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Abstract—This work presents a novel approach for motion
description in videos using multiple band-pass filters which
act as first order derivative estimators. The filters response on
each frame are coded into individual histograms of gradients to
reduce their dimensionality. They are combined using orientation
tensors. No local features are extracted and no learning is
performed, i.e., the descriptor depends uniquely on the input
video. Motion description can be enhanced even using multiple
filters with similar or overlapping frequency response. For the
problem of human action recognition using the KTH database,
our descriptor achieved the recognition rate of 93.3% using three
Daubechies filters, one extra filter designed to correlate them,
two-fold protocol and a SVM classifier. It is superior to most
global descriptor approaches and fairly comparable to the state-
of-the-art methods.

Keywords-Multifilter analysis; Motion descriptor; Orientation
tensor; Human action recognition.

I. INTRODUCTION

Several works focused on the problem of recognition of
human actions in videos in recent years. Many of them were
dedicated to extract the most useful data from videos. Among
several possibilities, motion is the main feature that represents
semantic information in videos. Detect and track objects or
persons are of great interest in many applications.

In this work, motion is assumed to be detectable through
band-pass filters applied in the frames bidimensional support
and in time. As such, multiple filters can be used to extract
different spectra, relating the original video frequencies dif-
ferently by their frequency response. The key point is that
each filter correlates the original spectrum in a distinguished
manner, and this is useful to capture motion nuances. This was
motivated by the fact that even a simple derivative filter like
the Sobel operator, applied after a Gaussian filter, can drive
92.01% of recognition rate in KTH classification [1].

The motion information extracted from a video should be
represented in a compact form. Another problem is how the
motion information detected per frame are combined into a
whole video descriptor. We use histograms of gradients for
dimension reduction [1] and orientation tensors to accumulate
information [2].

Our main contribution is a new method to compute a
global motion descriptor based on the application of multiple
filters into the video. These filters are derivative operators
whose band-pass frequency responses capture different motion

nuances. Another contribution is a filter design approach to
correlate them in order to obtain a better performance. Using
a SVM classifier, our descriptor achieves recognition rates
comparable to the state-of-the-art on KTH dataset [3] and
superior to the most global descriptors in the literature.

A. Related Works

In [1], the motion information is extracted using the Sobel
filter, achieving 92.01% of recognition rate in the KTH dataset.
This filter is not always suitable for motion detection and we
argue that applying multiple filters is better to extract subtle
motion characteristics in each video.

Laptev et al [4] present a combination of HOG with
histogram of optic flow (HOF) to characterize local motion
and shape. Histograms of spatial gradient and optical flow
are computed and accumulated in space-time neighborhoods
of detected interest points. Similarly to the SIFT descriptor,
normalized histograms are concatenated to HOG and HOF
vectors. The final descriptor is computed through a bag-of-
features technique.

In [5], HOG, HOF, MBH (motion boundary histograms)
and trajectory are combined in order to create a better mo-
tion descriptor. A standard bag-of-features approach is used
constructing a codebook for each descriptor (trajectory, HOG,
HOF, MBH) separately. A SVM classifier is then used in
the context of action classification for the KTH, Hollywood2,
UCF11 and UCF sports datasets.

In [6] is proposed a method for creating descriptors based
on wavelet transform. The first step of the method is to detect
interest points and extract cuboids around these points. To
create the descriptor, Daubechies wavelets are applied inside
the cuboid to obtain information within them. A bag-of-
features technique is also used in this work. Finally, in the
classification step, it is used a support vector machine (SVM)
with radial basis function kernel (RBF).

Minhas et al [7] present a combination of spatio-temporal
features and local static features. Complex wavelet coefficients
in different sub-bands are represented by lower dimensional
vectors obtained using two-dimensional PCA. Dual-tree com-
plex wavelet transform (DT-CWT) is constructed by designing
an appropriate pair of orthogonal or biorthogonal filter banks
that work in parallel. To determine local static features, affine
SIFT descriptors are computed.



The use of local features for human action recognition
is more exploited, as they provide higher recognition rates.
Hence, there are few references about global descriptors which
do not rely on locally based features. Global approaches,
however, are much simpler to compute and can achieve fast
and fairly high recognition rates.

A global descriptor based on the histogram of oriented
gradients is presented in [8], using the Weizmann database.
The descriptor is computed using several time scales. From
each scale, the gradient for each pixel is computed, resulting
in a HOG for each video. The histograms are compared to
classify the database.

Solmaz et al [9] present a global descriptor based on bank
of 68 Gabor filters. For each video, they extract a fixed number
of clips and compute the 3-D Discrete Fourier Transform.
Applying each filter of the 3-D filter bank separately to the
frequency spectrum, the output is quantized in fixed sub-
volumes. They concatenate the outputs and perform dimension
reduction using PCA and classification by a SVM.

II. PROPOSED METHOD

A. Motion extraction with multiple filters

The first step of our method is to apply a 5×5 Gaussian low-
pass filter in all video frames. This is necessary to smooth the
noisy highest frequencies. The noise reduction performed by
the Gaussian filter showed to be relevant. The high frequency
attenuation, however, should not be strong in order to preserve
significant motion information. Indeed, other filter sizes were
used but resulting in lower performances. The subsequent
gradient estimators are, thus, affected by this preprocessing.

In this work, a unidimensional filter is defined by a pair of
impulse responses (Ha,Ga), where a ∈ {1, 2, · · · , f} is the
filter index, f is the number of filters for motion detection,
Ga has high-pass frequency response, and Ha has low-pass
response. Their multidimensional filter version is separable,
having Ha and Ga as factors.

To capture motion information, Ga is usually a derivative
estimator with frequency response G̃a. For multidimensional
signals, Ha attenuates the noise on orthogonal directions. In
this work, its frequency response H̃a is assumed to have
some degree of complementarity in relation to G̃a, in order
to attenuate undesired correlated noise among the main axes.

The partial derivatives, or gradient, resulted from the appli-
cation of a filter a on the j-th video frame Ij , at point p, is
defined as the vector

~g = [dxap dy
a
p dt

a
p]
T =

[
∂Ij(p)

∂x

∂Ij(p)

∂y

∂Ij(p)

∂t

]T
,

or, equivalently, in spherical coordinates
[
ρap θap ψap

]
with

θap ∈ [0, π], ψap ∈ [0, 2π) and ρap = ||~g||. It indicates
brightness variation that might be the result of local motion.
The dxap component is computed by firstly filtering the video
in orthogonal directions Y and time using Ha, and afterwards
in the main direction X using Ga. The same logic is used to
obtain dyap and dtap.

We chose to apply wavelets as derivative estimators because
of their widespread use. Note that the Gaussian low-pass
filtering in image space followed by the application of a high-
pass filter results in a band-pass frequency response.

B. Computing the HOG3D for each frame

The filtered output of a frame Ij , with n points p, can
be compactly represented by a tridimensional histogram of
gradients ~haj = {hak,l}, k ∈ [1, nbθ] and l ∈ [1, nbψ], where
nbθ and nbψ are the number of cells for θ and ψ coordinates
respectively. There are several methods for computing the
HOG3D and we chose, for simplicity, an uniform subdivision
of the angle intervals to populate the nbθ · nbψ bins:

hak,l =
∑
p

ρap · w(dist
q,r
k,l ),

where distq,rk,l is the Euclidean distance between the integer bin
indices (k, l) and the mapped real coordinates (q, r) = (1 +
nbθ·θap
π , 1+

nbψ·ψap
2π ) of the gradient at point p, and w(distq,rk,l ) is

a Gaussian weighting function [10] with α = 1.0. The whole
gradient field of the j-th frame is then represented by the
vector ~haj with nbθ · nbψ elements. All results in this work
were computed using nbθ = 8, nbψ = 16 [1]. Note that there
is one HOG3D per frame and per filter.

To empirically reduce interframe brightness unbalance, the
histogram of gradients ~haj ∈ Rnbθ·nbψ might have all of its
elements hak,l optionally adjusted to hak,l

γ , with γ = 0.5.
This is called power normalization and reduces the relative
differences between gradient bins. This is applied only for the
correlation filters to improve their performance.

1) Orientation tensor: coding HOG3D coefficients: An
orientation tensor is a m ×m real symmetric matrix, for m-
dimensional signals. Given a vector ~v with m elements, it
can be represented by the tensor T = ~v~vT . Note that the
well known structure tensor is a specific case of orientation
tensor [11] and it has been used for image [12] and video
classification [1], [2]. The tensor of the frame Ij using the
filter a is:

T aj = ~haj
~haj
T
,

that carries the information of the gradient distribution of the
j-th frame, computed using filter a. Individually, this tensor
has the same information of ~haj . Since T aj is a symmetric
matrix, it can be stored with m(m+1)

2 elements.

C. Filter based tensor descriptor: series of frame tensors

For a given derivative filter a, we have to express the motion
average of consecutive frames using a series of tensors. The
average motion of a video can be given by T a =

∑
j T

a
j using

all of its frames or an interval of interest. By normalizing T a

with a L2 norm, we are able to compare different video clips
or snapshots regardless their length or image resolution.

If the accumulation series diverges, we obtain an isotropic
tensor which does not hold useful information extracted using
the derivative estimator pair a. But, if the series converge as



an anisotropic tensor, it carries meaningful average motion in-
formation of the frame sequence. The conditions of divergence
and convergence need further studies.

1) Frame subdivision: When a gradient histogram is com-
puted using the whole image, the cells are populated with
vectors regardless their position in the image. This implies in
a loss of the correlation between the gradient vectors and their
neighbors. As observed in several works [10], the subdivision
of the video into cubes of frames enhances the recognition
rate.

Suppose the video frame j is uniformly subdivided in ~x and
~y directions by a grid with nx and ny non-overlapping blocks.
Each block can be viewed as a distinct video varying in time.
The smaller images result in gradient histograms ~haj (c, r), c ∈
[1, nx] and r ∈ [1, ny], with better position correlation. The
tensor for frame j, using derivative filter a, is then computed
as the addition of all block tensors:

T aj (c, r) =
∑
c,r

~haj (c, r)
~haj (c, r)

T
,

which captures the uncertainty of the direction of the m-
dimensional histogram vectors ~haj (c, r) for the frame j. The
tensor series become:

T a =
∑
j,c,r

T aj (c, r)

||T aj (c, r)||
,

where a is the derivative filter used, j is the frame index, and
(c, r) ∈ [1, nx]× [1, ny] are the subimage coordinates.

The final video tensor descriptor for the derivative filter a
is then T a/||T a||. It has the same number of elements of the
version without image subdivision.

D. Global video descriptor: concatenating multiple filter
based tensors

We propose the concatenation of the individual tensors,
computed for all the f filter pairs, to form the final descriptor
for the input video:

T = {T 1, T 2, · · · , T f}.

Despite other combination methods are possible, concate-
nation preserves the motion information extracted by each
filter. The drawback is that the number of coefficients in the
descriptor is multiplied by the number of filters f . In this work,
the HOG3D has 128 bins yielding tensors with 8256 elements
for a single filter. A video descriptor using four derivative
filters has 33024 elements, slowing down SVM classification.

III. RESULTS

Validation set. To validate our descriptor, we use the KTH
dataset [3] since a major number of works in literature provide
clearly reproducible results for it.

Classification protocol. We run a two-fold strategy on a
non-linear SVM classifier. All results were computed using
nbθ = 8, nbψ = 16 [1], leading to HOG3D with 128 bins per
frame. The tensor for one filter has then 8256 elements.

Derivative estimators. We used the decomposition filter
pairs of several wavelet families. Results with a single pair
are presented in Table I. The recognition rates differ slightly
among them. The frame subdivision with 8 × 8 subimages
enhanced almost all results. The Daubechies wavelet family
is adequate to separate the spectrum of dyadic bands, with an
easy way to control the null moments. Due this and based
on the best results achieved, we restricted the subsequent
experiments to the Daubechies wavelet family with a 8 × 8
grid.

Filter Grid 1x1 Grid 8x8
db1 87.8% 90.9%
bio1.3 86.0% 90.6%
sym 83.6% 89.9%
db2 83.9% 88.8%
cf1 82.8% 87.5%
db4 82.8% 83.6%

Filter Grid 1x1 Grid 8x8
db5 81.1% 82.9%
db6 78.6% 82.9%
db3 80.0% 82.7%
cf2 83.9% 82.0%
db7 79.3% 81.7%
db8 79.3% 81.1%

TABLE I
RECOGNITION RATES USING DECOMPOSITION FILTERS OF SEVERAL

WAVELET FAMILIES, WITHOUT POWER NORMALIZATION.
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Fig. 1. Transfer functions of db1, db3 and db7, modulated by a Gaussian
filter.

The best result using a single filter is achieved with the
db1 pair, reaching 90.9% of recognition rate. Regarding the
frequency response of db1, combined with the low-pass Gaus-
sian filter (Fig. 1), one may note that it preserves better the low
frequencies in the first quarter of the spectrum, compared with
db3 and db7 responses. The db3 and db7 filters, however, give
much lower recognition rates: 82.7% and 81.7%, respectively.
It seems that some mid or high frequencies are noise, while
some low frequencies are suitable for classification with the
KTH dataset. Finding a proper combination of the response
of several filters can lead to a better performance.

Table II shows the results for several filter combinations.
The db1 filter is a good choice for all sets because of its
isolated performance. Using db2 and db3, for example, gave
only 87.5% of recognition rate, against 92.1% for db1 and
db2, and 91.5% for db1 and db3. For two filters, the best
combination found was db1 and db7 with 92.6% of recognition
rate.

Based on the results with one and two filters, we tested
some combinations with three filters. The best results are also
presented in Table II. The db1, db3 and db7 filters, combined
in a descriptor with 24768 elements, achieved 93.2% of
recognition rate.



Filter pairs Rate (%)
db1 db2 92.1
db1 db3 91.5
db1 db4 91.2
db1 db6 92.2
db1 db7 92.6

Filter pairs Rate (%)
db1 db8 91.9
db2 db3 87.5

db1 db3 db7 93.2
db1 db3 db8 92.5
db1 db3 db10 92.7

TABLE II
RECOGNITION RATES FOR MULTIPLE FILTER COMBINATIONS.

A. Correlation filter design

We combine the best filters of Tables I and II in a single
linear filter to get even better results. Our proposal is to derive
a pair (Hf+1,Gf+1) such that

|H̃f+1(ω)| =
f∑
a=1

|H̃a(ω)| and |G̃f+1(ω)| =
f∑
a=1

|G̃a(ω)|,

i.e., the magnitude response is the same as the sum of the
magnitude of the f > 1 filters. Using db1, db3 and db7, for
example, gives the db1,3,7 filter whose normalized high pass
magnitude response is depicted in Figure 2. It alone gives
85.5% of recognition: slightly better than the average 85.1%
of recognition of its components (Table I).
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Fig. 2. Transfer function of the correlation filter db1,3,7, modulated by a
Gaussian filter.

Filters Recognition rate (%)
db1 db3 db7 db1,3,7 93.3
db1 db3 db8 db1,3 92.9

db1 db3 db8 db1,3,10 93.1

TABLE III
RECOGNITION RATES USING CORRELATION FILTERS.

Table III shows recognition rates using four filters, one
of which is a correlation filter derived as above. Note that
the db1,3,7 and db1,3 augmented the rates compared to Table
II. Our best result is 93.3% using db1, db3, db7 and their
correlation filter db1,3,7. The corresponding confusion matrix
is shown in Table IV.

A comparison with the state-of-the-art methods is presented
in Table V. The proposed method achieves a competitive
accuracy with a much simpler global approach, using only
the information from derivative estimators, without any bag-
of-features strategy [4], [6], [5]. Moreover, some authors use
leave-one-out protocol, like Minhas et al [7] who achieves
94.83% of recognition rate. Using this protocol, our method
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TABLE IV
CONFUSION MATRIX FOR THE BEST RESULT, 93.3% USING FOUR FILTERS:

DB1, DB3, DB7, DB1,3,7 .

Global Methods Recognition rate (%)
HOG pyramids [8] 72.00

Bank of Gabor filters [9] 92.00
HOG3D + Tensor [1] 92.01

Our Method (4 filters) 93.30
Local Methods Recognition rate

Harris3D + HOG/HOF [4] 91.80
Interest Points + Wavelets [6] 93.89

HOG+HOF+MBH+Trajectory [5] 94.20

TABLE V
COMPARISON WITH OTHER METHODS FOR THE KTH DATASET.

results in 95.5% of recognition rate using the db1, db3 and
db10 filters.

Results for other datasets. Based on these results for KTH
dataset, we tested the same Daubechies filter combination on
more challenging datasets, the UCF11 [13] and the Holly-
wood2 [14]. Tables VI and VII shows the results for several
combinations using db1, db3, db7 and their correlation filter
db1,3,7 for UCF11 and Hollywood2 datasets, respectively. All
results were computed using nbθ = 8, nbψ = 16 and a
subdivision of 8× 8.

Filters Recognition rate(%)
db1 70.1
db3 63.4
db7 51.2

db1 db3 72.6
db1 db7 71.9
db3 db7 64.4

db1 db3 db7 72.3
db1 db3 db7 db1,3,7 72.5

TABLE VI
RECOGNITION RATES USING SEVERAL COMBINATIONS OF FILTERS FOR

UCF11 DATASET.

Perez et al [1] did not present results for UCF11 dataset.
Thus, we evaluated the descriptor using the same parameters
as ours, nbθ = 8, nbψ = 16 and a subdivision of 8 × 8. The
recognition rate was 67.5%. We can see in Table VI that using
db1 instead of Sobel operator and its combination with db3
improved the result, achieving 72.6%. Therefore, the combina-
tion of multiple filters also improved the recognition for this
dataset. However, the filter combination which achieves the



best result for KTH dataset did not improve the rate. This
shows that further studies are needed to discover the best
filter combination and to design a correlation filter for UCF11
dataset.

Filters Recognition rate(%)
db1 41.9
db3 30.7
db7 24.1

db1 db3 41.9
db1 db7 40.3
db3 db7 30.4

db1 db3 db7 40.4
db1 db3 db7 db1,3,7 40.7

TABLE VII
RECOGNITION RATES USING SEVERAL COMBINATIONS OF FILTERS FOR

HOLLYWOOD2 DATASET.

Results for Hollywood2 (Table VII) show that it is better
to use db1 instead of Sobel operator. In [1] the best result
reported is 34.0% achieved with a 4x4 grid and a HOG 8x16.
The filter combinations used for KTH did not improve the rate
for this dataset. However, it is important to notice that further
investigations are needed to find out which bands are more
representative of motion with this dataset.

IV. CONCLUSION

In this paper, we presented a novel global approach for
motion description in videos using multiple filters that act as
first order derivative estimators. Our main contribution is to
provide a method for combining the response of multiple filters
using tensors and by the derivation of a correlation filter. It is
an effective approach reaching 93.3% of recognition rate with
KTH, fairly comparable to the best local and learning-based
methods, as depicted in V.

Our method indicate that it is possible to improve recog-
nition rate for human action datasets using multiple filters.
Each filter contributes with information corresponding to its
transfer spectrum. Once we discover the best combinations, a
band-pass filter can be derived in order to combine spectrum
bands. Thus, the use of multiple filters is promising for the
problem of motion description.

Further studies are needed to improve filter correlation
design. It is important to note that an adequate bandpass filter
could exist and be different for each action dataset. As a future
work, it is important to check the existence of an optimal filter,
or set of filters, that improves the detection of frequencies
indicating motion in a given dataset.
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