
sign, for proper nouns, for loan signs (signs borrowed from
other languages), for finger spelled compounds or when a
sign is ambiguous [3]. Each sign language has its own finger
spelling similar to different characters in different languages.

Several techniques have been developed to achieve an
adequate recognition rate of sign language. Over the years
and with the advance of technology, methods have been pro-
posed in order to improve the data acquisition, processing or
classification, such is the case in image acquisition. There are
three main approaches: sensor-based, vision-based and hybrid
systems using a combination of these systems. Sensor-based
methods use sensory gloves and motion tracker to detect hand
shapes and body movements. Vision-based methods, that use
standard cameras, image processing, and feature extraction,
are used for capturing and classifying hand shapes and body
movements. Hybrid systems use information from vision-
based camera and other type of sensors like infrared depth
sensors.

Sensor-based methods, such as data gloves, can provide ac-
curate measurements of hands and movement. Unfortunately,
these methods require extensive calibration, they also restrict
the natural movement of hands and are often very expensive.
Video-based methods are less intrusive, but new problems
arise: locating the hands and segmenting them is a non-
trivial task. Recently, depth cameras have become popular
at a commodity price. Depth information makes the task of
segmenting the hand from the background much easier. Depth
information can be used to improve the segmentation process,
as used in [4], [5], [6], [7].

Recently, depth cameras have raised a great interest in
vision computer community due to their success in many
applications, such as pose estimation [8], [9], tracking [10],
object recognition [10], etc. Depth cameras were also used
for hand gesture recognition [11], [12], [13]. Uebersax et
al. [12] present a system for recognizing letter and finger
spelled words. Pugeault & Bowden [11] use a Microsoft
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KinectTM device to collect RGB and depth images. They
extracted features using Gabor filters and then a Random
Forest predicts the letters from the American Sign Language
(ASL) finger spelling alphabet. Issacs & Foo [14] proposed
an ASL finger spelling recognition system based on neural
networks applied to wavelets features. Bergh & Van Gool [15]
propose a method based on a concatenation of depth and color-
segmented images, using a combination of Haar wavelets and
neural networks for 6 hand poses recognition of a single user.

In this paper, we propose a framework for finger spelling
recognition using RGB and depth images. Motivated by the
performance of kernel based features, due to its simplicity and
the ability to turn any type of pixel attribute into patch-level
features, we decided to use the gradient kernel descriptor[16].
The experiments are performed using a public database com-
posed of 120,000 images stating 24 symbols classes [17].
The obtained results show that the accuracy obtained by our
method, using RGB and depth images, is greater than only
using RGB or depth images separately. Moreover, the accuracy
obtained by the proposed method performs better than the
method proposed in [11]. The results show that our method is
promising.

The remainder of this paper is organized as follows. In
Section II, our proposed method is introduced and detailed.
The experiments are presented in Section III, where the
results are discussed. Finally, conclusion and future work are
presented in Section IV.

II. PROPOSED MODEL

This section describes the methodology developed to per-
form finger spelling recognition from RGB and depth infor-
mation. The proposed model consists of four stages as shown
in Figure 1. In the first stage, the hand area is segmented
from background using depth map and precise hand shape is
extracted using both depth data and color data from KinectTM

sensor. The second stage consists in extracting the features
from intensity and depth images. The SIFT descriptor is used
to extract features from the intensity image. First, interest
points are detected and described by its neighborhood. The
Gradient kernel descriptor is used on the depth image. It
consists of three kernels. The normalized linear kernel weighs
the contribution of each pixel using gradient magnitudes, an
orientation kernel computes the similarity of gradient orien-
tations and finally a position Gaussian kernel measures how
close two pixels are spatially. The third stage consists in
capturing the semantic information. In order to do this, the
Bag-of-Visual-Words model is applied. Finally, these features
are used as input to our SVM classifier.

A. Segmentation

The segmentation can easily be performed on depth values
using a threshold, depth values corresponding to the hand are
the smallest, this means that they are closer to the sensor. The
segmented hand (binary image) is used as a mask over the
depth and intensity image to only get the hand values.

Fig. 1. Proposed model for finger spelling recognition.

Because the depth and RGB images are not aligned, an
additional process is performed. The opening morphological
operation is applied over the mask before segmenting the
intensity image using a square structuring element with 3
pixels of width.

B. Feature extraction

With the segmented images already obtained, the next step
consists of extracting the features. In order to do this, gradient



kernel descriptor and SIFT are applied over the depth image
and intensity image, respectively.

1) Gradient kernel descriptor: The low-level image feature
extractor, kernel descriptor, designed for visual recognition
in [18], consists of three steps: design match kernel using
some pixel attribute, learn compact basis vectors using Kernel
Principle Component Analysis and construct kernel (KPCA)
descriptor by projecting the infinite-dimensional feature vector
to the learned basis vectors. The authors leading three types
of effective kernel descriptors using gradient, color and shape
pixel attributes. In other model proposed by the same au-
thors [16], the gradient kernel descriptor is applied over depth
images. Thereby, in order to capture edge cues in depth maps,
we used the gradient match kernel, Kgrad :

Kgrad(P,Q) =
∑
p∈P

∑
q∈Q

m̃(p)m̃(q)ko(θ̃(p), θ̃(q))ks(p, q)

The normalized linear kernel m̃(p)m̃(q) weighs
the contribution of each gradient where m̃(p) =

m(p)/
√∑

p∈P m(p)2 + εg and εg is a small positive
constant to ensure that the denominator is larger than 0
and m(p) is the magnitude of the depth gradient at a pixel
p. Then, ko(θ̃(p), θ̃(q)) = exp(−γo‖θ̃(p) − θ̃(q)‖2) is a
Gaussian kernel over orientations. The authors [18] suggest
to set γo = 5. To estimate the difference between orientations
at pixels p and q, we use the following normalized gradient
vectors in the kernel function ko:

θ̃(p) = [sin(θ(p))cos(θ(p))]

θ̃(q) = [sin(θ(q))cos(θ(q))]

where θ(p) is the orientation of the depth gradient at a pixel
p. Gaussian position kernel ks(p, q) = exp(−γs‖p − q‖2)
with p denoting the 2D position of a pixel in an image
patch (normalized to [0,1]), measures how close two pixels
are spatially. The value suggest for γs is 3.

To summarize, the gradient match kernel Kgrad consists of
three kernels: the normalized linear kernel weighs the contri-
bution of each pixel using gradient magnitudes; the orientation
kernel ko computes the similarity of gradient orientations; and
the position Gaussian kernel ks measures how close two pixels
are spatially.

Match kernels provide a principled way to measure the
similarity of image patches, but evaluating kernels can be
computationally expensive when image patch are large [18].
The corresponding kernel descriptor can be extracted from this
match kernel by projecting the infinite-dimensional feature
vector to a set of finite basis vectors, which are the edge
features that we use in the next steps. For more details, the
approach to extract the compact low-dimensional features from
match kernels is found in [18].

2) Scale-invariant feature transform (SIFT): Is an algo-
rithm useful in computer vision to detect and describe local
features in images[19].

The SIFT descriptor firstly detects interest points by scale-
space extreme of Differences-of-Gaussians (DoG) within a
DoG pyramid. Then the position-dependent histograms of
local gradient directions around the interest points are statisti-
cally accumulated as the SIFT descriptor. In the end, this SIFT
descriptor is utilized to match corresponding interest points
between different images [20].

In one image can exist different objects, for any of those
objects, interesting points can be extracted to provide a feature
descriptor of the object. This descriptor can then be used to
identify the object when attempting to locate the object in
another image containing many other objects.

An important characteristic of these features is that the
relative positions between them in the original scene should
not change from one image to another. For example, if only
the four corners of a door were used as features, they would
work regardless of the door’s position; but if points in the
frame were also used, the recognition would fail if the door
is opened or closed. Similarly, features located in articulated
or flexible objects would typically not work if any change in
their internal geometry happens between two images in the set
being processed. However, in practice SIFT detects and uses
a much larger number of features from the images, which
reduces the contribution of the errors caused by these local
variations in the average error of all feature matching errors.

The SIFT is invariant to translation, rotation and scaling
transformations. The large number of features in a typical
image allow for robust recognition under partial occlusion in
cluttered images.

C. Bag-of-Visual-Words

Bag-of-Visual-Words has first been introduced by Sivic for
video retrieval [21]. Due to its efficiency and effectiveness,
it became very popular in the fields of image retrieval and
categorization. Image categorization techniques rely either on
unsupervised or supervised learning.

Our model uses the Bag-of-Visual-Words approach in order
to capture semantic information. The original method works
with documents and words. Therefore, we consider an image
as a document and the ”words” will be the visual entities found
in the image. The Bag-of-Visual-Words approach consists of
three operations: feature description, visual word vocabulary
generation and histogram generation. In our case, the local
descriptor SIFT and Gradient kernel descriptor are used in
the feature description step. Then, a visual word vocabulary
is generated from the feature vectors, each visual word (code-
word) represents a group of several similar features. The visual
word vocabulary (codebook) defines a space of all entities
occurring in the image. Finally, a histogram of visual words
is created by counting the occurrence of each codeword. These
occurrences are counted and arranged in a vector. Each vector
represents the features for an image.

D. Classification

Support vector machines, introduced as a machine learning
method by Cortes and Vapnik [22], are a useful classification



method. Furthermore, SVMs have been successfully applied
in many real world problems and in several areas: text cate-
gorization, handwritten digit recognition, object recognition,
etc. The SVMs have been developed as a robust tool for
classification and regression in noisy and complex domains.
SVM can be used to extract valuable information from data
sets and construct fast classification algorithms for massive
data.

An important characteristic of the SVM classifier is to allow
a non-linear classification without requiring explicitly a non-
linear algorithm thanks to kernel theory.

In kernel framework data points may be mapped into a
higher dimensional feature space, where a separating hyper-
plane can be found. We can avoid to explicitly compute the
mapping using the kernel trick which evaluate similarities
between data K(dt, ds) in the input space. Common ker-
nel functions are: linear, polynomial, Radial Basis Function
(RBF), χ2 distance and triangular.

III. EXPERIMENTS

The ASL Finger Spelling Dataset [17] contains 500 samples
for each of 24 signs, recorded from 5 different persons (non-
native to sign language), amounting to a total of 60,000
samples. Each sample has a RGB image and a depth image,
making a total of 120,000 images. The sign J and Z are
not used, because these signs have motion and the proposed
model only works with static signs. The dataset has variety
of background and viewing angles. Figure 2 shows some
examples. It is possible to see the variety in size, background
and orientation.

Due to the variety in the orientation when the signal is
performed, signs became strongly similar. Figure 3 shows the
most similar signs a, e, m, n, s and t. The examples are taken
from the same user. It is easy to identify the similarity between
these signs, all are represented by a closed fist, and differ
only by the thumb position, leading to higher confusion levels.
Therefore, these signs are the most difficult to differentiate in
the classification task.

Fig. 3. Most conflictive similar signs in the dataset.

In order to validate our technique, we conduct three ex-
periments. In the first, a classification of the signs was per-
formed using only the RGB image features. In the second, a
classification was performed using the depth image features.
Finally, in the third experiment the signs were classified using
both features (RGB-D). For each experiment, we have some

specifications. To extract all low level features using gradient
kernel descriptor, are used approximatively 12x13 patches over
dense regular grid with spacing of 8 pixel (images are not of
uniform size). In order to produce the visual word vocabulary,
the LBG (Linde-Buzo-Gray) [23] algorithm was used to detect
one hundred clusters by taking a sample of 30% from the total
features. Moreover, in the classification stage, we use a RBF
kernel, whose values for g (gamma) and c (cost) are 0.25 and
5, respectively. We also use a cross validation with 5 folds. The
library LIBSVM (a library for Support Vector Machines)] [24]
was used in our implementation.

First experiment: An average accuracy of 63% was
obtained. This accuracy is the mean of the values of the
main diagonal of the confusion matrix and represents the signs
correctly classified (true positives). The confusion matrix for
this experimente is found in table I, here, we can observe
that signs n, r, k and x have the lowest averages (between
50% and 54%), and the sign h has the highest average (82%).
This shows the wide variation between the results for this
experiment. It means that there is not enough information.
Therefore, we will use depth information in order to increase
this results.

Second experiment: For this experiment, the average
accuracy obtained was 86%. This result shows an increase
of 23% in the recognition rate compared to the previous
experiment. Signs n, r, k and x improved in 24%, 25%, 30%,
and 24% respectively. Table II shows the confusion matrix for
the classification task using depth information.

Third experiment: The classification task was performed
using RGB-D information, obtaining an average accuracy of
91.26%. The data for this experiment was obtained by joining
the features (histograms) from RGB and depth information,
which were used in the experiments 1 and 2, respectively.
Table III shows the results for this experiment. Signs b, c,
f, i, l and y have the highest average accuracies (over 95%).
Otherwise, the signs n, r and t have the lowest values (between
82% and 84%). The low recognition value of sign n is due to
the big similarity with signs m and t, as shown in the Figure 3.
An improvement was obtained over these signs compared to
the results of experiments 1 and 2. The sign n had an accuracy
of 82%, it means 32% and 8% improvement over the first and
second experiment, respectively.

We summarize and compare the results in table IV. It
includes the average accuracy and standard deviation. We
can see that RGB-D information obtains the highest average
accuracy, outperforming the RGB and depth methods and
also the method proposed by Pugeault & Bowden [11]. This
last method is found in the state-of-the-art and uses the
same dataset, obtaining an average accuracy of 75%. About
standard deviation, we can see the low variation when RGB-D
information is used.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a method for Finger Spelling
Recognition using RGB-D information, combining intensity
and depth descriptors. Then, Bag-of-Visual-Words was applied



Fig. 2. ASL Finger Spelling Dataset: 24 static signs by 5 users. It is an example of the variety of the dataset. This array shows one image from each user
and from each letter.

TABLE I
CONFUSION MATRIX OF THE CLASSIFICATION OF 24 SIGN USING RGB INFORMATION.

a b c d e f g h i k l m n o p q r s t u v w x y
a 0.67 0.01 0.04 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.03 0.02 0.02 0.00 0.01 0.01 0.02 0.03 0.01 0.00 0.00 0.01 0.01
b 0.02 0.74 0.02 0.01 0.01 0.02 0.00 0.00 0.02 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.03 0.02 0.01 0.01 0.01
c 0.03 0.02 0.67 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.03 0.02 0.01 0.02 0.02 0.00 0.02 0.02 0.01 0.02 0.02
d 0.01 0.02 0.02 0.55 0.03 0.03 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.03
e 0.02 0.01 0.02 0.04 0.58 0.02 0.01 0.00 0.02 0.01 0.02 0.03 0.03 0.02 0.03 0.02 0.01 0.02 0.03 0.01 0.01 0.01 0.03 0.02
f 0.00 0.01 0.01 0.02 0.02 0.72 0.00 0.01 0.03 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.01 0.05 0.01 0.02
g 0.01 0.00 0.02 0.01 0.01 0.02 0.71 0.07 0.01 0.03 0.01 0.00 0.01 0.02 0.02 0.02 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01
h 0.00 0.00 0.01 0.01 0.01 0.00 0.07 0.82 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01
i 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.00 0.66 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02
k 0.02 0.01 0.03 0.03 0.02 0.02 0.03 0.01 0.04 0.54 0.03 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.02 0.03 0.02 0.02 0.02
l 0.02 0.01 0.02 0.02 0.01 0.01 0.00 0.00 0.02 0.02 0.73 0.00 0.01 0.01 0.01 0.00 0.02 0.01 0.01 0.02 0.01 0.00 0.01 0.04

m 0.04 0.01 0.01 0.01 0.03 0.01 0.01 0.00 0.02 0.00 0.00 0.59 0.06 0.04 0.02 0.03 0.00 0.04 0.05 0.00 0.00 0.00 0.01 0.00
n 0.04 0.02 0.01 0.02 0.04 0.01 0.01 0.00 0.03 0.01 0.01 0.07 0.50 0.02 0.02 0.02 0.01 0.03 0.06 0.01 0.00 0.01 0.03 0.01
o 0.02 0.01 0.04 0.02 0.02 0.01 0.01 0.01 0.03 0.01 0.01 0.04 0.03 0.57 0.02 0.03 0.01 0.04 0.02 0.01 0.01 0.00 0.01 0.01
p 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.67 0.07 0.01 0.00 0.02 0.01 0.00 0.00 0.02 0.01
q 0.01 0.02 0.01 0.01 0.03 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.08 0.63 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.01
r 0.02 0.03 0.03 0.04 0.02 0.03 0.01 0.01 0.02 0.04 0.03 0.00 0.01 0.01 0.01 0.00 0.51 0.01 0.00 0.06 0.06 0.03 0.02 0.02
s 0.04 0.01 0.04 0.02 0.03 0.00 0.01 0.00 0.01 0.01 0.02 0.03 0.03 0.04 0.01 0.01 0.01 0.59 0.02 0.01 0.00 0.00 0.02 0.01
t 0.04 0.02 0.01 0.02 0.03 0.01 0.01 0.00 0.02 0.01 0.01 0.04 0.06 0.02 0.03 0.03 0.01 0.03 0.56 0.01 0.01 0.00 0.01 0.01
u 0.01 0.04 0.04 0.02 0.01 0.02 0.00 0.00 0.02 0.02 0.02 0.00 0.01 0.01 0.01 0.00 0.06 0.01 0.01 0.59 0.06 0.03 0.01 0.01
v 0.01 0.02 0.03 0.02 0.01 0.03 0.01 0.00 0.01 0.03 0.02 0.00 0.00 0.01 0.00 0.00 0.07 0.00 0.00 0.06 0.58 0.07 0.01 0.01
w 0.00 0.01 0.01 0.02 0.01 0.05 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.02 0.06 0.72 0.00 0.01
x 0.02 0.01 0.03 0.03 0.03 0.01 0.01 0.00 0.02 0.03 0.02 0.01 0.03 0.01 0.04 0.01 0.03 0.02 0.02 0.02 0.01 0.01 0.54 0.03
y 0.01 0.01 0.03 0.03 0.02 0.03 0.01 0.00 0.03 0.02 0.05 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.59

TABLE IV
ACCURACIES AND STANDARD DEVIATION OF THE THREE EXPERIMENTS.

Method Accuracy Standard Deviation
RGB 62.70% 0.47
Depth 85.18% 0.16

RGB-D 91.26% 0.18
Pugeault & Bowden[11] 75.00% -

in order to capture the semantic information. Finally, the
classification task is performed by a SVM.

The combination of RGB and depth descriptors obtain
the best results (91.26%) with a low variance. Our method
achieves a better differentiation of similar signs like n, r
and t, incrementing the recognition rate. The Gradient kernel
descriptor has the advantage that can be directly applied on the
depth images without having to compute the cloud of points,
consequently, reducing the computation time.

As future work, we pretend to test other kernels over depth
images. We also intend to extend our method to recognize
dynamic signs.



TABLE II
CONFUSION MATRIX OF THE CLASSIFICATION OF 24 SIGN USING DEPTH INFORMATION.

a b c d e f g h i k l m n o p q r s t u v w x y
a 0.89 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.01 0.00
b 0.01 0.95 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
c 0.01 0.00 0.92 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
d 0.00 0.00 0.00 0.87 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.02 0.00 0.00 0.02 0.00 0.01 0.01 0.00 0.00 0.01 0.00
e 0.02 0.00 0.02 0.01 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.00
f 0.00 0.02 0.01 0.01 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
g 0.01 0.00 0.00 0.00 0.00 0.00 0.86 0.09 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
h 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.94 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
k 0.00 0.00 0.00 0.04 0.00 0.00 0.02 0.00 0.00 0.84 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.00 0.01 0.00
l 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

m 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.07 0.01 0.00 0.00 0.01 0.05 0.04 0.00 0.00 0.00 0.00 0.00
n 0.02 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.07 0.74 0.02 0.00 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.02 0.00
o 0.01 0.00 0.02 0.01 0.06 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.78 0.01 0.01 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.00
p 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.88 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
q 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r 0.01 0.01 0.00 0.06 0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.76 0.00 0.01 0.05 0.03 0.00 0.01 0.00
s 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.05 0.03 0.03 0.00 0.00 0.00 0.76 0.04 0.00 0.00 0.00 0.01 0.00
t 0.06 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.08 0.02 0.00 0.00 0.00 0.05 0.68 0.00 0.00 0.00 0.02 0.00
u 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.82 0.03 0.02 0.01 0.00
v 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.03 0.83 0.04 0.00 0.00
w 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.04 0.91 0.00 0.00
x 0.01 0.00 0.01 0.03 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.00 0.78 0.00
y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.94

TABLE III
CONFUSION MATRIX OF THE CLASSIFICATION OF 24 SIGN USING RGB-D INFORMATION.

a b c d e f g h i k l m n o p q r s t u v w x y
a 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00
b 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
c 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
d 0.00 0.00 0.00 0.91 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00
e 0.01 0.00 0.01 0.01 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00
f 0.00 0.01 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
h 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.96 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
k 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00
l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

m 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.05 0.01 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.00
n 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.06 0.82 0.01 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.01 0.00
o 0.01 0.00 0.01 0.01 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.87 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.93 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
q 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.84 0.00 0.00 0.03 0.02 0.00 0.00 0.00
s 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.00 0.00 0.00 0.88 0.01 0.00 0.00 0.00 0.01 0.00
t 0.03 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.05 0.01 0.00 0.00 0.00 0.02 0.82 0.00 0.00 0.00 0.01 0.00
u 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.88 0.02 0.01 0.01 0.00
v 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.90 0.02 0.00 0.00
w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.95 0.00 0.00
x 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.87 0.00
y 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96



ACKNOWLEDGMENT

The authors are thankful to CNPq, CAPES and FAPEMIG
(Projeto Universal 02292-12), Brazilian funding agencies for
the support to this work.

REFERENCES

[1] LIBRAS, “Brazilian sign language,” http://www.libras.org.br/, last visit:
March 10, 2012.

[2] P. W. Vamplew, “Recognition of sign language gestures using neural
networks,” Australian Journal of Intelligent Information Processing
Systems, vol. 5, pp. 27–33, 1996.

[3] A. Puente, J. M. Alvarado, and V. Herrera, “Fingerspelling and sign
language as alternative codes for reading and writing words for Chilean
deaf signers,” American Annals of the Deaf, vol. 151, no. 3, pp. 299–310,
2006.

[4] Z. Ren, J. Yuan, and Z. Zhang, “Robust hand gesture recognition based
on finger-earth mover’s distance with a commodity depth camera,” in
Proceedings of the 19th ACM International Conference on Multimedia.
ACM, 2011, pp. 1093–1096.

[5] V. Frati and D. Prattichizzo, “Using Kinect for hand tracking and
rendering in wearable haptics,” in Proceedings of the IEEE World
Haptics Conference (WHC). IEEE, 2011, pp. 317–321.

[6] Y. Li, “Hand gesture recognition using Kinect,” in Proceedings of the
3rd IEEE International Conference on Software Engineering and Service
Science (ICSESS). IEEE, 2012, pp. 196–199.

[7] Z. Mo and U. Neumann, “Real-time hand pose recognition using low-
resolution depth images,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE,
2006, pp. 1499–1505.

[8] G. Fanelli, J. Gall, and L. V. Gool, “Real time head pose estimation with
random regression forests,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2011, pp. 617–
624.

[9] J. Shotton, T. Sharp, A. Kipman, A. W. Fitzgibbon, M. Finocchio,
A. Blake, M. Cook, and R. Moore, “Real-time human pose recognition
in parts from single depth images,” Communications of the ACM, vol. 56,
no. 1, pp. 116–124, 2013.

[10] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Efficient model-based
3D tracking of hand articulations using Kinect,” in Proceedings of the
British Machine Vision Conference. BMVA Press, 2011, pp. 101.1–
101.11.

[11] N. Pugeault and R. Bowden, “Spelling it out: Real-time ASL fin-
gerspelling recognition.” in Proceedings of the IEEE International
Conference on Computer Vision Workshops (ICCV Workshops). IEEE,
2011, pp. 1114–1119.

[12] D. Uebersax, J. Gall, M. V. den Bergh, and L. J. V. Gool, “Real-time sign
language letter and word recognition from depth data,” in Proceedings
of the IEEE International Conference on Computer Vision Workshops
(ICCV Workshops), 2011, pp. 383–390.

[13] M. d. S. Anjo, E. B. Pizzolato, and S. Feuerstack, “A real-time system
to recognize static gestures of brazilian sign language (libras) alphabet
using kinect,” in Proceedings of the 11th Brazilian Symposium on
Human Factors in Computing Systems. Brazilian Computer Society,
2012, pp. 259–268.

[14] J. Isaacs and S. Foo, “Hand pose estimation for american sign language
recognition,” 36th Southeastern Symposium on System Theory, pp. 132–
136, 2004.

[15] M. Van den Bergh and L. Van Gool, “Combining RGB and ToF cameras
for real-time 3D hand gesture interaction,” in Proceedings of the IEEE
Workshop on Applications of Computer Vision (WACV), ser. WACV ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 66–72.

[16] L. Bo, X. Ren, and D. Fox, “Depth kernel descriptors for object
recognition,” in Proceedings of the IEEE International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2011, pp. 821–826.

[17] R. B. Nicolas Pugeault, “ASL finger spelling dataset,”
http://personal.ee.surrey.ac.uk/Personal/N.Pugeault/index.php?section=
FingerSpellingDataset, last visit: April 29, 2013.

[18] L. Bo, X. Ren, and D. Fox, “Kernel descriptors for visual recognition,”
Advances in Neural Information Processing Systems, vol. 7, 2010.

[19] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the Seventh IEEE International Conference on Computer
Vision, vol. 2. IEEE, 1999, pp. 1150–1157.

[20] S.-H. Zhong, Y. Liu, and G. Wu, “S-sift: A shorter sift without
least discriminability visual orientation,” IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology, vol. 1,
pp. 669–672, 2012.

[21] J. Sivic and A. Zisserman, “Video google: A text retrieval approach
to object matching in videos,” in Proceedings of the Ninth IEEE
International Conference on Computer Vision. IEEE, 2003, pp. 1470–
1477.

[22] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[23] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer
design,” IEEE Transactions on Communications, vol. 28, no. 1, pp. 84–
95, 1980.

[24] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, pp. 1–27, 2011, software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

http://www.libras.org.br/
http://personal.ee.surrey.ac.uk/Personal/N.Pugeault/index.php?section=FingerSpellingDataset
http://personal.ee.surrey.ac.uk/Personal/N.Pugeault/index.php?section=FingerSpellingDataset
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

