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Abstract—This paper presents a method to detect unusual
behavior in human crowds based on histograms of velocities in
world coordinates. A combination of background removal and
optical flow is used to extract the global motion at each image
frame, discarding small motion vectors due artifacts such as
noise, non-stationary background pixels and compression issues.
Using a calibrated camera, the global motion can be estimated,
and it is used to build a 2D histogram containing information
of speed and direction for all frames. Each frame is compared
with a set of previous frames by using a histogram comparison
metric, resulting in a similarity vector. This vector is then used
to determine changes in the crowd behavior, also allowing a
classification based on the nature of the change in time: short or
long-term changes. The method was tested on publicly available
datasets involving crowded scenarios.
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I. INTRODUCTION

Significant effort has been devoted to video surveillance
and human motion understanding in the past years, both in
the industry and the academy. Nowadays, there commercial
systems developed to track (e.g. www.smarteye.se), recognize
(e.g. www.iteris.com) and understand the behavior of a great
variety of objects, using one or multiple video cameras,
processing the information in one or more computers. In the
academia, there are several recent papers on surveillance-
related topics, as illustrated in [1].

In particular, several real-life situations involve crowded
scenarios. Crowds may arise in busy streets, sporting events,
music concerts, among others, and small disturbances may
lead to a panic situation and possibly tragic consequences.
When dealing with crowds, conventional computer vision
methods for person identification/tracking individuals are not
appropriate due to severe clutter and occlusions, as related
by Zhan et al. [2]. Furthermore, studies conducted by psy-
chologists and sociologists have pointed out that in several
crowded scenes, people can lose their individualities and adopt
the behavior of the crowd entity, behaving in a different way
than if they were alone [3]. It means mainly that a collective
entity can emerge, depending on many aspects such as people
goals, the observed environment, the occurred event, as well as
other variables. This type of collective analysis can be useful
to measure the level of crowd comfort and to detect some
specific events, as described in [4].

This paper presents a new approach for change detection in
crowded scenes based on the temporal analysis of perspective-
corrected optical flow vectors, which may possibly be related

to the emergence of unusual behavior. The remainder of this
paper is organized as follows: Section II revises the state-of-
the-art on vision-based crowd analysis; Section III presents the
proposed approach, and Section IV shows the experimental
results; finally, the conclusions are presented in Section V.

II. RELATED WORK

There are several approaches for analyzing crowd behaviors
using computer vision, which can be divided into three main
classes: microscopic, macroscopic, and a combination of the
two [5]. In the microscopic approach people are analyzed
as discrete individuals, and this information is used to infer
the behavior of the crowd. In the macroscopic approach the
crowd is instead analyzed as a single unit, with no individual
pedestrian detection/tracking, which is a way of avoiding
the problems with occlusion. A combination of micro- and
macroscopic approaches can be made by keeping the crowd
as a homogeneous mass, but at the same time considering
an internal force. Another way is by keeping the characters
of the people while maintaining a general view of the entire
crowd. Next we review some methods for crowd analysis using
computer vision.

Mehran et al. [5] used social force model to detect and local-
ize unusual behavior in crowded scenes. In their approach, the
interaction of particles guided by a space-time average of the
optical flow are estimated using social force model, and a bag
of s approach is adopted for unusual event detection (randomly
selected sets are used to model normal behavior). Solmaz and
colleagues [6] also used optical flow to guide particles, but
explored concepts related to the stability of dynamical system
to detect pre-determined events in a crowd. Ihaddadene and
Djeraba [7] also explored optical flow algorithms, but limited
to regions of interest based on a motion intensity heat map.
Within these regions of interest, sudden changes and abnormal
motion variations are detected based on velocity, direction and
density information.

Dee and Caplier [8] presented a prototype system for
the automated analysis of crowded scenes based on local
histograms of motion vectors. After detecting pedestrians and
faces to estimate scale, they use the KLT tracker [9] to
obtain pieces of trajectories, which are used to estimate local
motion. Histograms of local motion are computed regionally
by dividing each frame into a set of square regions, and com-
pare the histograms of each frame to the average histograms
of a training set. Li and colleagues [10] also presented a
histogram-based approach for crowd analysis, but focusing
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on movement segmentation. In their approach, optical flow
is used to detect foreground moving pixels, and a histogram
of the flow vector angles is built (and smoothed). Then, modes
of the smoothed histogram are used to segment the flow.
Clearly, their approach is only sensitive to angular variations.
The method proposed in [11] combines crowd kinetic energy,
motion variation and direction variation for the abnormality
detection. The motion variation is derived from the crowd
kinetic energy of two adjacent frames, and the motion direction
variation is estimated using mutual information of the direction
histograms of two neighboring motion vector fields.

In [12], Brostow and Cipolla use an unsupervised data
driven Bayesian algorithm that has detection of individual
entities as its primary goal to observe the information of
motion of the individuals. They track image features and
group them using a probabilistic approach, where each group
represent the movement of an entity.

In [13], Chen and Huang used optical flow to cluster
human crowds into groups in an unsupervised manner using
a novel approach, called adjacency-matrix based clustering.
Each cluster is characterized based on the social force model,
and unusual crowd events are detected when the orientation
of a crowd is abruptly changed or when interaction among
crowds is not similar to the predicted value.

Briassouli and Kompatsiaris [14] presented an approach
based on properties of the data in the Fourier domain for
detecting new events in crowds. Their method does not require
extensive training, estimation of the optical flow or data mod-
eling. In fact, random crowd motion is encoded in the phase
of the Fourier coefficients, and statistical sequential change
detection methods (e.g. the Cumulative Sum) are applied to
detect events in crowds.

Haque and Murshed [15] presented a new approach for
handling crowd scenarios that is based neither on motion cues
nor trajectories. Instead, the explored feature extraction based
on frame-set characteristics computed on foreground blobs.
The temporal variation of frame-level features is analyzed over
sliding temporal window, and a set of specific events is trained
using Support Vector Machines (SVMs).

The method presented by Wu and colleagues in [16] aims at
detecting and localizing anomalies in complex and crowded se-
quences by using a Lagrangian particle dynamics approach, to-
gether with chaotic modeling. Also, representative trajectories
are defined to serve as a compact modeling elements in crowd
flows. Representative trajectories also provide a simple way of
obtaining time series data, which can effectively be used for
chaotic modeling of a scene. The representative chaotic feature
set is regulated to reliably capture the chaotic dynamics of
representative trajectories to be used for probabilistic anomaly
detection and localization.

Andersson and colleagues [17] presented an approach for
detecting anomalous motion patterns in crowds. The authors
use K-means clustering for identifying groups and Hidden
Markov Models (HMMs) for modeling the expected motion
patterns of dense and calm groups. Although the experimental
results shown in the paper are good, the scenarios used in the

experiments are not very dense.
As it can be observed, most existing approaches explore

motion cues of the crowd. However, when camera perspective
effects are significant (camera far from top-view setup), the
same motion vectors in world coordinates may map to very
different motion vectors in image coordinates. In [8], a rough
scale estimator is performed by detecting pedestrians, which
also may fail when perspective effects are strong. Also, the use
of training sets or pre-defined set of events limits the practical
application of these methods.

This paper presents an approach for detecting changes in
the global crowd motion behavior based on motion vectors in
world coordinates, do not require a set of training frames.
In fact, each new frame is compared to a set of previous
frames, and motion-based behavioral changes can be detected
and classified as short-term (abrupt) or long-term (smooth).

III. THE PROPOSED METHOD

Let us consider a calibrated static surveillance camera,
and assume that the filmed region is roughly planar (the
ground plane is given by z = 0). The proposed approach
starts extracting foreground blobs using the approach presented
in [18]. This method builds a background model and local
estimates of the noise using robust statistics, so that it may be
applied even when strong motion is present in the set of frames
used to learn the background model. Also, shadow removal is
included in [18], reducing the number of false detections.

We also estimate the crowd movement in the scene using
a robust optical flow algorithm [19]. This method employs
a variational approach that can cope with large displacement
vectors, common in low framerate surveillance cameras, gen-
erating a vector field v(x). Since artifacts present in the video
stream (such as noise, moving shadows, waving trees, etc.)
generate a series of spurious motion vectors, we restrict the
output of the optical flow v(x) only in to foreground pixels.

At this stage, we have a binary mask F (x) with pixels
that belong to the foreground (assumed to be members of the
crowd), along with the corresponding motion vectors v(x) (in
pixels) obtained with the optical flow. However, two people
moving with the exact same velocity in world coordinates
can have different motion vectors estimated with optical flow,
due to camera perspective. To estimate the velocity vectors
in world coordinates, it is necessary to know the camera
matrix and the height (z coordinate) of each pixel, and then
compute the inverse perspective mapping to obtain the motion
vector (x, y) on the ground plane (in meters) based on pixel
coordinates (u, v). Since it is difficult to provide an estimate
of the pixel height (but plausible to assume that it lies in
the range [0, hmax], where hmax is the maximum height
allowed to a person, e.g. set to 1.75m), we compute the inverse
mapping using the ground plane homography (i.e., we assume
that z = 0). Although computing the inverse mapping with
z = hmax/2 could reduce the approximation error, we adopted
z = 0 since the ground plane homography can be computed
easily by selecting points on the ground plane with known
world coordinates, or based on the motion of pedestrians [20].
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Fig. 1. Speed (a) and orientation (b) weighting functions used to obtain the
2D motion histograms.

Given the velocity vector field vw(x) in world coordinates
at a given frame t, the global motion of the crowd is encoded
by a 2D histogram, decoupling speed and orientation. For
each pixel x related to a person in the crowd, we quantize
the speed s(x) (in m/s, estimated based on the frame rate
of the video sequence) and the orientation θ(x) (in degrees)
into Ns and Nθ bins, respectively. We have chosen Ns = 5
to quantize the speed into five speed classes: very slow,
walking, walking fast, running and running fast, using a bin
size of ∆s = 1.6 m/s, so that the transition between “walking
fast” and “running” occurs at a speed of about 2.4 m/s, in
agreement with [21]. If only image coordinates are used,
the definition of the bin sizes related to speed becomes a
complex problem, particularly when perspective effects are
more noticeable. As for the quantization of the orientations,
we have defined experimentally Nθ = 8, based on cardinal and
ordinal directions, leading to an orientation bin size ∆θ = 45◦.

To reduce influence of noise and quantization issues, we
first estimate the underlying probability distribution function
(PDF) using Kernel Density Estimation (KDE) [22] instead
of computing the histogram directly from vw(x). In KDE,
a kernel centered at each observation is used to obtain a
continuous PDF of the data, spreading its influence throughout
more than one histogram bin. We have used triangular kernels
in both speed and orientation dimensions of the histogram.
The supports of the two triangular windows were defined as
the speed and orientation bin sizes (∆s and ∆θ, respectively)
so that each velocity vector vw with speed s and orientation
θ contributes to the histogram H according to

H(i, j) = max

{
0, 1− |s− si|

∆s

}
·max

{
0, 1− |θ − θj |

∆θ

}
,

(1)
where si and θj are the centers of the speed and orientation
bins, respectively, and i, j the bin indices. It can be observed
that only the four bins closest to (s, θ) present non-zero
weight. For the sake of illustration, the triangular weighting
functions in s and θ are shown in Fig. 1.

The pipeline for estimating the KDE-weighted histograms is
illustrated in Fig. 2. A typical frame is shown in Fig. 2(a), and

the result of the background removal approach is illustrated
in Fig. 2(b). The optical flow vectors computed for valid
foreground pixels are shown in Fig. 2(c), and the 2D histogram
is illustrated as a surface in Fig. 2(d).

A. Crowd Behavior Analysis

For each frame t, we compute the speed-orientation his-
togram according to the procedure described so far (in fact, to
include some temporal smoothness into the histograms, we use
samples from both frames t and t− 1 to build the histogram).
We then normalize the histograms (so that they can be treated
as discrete PDFs), obtaining normalized histograms Ht(i, j).
If the motion pattern of the crowd remains similar within a
time period, the corresponding histograms are expected to be
similar. On the other hand, changes in the crowd behavior
are expected to generated discrepancies when comparing the
histograms.

In the proposed approach, instead of generating a training
set to learn “usual motion”, we compare the motion at each
frame with the motion patterns in a set of previous frames.
More precisely, we generate a similarity vector St given by

St =

(
C(Ht, Ht−∆t1), C(Ht, Ht−∆t2 , ..., C(Ht, Ht−∆tn)

)
,

(2)
where n is the number of previous frames used in the
comparison, ∆ti are the frame steps, and C is the histogram
similarity metric. Although there are several possibilities for
C, we have used the histogram correlation, which produces
values between 0 and 1. Formally, the correlation between
histograms H1 and H2 is given by

C(H1, H2) =

∑
i,j

(H1(i, j)−H1)
∑
i,j

(H2(i, j)−H2)√∑
i,j

(H1(i, j)−H1)2

√∑
i,j

(H2(i, j)−H2)2

(3)
where H is the mean value of H .

The similarity vector St is then analyzed to detect changes
in the crowd behavior, as well as to classify it in terms of how
fast it has occurred. The temporal stability σt of the crowd
behavior at frame t is defined as a weighted average of St:

σt = wTSt, (4)

where w is the weighing vector that presents larger values for
recent frames. We have used exponentially decaying weights

w =
1

n∑
i=1

e−λ∆ti

(
e−λ∆t1 , e−λ∆t2 , · · · , e−λ∆tn

)
, (5)

where λ is the decay constant. In all experiments, we have
used n = 14 frames to build St, and used ∆ti = i∆t,
with ∆t constant and set to 0.57s, so that a time period of
approximately 8s is evaluated. This value for ∆t corresponds
to 4 frames when the sequence is acquired at 7 frames per
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Fig. 2. (a) Selected frame. (b) Foreground pixels. (c) Optical flow vectors at foreground pixels. (d) Surface illustrating the 2D histogram H(i, j).

second, which is common for surveillance cameras. The decay
constant λ was set to λ = 0.52 experimentally.

A behavior change is detected when the temporal stability σt
is low, meaning that the similarity between the current frame
and the previous ones is small. More precisely, we define an
adaptive threshold βt based on the history of σt:

βt =
1

2n

n∑
i=1

σt−∆ti , (6)

i.e. the threshold is half the average of the temporal stability
values σt in a temporal window.

Fig. 3 shows an example of crowd behavior change for the
PETS2009 S3.Event Recognition dataset1, sequence 4. In this
sequence, people enter the scene from several directions, and
gather at the center. After some time, they all start running
almost instantly away from the center, each one in a randomly
direction. In the bottom of Fig. 3 we show the values of σt
along the video sequence. We can see that σt oscillates even
while the crowd behavior does not change. When change in
the crowd behavior occurs, σt drops sharply, and the detected
unusual behavior is indicated by a vertical red line.

When a change in behavior is detected, it is possible to
further classify it based on how fast it happened. In this
paper, we have defined two types of change: short- or long-
term changes. Long-term changes occur gradually, meaning
that the similarity measure between temporally close frames
may large, but it decreases when more distant frames are
evaluated. For instance, if a group is walking towards the same
direction and the members in front of the crowd start running
(and then the members behind, progressively), the behavior
change will be gradual (long-term). On the other hand, short-
term changes occur more abruptly, as in a panic situation in
which all members of the crowd start running suddenly to
different directions. Fig. 4 shows some representative frames
of PETS2009 S3.Event Recognition dataset (sequence 1),
in which people start running into the same direction in a
progressive (long-term) manner. Fig. 5 shows a few frames
of the PETS2009 S3.Event Recognition dataset (sequence 4),
related to a short-term change (people suddenly start running
into different directions).

In long-term changes, vector St tends to present values
that smoothly decrease (as older frames are used in the

1http://www.cvg.rdg.ac.uk/PETS2009
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Fig. 3. Top left: first frame of the video. Top right: frame in which the
change of crowd behavior occurred. Bottom: Plot of σt as function of time,
with a vertical red line marking the detected change.

comparison). In the second case, most values of St tend to
be lower, since sudden changes will also affect the similarity
value of recent frames. This behavior is captured by computing
the first-order differences of St (in absolute value), stored in
another vector yt. When a long-term change happens, values
of yt tend to be roughly similar, so that the maximum value
should be close to the average. On the other hand, during short-
term changes, the sharp drop in St should lead to a relatively
large value of yt, but the average of yt should be low. Hence,
a change is classified as short-term if

ct =
max{yt}

yt
> α, (7)

where α is a threshold set experimentally to 3.7.

IV. EXPERIMENTS AND RESULTS

To evaluate the method presented in this paper, we used in
the experiments two public datasets. The PETS2009 S3 dataset
for crowd analysis and the public dataset of the University
of Minnesota [23] for escape panic scenarios were used to
validate the proposed approach, and the goal is to detect

http://www.cvg.rdg.ac.uk/PETS2009


(a) frame 47 (b) frame 66 (c) frame 71 (d) frame 78 (e) frame 90

Fig. 4. Frames illustrating a long-term change: people are moving to the right, and start progressively to run (first people in front, and then the others).

(a) frame 330 (b) frame 337 (c) frame 343 (d) frame 347 (e) frame 359

Fig. 5. Frames illustrating a short-term change: people are standing in the middle of the scene and suddenly start running.

changes as soon as they happen. The PETS2009 dataset pro-
vides the camera parameters, and for the Minnesota dataset we
have estimated the ground plane homography using geometric
planar structures present in the video sequence.

Although the Minnesota dataset presents ground truth values
for event detection, they seem to be marked a few frames after
the event has occurred, as noticed in [13]. Hence, we have
used the updated ground truth values proposed in [13] for
this database, and used the same technique to find the actual
ground truth of the others sequence, as can be seen in Fig. 6.

Given the goal of detecting the change in the crowd behavior
as early it occurs, in Fig. 7, it can be seen that our method
presents better results than the social force model (SFM) [5]
and the adjacency-matrix based clustering (AMC) [13], mean-
ing that the event (change) was detected faster.

Fig. 8 illustrates our results for the PETS2009 S3.Event
Recognition dataset – sequence 1. Ground truth was observed
by us, using the same strategy adopted in [13], i.e., to manually
label the frame in which the behavior change happens (in
this case, when the first people start to run). Our approach
detected a change 10 frames after the ground truth value,
corresponding to approximately 1.5 seconds. This happens
because the change occurs in a long-term fashion: people in
the front of the crowd start running first, and then the others,
successively. In fact, our method detected this event as a long-
term change using Equation (7), and the corresponding value
of ct was 3.52. For the sake of comparison, the scenes shown
in Fig. 9 and Fig. 7 are short-term changes, and presented as
result ct = 3.91 and ct = 4.35 respectively.

In Fig. 8, Fig. 9 and Fig. 10 our method is compared with
the approach developed by Briassouli and Kompatsiaris [14],
in all the cases, the method presented in this paper detected the
changes in crowd behavior earlier than the method compared.
Despite the difference in detection time between both methods

(a) (b) (c)

(d)

Fig. 7. (a) The frame of the sequence. Event starts at frame 570, indicated in
(b). Our method detects the change in crowd behavior at frame 572, shown in
(c), outperforming both the social force model [5] and the adjacency-matrix
based clustering approach [13], which detect the events at frames 594 and
575, respectively, as shown in (d).

be low (usually less than a second), our method is slightly
better than the other in question time (in frames) of the change
detection. In Fig. 10, the change is classified as a long-term
change, and the detection occurred about 3 seconds after the
manual annotation. As already explained before, long-term
changes present a larger detection lag, due to the smooth
change of σt.

Experiment was also conducted in other sequence of dataset
Minnesota, as exemplified in Fig. 11, but with no comparison
with other methods2. In Fig. 11, a short-term change was
detected by our classifier 12 frames after the ground truth
annotation.

2Results related to these sequences are not reported in the respective papers.



(a) frame 36 (b) frame 38 (c) frame 40 (d) frame 42 (e) frame 44

(f) frame 46 (g) frame 48 (h) frame 50 (i) frame 52 (j) frame 54

Fig. 6. Frames illustrating the detection of a short-time event. People start to run at frame 38 (b) (this value was used as ground truth), and our approach
indicated the change at frame 48 (g).

(a) (b) (c)

(d)

Fig. 8. (a) The first frame of the sequence. (b) The frame where the ground
truth indicates a change (frame 38). (c) Frame in which our method detected
the change in crowd behavior (frame 48). (d) Schematic illustration of the
video sequence timeline with the ground truth and detection frames using our
approach (frame 48) and the method presented in [14] (frame 52).

(a) (b) (c)

(d)

Fig. 9. (a) First frame of the analyzed sequence. (b) Frame 335, when
event starts. (c) Frame 343, when our method detects the event (1.14 seconds
after it started). (d) Schematic illustration of the video sequence timeline with
the ground truth and detection frames using our method (frame 343) and the
technique presented in [14] (frame 348).

(a) (b) (c)

(d)

Fig. 10. (a) First frame of the sequence. (b) Frame when the ground truth
indicates a change (frame 56). (c) which our method detected the event (frame
77). (d) Schematic illustration of the video sequence timeline with the ground
truth and detection frames, and shown the difference between the detection
using our method (frame 77) and when is used the method presented in [14]
(frame 85).

(a) (b) (c)

(d)

Fig. 11. (a) The first frame of the sequence. (b) The frame when event starts
(frame 484). (c) Frame in which our method detected the abnormal behavior
(frame 496). (d) Schematic illustration of the video sequence timeline with
the ground truth value and our result.



V. CONCLUSION

In this paper we presented an approach to detect behavior
changes in crowded scenes. The proposed method is based on
the extraction of foreground blobs with shadow suppression to
identify crowd members, and large-scale optical flow to obtain
the displacement vector field. This vector field is mapped to
world coordinates, and 2D histograms decoupling speed and
orientations are computed. The similarity of motion histograms
across several frames is the used to detect changes in the crowd
behavior, and to classify them as short-term or long-term.

Experimental results with publicly available datasets indi-
cate that the proposed approach can effectively detect behav-
ioral changes, presenting an accuracy equivalent (or better
than) existing approaches. Although the need of a calibrated
camera may be a drawback of the proposed approach, it is
important to note that there are self-calibration algorithms
for obtaining the ground plane homography [20], and semi-
automatic methods are becoming popular [24]. In any case,
the exact same procedure may be used with the displacement
vector field in image coordinates (with the manual definition
of speed bin sizes). The result without calibrated camera tends
to be worse, but in some cases can be useful.

As future work, we intend to further investigate how the
similarity vector St can be explored for change detection. It
is also possible to build 1D histograms of speed and orientation
only, respectively, from Ht(i, j). With these histograms, one
can categorize if the change was mainly due to speed variations
or orientation changes.
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