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Abstract—There are many scenarios in which user interaction
is essential for effective image segmentation. In this paper, we
present a new interactive segmentation method based on the
Image Foresting Transform (IFT). The method oversegments
the input image, creates a graph based on these segments
(superpixels), receives markers (labels) drawn by the user on
some superpixels and organizes a competition to label every pixel
in the image. Our method has several interesting properties: it
is effective, efficient, capable of segmenting multiple objects in
almost linear time on the number of superpixels, readily extend-
able through previously published techniques, and benefits from
domain-specific feature extraction. We also present a comparison
with another technique based on the IFT, which can be seen as
its pixel-based counterpart. Another contribution of this paper is
the description of automatic (robot) users. Given a ground truth
image, these robots simulate interactive segmentation by trained
and untrained users, reducing the costs and biases involved in
comparing segmentation techniques.

Keywords-Graph-based image segmentation, image foresting
transform, robot users, interactive segmentation.

I. INTRODUCTION

Despite the progress on automatic image segmentation of
the last two decades, user interaction is still essential for
effective segmentation on many domains. Object segmentation
in a given image can be divided into two tasks: recognition
and delineation [1]. Recognition corresponds to determining
the approximate whereabouts of the objects of interest, while
delineation is the precise determination of which pixels belong
to each of these objects.

Since recognition is very dependent on context, humans usu-
ally outperform computers, but the latter have great potential
for the minutiae involved in delineation. Accordingly, several
approaches have exploited a combination of user and computer
efforts [2]–[6]. A common strategy in several of these ap-
proaches, operator-assisted synergistic segmentation, consists
in the creation of seeds (pixels labeled as belonging to some
object of interest) by the user and automatic delineation by the
computer. Such delineation can be corrected interactively with
the addition (or removal) of seeds. Thus, the final accuracy
depends on the quality of the delineation and on the effort
devoted by the user to the task.

It is useful to categorize segmentation algorithms into three
groups [7]: purely image-based, appearance model-based and
hybrid.

The purely image-based methods delineate objects based
on information that can be entirely obtained from the image

and/or user input. Such methods include level sets, active
boundaries, fuzzy connectedness, graph cuts, watersheds, clus-
tering and Markov random fields [7].

In contrast, model-based methods use information about
objects encoded into models to perform the segmentation.
These methods include active shape models [8] and atlas-
based models [9], which have been applied to segmentation
of anatomic structures of the brain, given magnetic resonance
images [10], [11].

As the name implies, hybrid methods combine these two ap-
proaches, attempting to overcome their individual weaknesses
[12].

This paper focuses on purely image-based segmentation. In
particular, the presented techniques are based on the image
foresting transform (IFT). This transform is a tool for the
design of operators based on optimum connectivity, and has
been successfully applied to the development of algorithms
for image processing [13], pattern classification [14], data
clustering [15], and active learning [16].

Our segmentation technique can be summarized as follows.
Firstly, the input image is oversegmented. Seed pixels defined
by the user associate a label to some of these oversegmented
regions (superpixels). A superpixel graph is created to rep-
resent the oversegmentation: each superpixel corresponds to
a node and arcs connect superpixels that are adjacent in the
input image. An image foresting transform is then applied to
associate a label to each superpixel, exploring the connection
strength between superpixels and seeds. Recently, superpixels
have attracted interest for allowing faster graph-based segmen-
tation and better feature description than fixed-size windows
around pixels [17]–[19].

We have compared our technique with its pixel-based coun-
terpart, already established in the literature [6], and found ours
more effective. The new technique can also be enhanced in
several ways, which are noted in the appropriate sections and
can be explored by future works.

Our interest in these techniques derives from several advan-
tages the IFT algorithm has over the widely used segmentation
techniques based on the maximum flow algorithm, often
called graph cuts [4], [7]. For instance, graph cut methods
tend to require more seeds since they tend to favor smaller
boundaries. IFT-based segmentation methods are also capable
of segmenting multiple objects in almost linear time, while
simultaneously segmenting more than two objects using graph



cut methods is an NP-hard problem [7]. It is interesting to note
that fuzzy connectedness methods, which can be efficiently
implemented using the IFT algorithm, define an optimum cut
in a graph given a particular energy function [7].

Another contribution of this work is the development of
automatic (robot) users to facilitate the evaluation of inter-
active segmentation methods. The idea of robot users has
already been explored in the literature [20], with the main
objective of avoiding the costs and biases involved in the
evaluation by real users. These robots work by creating seeds
from the segmentation ground truth and simulate interactive
segmentation by real users. We have developed two robot users
that attempt to mimic the behavior of users with expertise on
the techniques presented. We also implemented one of the
robots described in [20], which uses a strategy that may be
more similar to that of non-expert users.

This paper is organized as follows. Section II explains the
image foresting transform and is essential to the understand-
ing of the segmentation techniques described in Section III.
Section IV details the robot users and results obtained with
our technique, while Section V summarizes our conclusions.

II. IMAGE FORESTING TRANSFORM

The image foresting transform (IFT) is a tool for the
design of operators based on connectivity. It has been applied
successfully to several image processing problems [13] and
also to problems including pattern classification [14] and data
clustering [15]. Given a graph and a suitable cost function,
the IFT creates an optimum-path forest by defining a path
with the lowest value ending at each node [13]. Section III
describes how graphs may be created from images, while this
section details the general IFT algorithm, which can be seen
as a generalization of Dijkstras’s shortest-path algorithm.

Let G = (N ,A) be a graph. We denote a path ending
at t as the sequence of consecutively adjacent nodes πt =
〈t1, t2, . . . , t〉. We denote by πs · 〈s, t〉 the extension of a path
πs by an arc (s, t). A path πt = 〈t〉 is said to be trivial.

Let f be a real-valued function that assigns a value f(πt)
to any path πt in G. A path πt is optimum if f(πt) ≤ f(τt)
for any other path τt in G, regardless of its origin. Note that,
since paths may have arbitrary values, the optimum paths are
not necessarily trivial.

Defining Πt(G) as the set of all paths in G that end at t,
an optimum value V (t) for a path ending at t is defined by
Equation 1.

V (t) = min
πt∈Πt(G)

{f(πt)} (1)

The IFT solves this minimization problem by computing
an optimum-path forest – a function P that assigns to each
node t ∈ N either its predecessor node P (t) ∈ N in an
optimum path or a distinctive marker P (t) = nil when 〈t〉
is optimum. When P (t) = nil, t is said to be a root. The
correctness of the IFT algorithm depends on the function
f being smooth, as defined in [13], which also guarantees
that a chain of predecessors never creates cycles. Examples

of smooth functions include those used in the next sections
and the typical sum of non-negative arc weights in Dijkstra’s
original algorithm.

The IFT algorithm for solving the minimization problem
posed by Equation 1 is presented below. The root R(t)
associated to each node t could be obtained by following
its optimum path backwards using P . However, it is more
efficient to propagate the roots on-the-fly, creating the map
R.

Algorithm 1. – GENERAL IFT ALGORITHM

INPUT: Graph (N ,A) and connectivity function f .
OUTPUT: Predecessor map P , its connectivity value map V

and its root map R.
AUXILIARY: Priority queue Q and variable tmp.

1. For each t ∈ N , do
2. P (t)← nil, R(t)← t and V (t)← f(〈t〉).
3. If V (t) 6= +∞, then insert t into Q.
4. While Q 6= ∅, do
5. Remove s from Q such that V (s) is minimum.
6. For each t ∈ A(s), such that V (t) > V (s), do
7. Compute tmp← f(πs · 〈s, t〉).
8. If tmp < V (t), then
9. If V (t) 6= +∞, then remove t from Q.
10. Set P (t)← s, R(t)← R(s), V (t)← tmp.
11. Insert t in Q.

Lines 1–3 initialize maps to trivial paths. The nodes with
finite values are inserted into Q, as root candidates. The nodes
with optimum trivial paths will become roots of the forest. The
main loop (lines 4–11) computes an optimum path from the
roots to each node s in a non-decreasing order of value. At
each iteration, a path of minimum value V (s) is obtained,
for some node s, when it is removed from the priority queue
Q. Ties are broken in Q using a first-in-first-out policy. The
remaining lines evaluate whether the path that reaches a node
t through s has lower value than the current estimate for
optimum path ending at t and update Q, V (t), R(t) and P (t),
accordingly.

Considerations about performance and correctness of the
algorithm can be found in [13].

III. SEGMENTATION TECHNIQUES

This section presents our segmentation method based on
superpixels (sec. III-A) and the method based on pixels
(sec. III-B) that we used as baseline for comparison. These
segmentation methods receive as input a set of labeled pixels
(seeds) for each object of interest, which can be drawn by the
users using brushes of different colors on the image subject
to segmentation (see Fig. 4).

At this point, it is necessary to define our notation for
images. An image Î is a pair (DÎ ,

~I), where DÎ ⊂ Zn

corresponds to the image domain and ~I(t) assigns a vector
of m scalars Ib(t), b = 1, 2, . . . ,m, to each pixel t ∈ DÎ .
We will consider the cases where n = 2 and m = 3. In this
paper, the triple ~I(t) = (I1(t), I2(t), I3(t)) denotes a point on
the YCbCr color space. We use this color space only because



the intensity can be obtained directly from one of the vector
components. In the case of grayscale images (b = 1) we drop
the arrow on ~I .

We consider that the result of a segmentation is a function
L that maps every pixel to one of the objects of interest.

A. Segmentation based on Superpixels

The first step in our method is to generate an oversegmen-
tation of the original image (Fig. 1). Any method may be used
for this purpose, but we choose to describe here an approach
based on the IFT-watershed from grayscale markers [21].

Firstly, we compute a gradient-like image Ĝ = (DÎ , G)

from the original image Î . The image Ĝ is obtained by
normalizing the image Ĝa = (DÎ , Ga), given by Equation
2. The adjacency relation A relates a pixel t to its eight
neighbors. The triple (α1, α2, α3), with αi ∈ [0, 1], may be
used to attribute different weights to the components of the
color space. In YCbCr, for instante, it could assign less weight
to the intensity component, making Ĝ more robust to changes
in illumination. Based on previous experiences dealing with
illumination, we have chosen α1 = 1

5 and α2 = α3 = 1.

Ga(s) =
∑
t∈A(s)

[
m∑
b=1

αb(Ib(s)− Ib(t))2

] 1
2

(2)

The next step is an IFT-watershed from grayscale markers.
In this particular IFT, we consider a graph G = (N ,A), where
N = DÎ and (s, t) ∈ A iff t is a 8-neighbor of s. The path
value function f for this transform is defined by Equation
3. The set R contains the roots of the optimum-path forest,
found on-the-fly by the IFT algorithm. This detail avoids direct
computation of the regional minima of Ĥ (defined below).

A classical watershed transform on Ĝ can be understood as
a flooding of the image surface that begins at one point in each
of its regional minima. The flooding from one source conquers
several layers of pixels until it touches floodings from other
sources at the ridges of Ĝ, defining the boundaries between
superpixels.

However, the size of these superpixels can be controlled by
removing regional minima from Ĝ by building a component
tree and filtering basins with volume below a certain threshold
[22], resulting in an image Ĥ = (DÎ , H), with H(t) ≥ G(t)
for all t ∈ DÎ . This threshold allows us to (indirectly) control
the size of the superpixels and is a parameter for our new
method.

f(〈t〉) =

{
G(t) if t ∈ R
H(t) + 1 if t /∈ R

f(πs · 〈s, t〉) = max{f(πs), G(t)} (3)

After the transform, the relabeling of the root map R
results in an image oversegmented into a set of superpixels
(regions) S. Intuitively, the root map defines, for every pixel,
the flooding source that conquered it.

Irrespective of the method employed to oversegment the
image into a set of superpixels S , the next step is to associate

Fig. 1. Oversegmentation superimposed on original image Î .

an attribute vector ~v(s) to each s ∈ S. For the purposes of
this paper, we chose the mean color of the superpixel as the
attribute vector, as defined by Equation 4.

~v(s) =

∑
p∈s

~I(p)

|s|
(4)

The final step to complete the segmentation consists on
another Image Foresting Transform. We will take the liberty
of redefining some mathematical objects when there is no risk
of ambiguity to keep our notation clear and consistent with
Algorithm 1.

This time, we consider a graph G = (N ,A), where N = S,
and (s, r) ∈ A if and only if a pixel from s is 4-connected to
a pixel from r. Denoting by L(s) the label given by the user
to the superpixel s and letting L(s) = 0 when the superpixel
s is not labeled, the connectivity function f is defined by
Equation 5. The function w gives the (weighted) Euclidean
distance between ~v(s) and ~v(t). The weights are the same as
the used for equation 2.

f(〈t〉) =

{
0 if L(t) 6= 0

+∞ if L(t) = 0

f(πs · 〈s, t〉) = max{f(πs), w(s, t)} (5)

Intuitively, this function makes large differences between
superpixels that act as barriers for the propagation of labels.
Finally, the segmentation can be obtained from the root map
R that results from the IFT: we assign, for every unlabeled
superpixel s, the label L(R(s)) belonging to the root (labeled
superpixel) of its optimum path (Figs. 2-3).

Note that a user could label a superpixel with multiple
labels. However, this should be infrequent, since the overseg-
mentation should respect the borders of the correct segmenta-
tion. We do not address this issue in our implementation and
arbitrarily choose one of the labels associated to a superpixel.
This can be addressed in future works by applying an overseg-
mentation on a finer scale (lower threshold for basins volume)
in superpixels where this happens.

We believe that the possibility of using an elaborate de-
scriptor for superpixels is a very distinctive advantage of our



Fig. 2. Two superpixels with different labels conquer their neighbors.
Superpixels are larger than usual for illustrative purposes.

Fig. 3. The (illustrative) optimum-path forest. Note how the red superpixel
conquered back some superpixels adjacent to the yellow superpixel.

method, so we will explore this in future works. As noted in
[17], instead of extracting features (attribute vectors) from a
fixed-size neighborhood, texture descriptors may consider only
pixels belonging to the same superpixel.

It is also important to note that this method allows multiple-
object segmentation in time O(|N | log(|N |)), which is a
significant advantage as compared to methods based on graph
cuts [7]. Figures 4 and 5 illustrate multiple-object segmen-
tation based on our method. Although this paper focuses on
2D segmentation, our method is also capable of volumetric
segmentation based on supervoxels.

Despite the efficiency of our method, in the interactive
scenario, performance gains can be obtained by a differential
IFT, which is capable of adapting an optimum-path forest to
label changes between iterations in less time [3].

B. Segmentation based on Pixels

The pixel-based segmentation method is very similar to
the method based on superpixels and, thus, may be seen as
its counterpart. This method creates a graph G = (N ,A),
where N = DÎ and (s, t) ∈ A iff t is a 4-neighbor of s.
It is important to note that this graph has considerably more

Fig. 4. Seeds drawn by a user for multiple-object segmentation.

Fig. 5. Resulting multiple-object segmentation. Different hues represent
different segments.

nodes than its superpixel equivalent, which represents another
advantage of our new method.

The function f for the transform is defined as in Equation 5.
In contrast with our new method, nodes correspond to pixels
and the attribute vector for a node t is defined simply as ~v(t) =
~I(t).

This technique can be enhanced by a combination of super-
vised and unsupervised learning as described in [6]. However,
since an adaptation of the same technique could be used to
generate a better oversegmentation for the previous section,
we have preferred to rescrict ourselves to this basic approach.

IV. EXPERIMENTS

This section describes the experiments conducted to eval-
uate our method and compare it to the pixel-based one.
Seeking to reduce costs and biases associated with evaluation
by real users, we have developed robot users, that, given the
segmentation ground truth, are capable of simulating trained
and untrained users. These robots are described in Section
IV-A, and the results of the experiments are described in
Section IV-B.

A. Robot Users

We have implemented three types of robot users, two of
which were independently developed, using different strategies



to label pixels. Even though both segmentation methods can
be used for multiple-object segmentation, we have compared
them in the context of binary segmentation (labeling pixels
as either object of interest or background), since this is the
scenario most often used to evaluate segmentation techniques.
In these evaluations, the segmentation is compared to a ground
truth image (a binary image that is white on the object of
interest and black on the background), and a measure is used
to quantify the efficacy of the segmentation method.

Each of the robots creates an ordered list P of seed
candidates. The order defines the priority for labeling a given
candidate. This list can be used in several ways, one of which
is described in Section IV-B.

The geodesic robot (Fig. 6) is the simplest one, and was
developed in [20]. The objective of this robot is to simulate
the behavior of an untrained user trying to segment an image
employing very little effort. Differently from [20], we do not
start from pixels labeled by real users, making our method
completely automatic.

When there are no labeled pixels, as in the first iteration
of an interactive segmentation, the robot creates a list P with
the geodesic center of every region of interest (object and
background), computed from the ground truth. Otherwise, it
computes an image Ê = (DÎ , E), with E(t) = 0 if pixel t
was correctly labeled or E(t) = λ if the correct label for t
is λ. Its objective is to create a list with the geodesic center
of every error component in this image in decreasing order
of minimum distance between such center and the border of
its component, i.e., larger components have higher priority for
labeling.

The robot accomplishes this by using Ê to find every
connected component with the same label through a breadth-
first search. Using the Euclidean Distance Transform [13], it
finds the geodesic center for every component and sorts them
into a list P , in decreasing order of minimum distance to its
border.

Fig. 6. Discs centered on seed pixels generated by the geodesic robot. At
each iteration, indicated by the numbers, the error components are found and
a number (up to a fixed limit) of seeds is chosen in their geodesic centers.

The superpixel robot attempts to mimic an expert on our
superpixel-based segmentation. Firstly, this robot finds super-
pixels on the borders of the ground truth (i.e., adjacent to

superpixels with different ground truth). These superpixels
are sorted in increasing order of minimum distance between
their attribute vectors and the attribute vector of some adjacent
superpixel on the other side of the ground truth border. Finally,
the robot creates the ordered list P containing the geodesic
centers of these superpixels. The idea is that greater similarity
between adjacent superpixels with different ground truths
indicates a higher risk of error for our segmentation method
based on superpixels.

Fig. 7. Discs centered on seed pixels generated by the superpixel robot.
Similar superpixels with different labels have higher priority for labeling.
The numbers indicate the iterations described in the next subsection.

The pixel robot is the automatic expert on pixel-based
segmentation. Its objective is to create seed pixels near pixels
on a ground truth border that have low gradients in the original
image, since these are places where leakages could occur.

The robot begins by computing the gradient-like image Ĝ as
described in Section III-A. Then, a binary image B̂ = (DÎ , B)
is created, with B(t) = 1 if and only if ||t − q|| ≤ α, for a
pixel t ∈ DÎ , a pixel q ∈ DÎ on a ground truth border, and a
parameter α. Intuitively, every pixel located on a ground truth
border is the center of a disc of radius α in B̂.

For every pixel t̂ such that B(t̂) = 1 and t̂ has some
neighbor q̂ with B(q̂) = 0, the robot associates a value
v(t̂) = G(z), where z is the nearest pixel to t̂ that is on a
ground truth border. Intuitively, each pixel on a border of B̂
is associated to the gradient intensity of its nearest pixel on the
border of the ground truth. This is similar to eroding/dilating
the ground truth and associating the gradient value of the
original pixels on the ground truth border to the corresponding
eroded/dilated pixels.

The robot then creates a list P of pixels on the border of B̂,
sorted in increasing order of gradients from their associated
pixels on the ground truth border.

A comparison between the behavior and efficacy of our
robots and real (trained and untrained) users is desirable and
could be explored in future works.

B. Results

We have chosen three datasets to compare the techniques
presented: grabcut [23], [24], geodesic star [25] and Weiz-
mann (single object, first human subject) [26]. These datasets



Fig. 8. Discs centered on seed pixels generated by the pixel robot. Each seed
is associated to the gradient of its nearest pixel in the ground truth border.
Lower gradient indicates higher priority for labeling. The numbers indicate
the iterations described in the next subsection.

contain, respectively, 50, 151 and 100 natural images and their
ground truths.

The experiments were conducted as follows. For a total of i
iterations, given the list P created by a robot and a parameter
n, we chose the first n/2 seeds inside an error component
from the object and n/2 seeds inside an error component from
the background. We correctly label a circular region (marker)
of a given radius around these seeds, adding new seeds to the
next iteration. Note that the seed candidates are generated only
once by the pixel and superpixel robots, in contrast with the
geodesic robot, which needs to compute the geodesic centers
of the error components at each iteration.

Moreover, we consider some constraining details when
drawing markers: if the marker is too near a ground truth
border (as defined by a parameter), its size is reduced. This
is done since the ground truth images are often imperfect
and including markers too near the ground truth border could
create artificial leakages that would not be created by real
users. We also chose not to draw a marker centered on
seed pixels that are already labeled, since that would reduce
disproportionately the total area labeled by the pixel robot.

As in [26], we have chosen the f-score (also known as f-
measure of f1-score) as a measure of efficacy. Given an image
Î and its ground truth, we can define the following sets: true
positives Tp(Î) (set of object pixels correctly labeled in Î), true
negatives Tn(Î) (background pixels correctly labeled), false
positives Fp(Î) (background pixels incorrectly labeled) and
false negatives Fn(Î) (object pixels incorrectly labeled). These
sets allow us to calculate the precision P (Î), recall R(Î) and
f -score F (Î) (see Equation 6).

P (Î) =
|Tp(Î)|

|Tp(Î)|+ |Fp(Î)|

R(Î) =
|Tp(Î)|

|Tp(Î)|+ |Fn(Î)|

F (Î) = 2 · P (Î) ·R(Î)

P (Î) +R(Î)
(6)

For a given image Î , the precision P (Î) can be understood
as the proportion of pixels labeled as objects that were
correctly labeled, while the recall R(Î) is the proportion of
object pixels that were correctly labeled. The f -score is the
harmonic mean between these two measures, combining them
into a single scalar that balances the different types of errors.
Naturally, the f -score lies in the interval [0, 1] and higher
values are desirable.

We have chosen the following parameters for our experi-
ments: for each technique, using each robot, we ran i = 8
iterations, choosing up to n = 8 pixels at each iteration. The
radius of the discs centered on the seeds was five pixels, and
could be reduced to one whenever the seed was too near a
ground-truth border (two pixels from a ground truth border
was considered a safe distance). The superpixel robot had
a volume threshold of 15000. For the pixel robot, we chose
α = 15 (erosion/dilation radius). We removed a total of five
images from the datasets, since they had objects of interest too
small for the pixel robot. Figures 6, 7 and 8 illustrate some
markers created by the robots (for the superpixel segmentation
method) until the fifth iteration. Note that, for that particular
image, markers created by the pixel and superpixel robots
were chosen only up to the second iteration, at which point
there were no longer seed candidates inside error components.
The volume threshold for our superpixel segmentation, which
controls superpixel size, was chosen as 150. However, the
parameter space was not exhaustively searched and each image
domain may benefit from different choices.

The small number of seeds per iteration allows us to see the
quality of the generalizations made by each method. The seeds
created by the superpixel and pixel robots are purposefully
far from the ground truth border to highlight differences in
delineation. The parameters were also chosen to enable for
good convergence and to create interactions (subjectively)
similar to what would be expected from real users. As noted
earlier, empirically establishing these parameters to match real
users should be further explored.

Our results are summarized in Figures 9, 10 and 11.
The graphs display the mean f -score obtained by the two
techniques for every combination of datasets and robots.

It is clear that our technique based on superpixels achieved
higher efficacy (as defined by our measure) in the majority
of cases, most notably on the Weizmann dataset and in the
first iterations. In the few cases where the mean f -score was
lower at some iteration, its results are not considerably inferior.
For the sake of perspective, Figures 12 and 13 illustrate how
meaningful a 9.5% difference in f -score can be.

It is important to emphasize that our superpixel method has
even more advantages, as mentioned in Section III.

V. CONCLUSIONS

In this paper, we have described a new segmentation method
based on superpixels and compared it to its pixel-based coun-
terpart. The experiments conducted showed that our method
is very effective, besides other advantages it has on efficiency
and feature description. We have also described robot users
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Fig. 9. Mean f -score for images in the Weizmann dataset (a) Superpixel Robot (b) Pixel Robot (c) Geodesic Robot
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Fig. 10. Mean f -score for images in the geostar dataset (a) Superpixel Robot (b) Pixel Robot (c) Geodesic Robot
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Fig. 11. Mean f -score for images in the grabcut dataset (a) Superpixel Robot (b) Pixel Robot (c) Geodesic Robot



Fig. 12. Superpixel-based segmentation, f -score: 0.985.

Fig. 13. Pixel-based segmentation, f -score: 0.89. The seeds are the same
as the ones used in Figure 12.

developed to evaluate the presented methods, which we expect
to see used to evaluate other interactive segmentation methods
in the future. Empirically establishing the similarities between
these robots and real users and comparing the efficacy of our
method with other segmentation techniques described in the
literature was left for future works

As highlighted in the appropriate sections, we envision,
as future developments, the study of superpixel descriptors,
multiscale oversegmentation for superpixels with different
labels and the application of the differential IFT [3] to speed
up interactive segmentation.
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