Changing Some Geometric Parameters in Parameterized Ray Tracing

EDUARDO TOLEDO SANTOS

Escola Politécnica da Universidade de Sio Paulo
LSI - Laboratério de Sistemas Integraveis
Div. de Sist. Digitais - Grupo de Computagio Gréfica
Av. Prof. Luciano Gualberto, travessa 3, n.158
05508-900 - Sdo Paulo, SP, Brasil
toledo@lsi.usp.br

Abstract. Parameterized ray tracing is a technique that after the generation of an image by conventional
ray tracing, allows changing the optical parameters of the scene and rendering a new image in a fraction
of the time taken to synthesize the first one. This paper presents an enhancement to this technique that
also enables the modification of two geometric parameters: light source positions and surface normal

vectors (bump mapping).

1. Introduction

After modeling and before rendering, there is an
important step in the production of a computer
animation or of a single image when one chooses the
illumination for the scenery and the colors and textures
of its objects. This task requires some aesthetic sense
and today is still performed on a trial-and-error basis,
demanding some interactivity.

Ray tracing [Whitted (1980)] is the technique of
choice when high-realistic images are desired because
of its ability in generating reflections, shadows and
transparency, including refraction. On the other hand,
it is also one of the most time-consuming image
synthesis methods, making almost impossible the
generation of images at interactive rates.

Introduced in 1989, the parameterized ray tracing
technique [Séquin-Smyrl (1989)] allows one to change
several optical parameters used for rendering a scene
and recompute a new image in much less time than that
required for ray tracing the original one. Among the
parameters that can be modified are surface colors,
diffuse and specular reflection coefficients,
transparency and Phong's shine exponent for each
object in the scene as well as light source colors and
intensities.

Although it speeds up the process of adjusting
some optical characteristics of the objects in a scene,
parameterized ray tracing does not help in choosing the
right place for the light sources, being necessary to fall
back on conventional ray tracing when one needs to
verify where shadows will. be cast if light sources
change positions. The same holds true if objects
change shape or are simply moved. No geometrical
features can be modified in subsequent images.

This paper will present an improved
parameterized ray tracing technique that permits the

motion of light sources and some changes in the
geometrical appearance of objects.

The following sections include a brief overview of
ray tracing and parameterized ray tracing, besides the
description of the new technique along with
suggestions for implementation in both hardware
accelerated and software versions.

2. Ray tracing

Ray tracing is a very elegant and simple algorithm for
the synthesis of realistic images.

In spite of its simplicity, ray tracing has been used
for the generation of the most realistic pictures to date.
Even its basic implementation, introduced in 1980
[Whitted (1980)], enables the creation of images
featuring shadows, recursive reflection, transparency
and refraction. Later enhancements made possible
effects like penumbrae [Cook et al. (1984)], motion
blur, dull reflections and depth of field [Amanatides
(1984)], among others.

The principle of ray tracing is to simulate the
optical geometry involved in tracing some of the light
rays that travel through the scenery space . For the sake
of computational efficiency, ray paths are traced
backwards.

Rays originated at the viewer position are cast
towards each pixel of the image plane (primary rays)
See figure 1.

V: Viewer

P: Pixel

L: Ligh Source

S: Shadow Ray

R: Reflected Rays
T: Transmitted Ray
I: Image Plane

FIG. 1 - Ray Tracing
Anais do VII SIBGRAPI (1994) 249-254

250

Then visibility processing takes place: the
intersection points of a ray with each object in the
scenery are determined and the nearest to its origin is
selected. Several techniques have been proposed to
accelerate this step [Arvo-Kirk (1989)].

For each visible intersection point, an illumination
(or shading) equation must be computed. This equation
usually has the formulation below (figure 2):

I=kg.copj. 3 (-F)cp +ks. T(F-9)V"cp +1, kg + 1 ky +1,
i=Q i=Q '

where:/ intensity of point on the image plane;
k; material diffuse reflection coefficient;
c object color;

obj
Q ’ set of light sources 'seen' by the int. point;
n unit surface normal vector;
l,- unit vector pointing to light source i;
c. light source i intensity;
k, material specular reflection coefficient;
T unit reflection vector;
1 unit view vector;
n exponent representing glossiness;
I intensity of reflected ray;
I, intensity of transmitted ray;
k, material transmission coefficient;
1, intensity of global ambient illumination.

% 1
: v

FIG. 2 - Geometry of illumination equation

The first two terms in this equation account for
local diffuse and specular illumination while the last
three represent the global specular, transmitted and
diffuse illumination components.

Evaluation of the illumination equation requires
determination of the subset () of light sources that
light each intersection point, i.e., that are directly
visible by them. This data can be obtained by tracing
the so called shadow rays from the intersection points
towards the light sources. The -detection of any
intersection with a shadow ray ends its processing,

Anais do VII SIBGRAPI, novembro de 1994

E. T. SANTOS

indicating that there is at least one object that blocks
the light from that source.

The global terms I, and I, are calculated by casting
new rays (called secondary rays) in the reflection and
refraction directions and by recursively applying the
illumination equation until a pre-defined threshold is
reached or the ray leaves the scenery (background
color).

The set of rays generated for the color computation
of a single pixel is called ray tree. The ray tree contains
the intersection points defined by the ray path through
the scenery.

Most of the time spent by the ray tracing algorithm
is used for computing ray-object intersections. [Whitted
(1980)] reported that, for complex scenes, 95% of the
total processing time can be spent in this task
(including primary, secondary and shadow rays).
Therefore, intersection calculation must be accelerated
or eliminated if one wishes to speed up ray tracing.

3. Parameterized ray tracing

Parameterized ray tracing is based on the fact that the
ray paths depend only on the geometric characteristics
and light sources of a scenery and on the viewer
position (with the exception of the index of refraction,
an optical characteristic that can change the direction
of aray).

If the object positions, shapes and sizes, as well as
light source and viewer positions are held unchanged,
then all the costly intersection point and vector
calculations necessary for the illumination equation
evaluation are kept constant. These calculations are
independent of any changes in optical parameters such
as surface colors, glossiness, transparency, diffuse and
specular reflection coefficients, color and intensities of
light sources, color textures, etc. Therefore, one can
change optical parameters at will saving most of the
processing used for ray tracing and shading equation
evaluation.

Changing optical parameters can make the image
of a scene very different from the original. To generate
figure 4 after the synthesis of the image in figure 3 by
ray tracing the following parameters have been
changed:

¢ One more light source was turned on;

e A checker-board pattern was mapped on the
table surface;

¢ The specular reflection coefficient of the teapot
was increased.

CHANGING SOME GEOMETRIC PARAMETERS IN PARAMETRIZED RAY TRACING

FIG. 4 - Image re-evalua'tédhby parametéﬁzed RT

The parameterized ray tracing algorithm stores,
for each pixel in an image, information from all the
nodes of its corresponding ray tree. Geometrical
information is stored as constant values. Optical
parameters are indicated by a reference to the
corresponding object material.

After a scene has been rendered and a ray tree
stored for each pixel, a new image with optical
parameters changed can be obtained simply by re-
evaluating the equations associated to each pixel.

Because neither intersections nor vector operations
have to be recalculated, additional images can be

251

synthesized S0 to 175 times faster than with
conventional ray tracing [Séquin-Smyrl (1989)]. This is
at the expense of using a rather large amount of file
memory (about 10 to 15 times the image file
requirements).

Despite its larger use of memory, the
parameterized ray tracing technique enables the
interactive adjustment of the optical characteristics of a
scene, saving a lot of time and effort normally spent in
this activity.

4. Light source motion

Using the original parameterized ray tracing technique,
one cannot alter the position of the light sources in a
scene because this would change the vectors l—, and
thus, some constant values stored in the ray trees.

Storing the intersection point and surface normal
vector, instead of the calculated local illumination

terms |7 Z and (r'; -i}') for later evaluation, only

partially solves the problem because these terms are to
be added for i over the subset Q which can also vary
with light source motion. This subset could change as
some points, once in shadow, could be exposed to light
and vice versa. If not accounted for, these changes can
render shadows incorrectly, as they will not move in
accordance to the light sources in the scene.

Determining the subset Q by casting shadow rays
should be avoided as this is a very time-consuming
operation eliminated in parameterized ray tracing. A
better solution should be devised.

We propose the adaptation of two ray tracing
acceleration methods that combined can determine
which light sources effectively illuminate each point in
the ray tree, without fully processing shadow rays. This
new technique also preserves one of the advantages of
parameterized ray tracing: not requiring access to
complete geometric model information in the re-
evaluation step.

The mentioned methods are the light buffer and
the item buffer described below.

4.1 The light buffer

The Light Buffer technique [Haines-Greenberg (1986))
accelerates the processing of shadow rays by the use of
a direction cube [Arvo-Kirk (1989)] around each light
source in a scene.

The direction cube is a data structure that can be
represented by a cube centered in the origin of a
coordinate system (figure 5). Its faces are orthogonal to
the main axes and its edges are 2-unit long, ranging
from (-1,-1) to (1,1).

Anais do VII SIBGRAPI, novembro de 1994

252

+Z
P A
A4 L
L L 7 L Z g
L 7 7 Z 27
[T g
%
5
IO 1 L
+Y

+X'/

FIG. 5 - The direction cube

Each of the six faces of the direction cube is
subdivided in cells that contain information.

When used for implementing a light buffer, the
direction cube is centered around a light source and its
cells are filled with lists of objects (polygons). These
lists indicate which objects are projected (even if
partially) onto each cell of the cube, taking the light
source as the center of projection. These lists of objects
are sorted by ascending distance from the light source.
Objects that face away from the light source are not
included in the list.

Testing if a point is in shadow is then a simple
procedure. For a given light source, the direction of the
correspondent shadow ray is calculated. Its intersection
with the direction cube is easily determined and also
the intercepted cell. Only the objects in the list of this
cell are checked for intersection with the shadow ray. If
the only intersection found is in the same object
(polygon) as the point tested, then the point is not in
shadow, in relation to that light source. If the list is
checked in the sorted order, the detection of any object
further than the point being tested ends the procedure
as no other object lasting in the list could block the
light of the source to that point.

Several optimizations to this
reported in [Haines-Greenberg (1986)].

Note that in the original light buffer algorithm,
ray-object intersection calculations are only reduced,
but not eliminated. With the new algorithm, this will be
achieved.

technique are

4.2 The item buffer

The item buffer [Weghorst et al. (1984)] is a technique
devised for accelerating primary rays processing. It
works exactly in the same way as the z-buffer algorithm
but, instead of filling a frame buffer with the color of
the visible object at each pixel, a reference to the
corresponding object is stored at that location. When
processing primary rays, a simple indexing operation
can determine the first intersected object .

Anais do VII SIBGRAPI, novembro de 1994

E. T. SANTOS

4.3 A combined approach

The light buffer algorithm is cost effective even though
the pre-processing involved in filling out the object lists
associated to its cells implies some overhead, specially
if there are many light sources in the scenery. Haines
and Greenberg reported speed-ups ranging from 2.7 to
12.8.

Most of this overhead is due to the clipping,
viewing and perspective transformations. These
operations are nowadays commonly performed by
dedicated hardware in accelerated graphic
workstations.

By combining the light buffer and the item buffer
approaches, we can make use of this graphical
hardware for speeding up shadow testing [Santos,
(1994)], and at the same time do away with the ray-
object intersection calculations.

We can think of each face of a direction cube as an
item buffer by reducing the cell size to a pixel. Each
cell will contain a reference to a single object (the
closer one), or none (background).

The hardware associated with the z-buffer usually
fills a frame buffer with the color of the object projected
over each pixel. Now, we are not interested in the
object colors but in a reference to the object. To achieve
this goal, each object to be processed by the graphics
hardware must be assigned a unique color, its color-id,
as well as the background. As this kind of hardware
often performs color interpolation (Gouraud shading,
for example) this feature should be disabled. If this is
not available as a rendering option (flat shading), the
same result can be obtained by turning off all light
sources or making all the reflection coefficients null but
the ambient light reflection coefficient, depending on
the particular shading equation implemented.

Each face of the direction cubes should be
processed as a frame by the hardware. The viewer
should be located at the light source position. The
image plane corresponds to the directional cube face
being processed. Its cells become pixels.

After this processing, each pixel, or cell, will
contain the color-id of the object projected over it.

The shadow testing becomes even simpler: if the
color-id in the cell pierced by the shadow ray equals
that of the object where the point being tested is, than
the point is not in shadow in respect to that light
source. Otherwise, the point is shadowed.

It is not necessary to calculate intersections
anymore due to the fact that, by reducing the cell size to
a pixel, only one object (or none) covers the whole cell.
Of course this simplification is aliasing prone, but
considering the normal use of parameterized ray
tracing (adjustment of parameters), some aliasing in the
borders of the shadows won't cause much harm. This is
specially true because it is common a full regeneration

CHANGING SOME GEOMETRIC PARAMETERS IN PARAMETRIZED RAY TRACING

of images or animations by conventional ray tracing
after all optical parameters have been set.

As the z-buffer algorithm is very efficient when
implemented in hardware, this technique eliminates the
overhead associated with light buffer processing. For
example, the GTX accelerator for Silicon Graphics
workstations is capable of processing 300.000 polygons
per second, more than enough for real time calculation
of tens of direction cubes, considering usual scenes.

Even if dedicated hardware is not available, a
software implementation of the light buffer algorithm
or the combined technique are efficient methods for
accelerating the determination of the light sources that
do not cast shadows on an intersection point.

The figure 6 shows the same scene pictured at
figure 4 after one light source has been moved to
another position. Note that shadows and highlights as
well as global illumination changed accordingly.

FIG. 6 - Image re-evaluated by the new algorithm

4.4 Drawbacks

Although the combined technique can quickly
determine the subset Q associated to a ray tree node,
light source motion also implies the recalculation of
both dot products of the shading equation.

These computations introduce an overhead not
present in the conventional parameterized ray tracing
technique, that must be paid in order to gain the
benefits of changing the light source positions, a
geometric parameter. We are now investigating the use
of graphical hardware to perform this operation, too.

Another drawback that should be reported is
related to additional memory requirements. If @ is the
number of light sources that light a point (size of the

253

subset), then 2. real constants should be stored (8
bytes each) due to the terms (7i-;) and (7 -7). So, 16

® bytes/node are required in the conventional
technique, plus a control register, indicating which
light sources are in Q.

The new technique requires storing the
intersection point (3 real numbers) and the normal
vector at each ray tree node (3 more real numbers),
requiring 48 bytes/node. So, if there are less than 3
light sources in the scenery, more memory will be
expended by the new algorithm.

One restriction worth to mention is that the
proposed use of a hardware z-buffer requires models
composed only by polygonal patches, limiting one of
the most important advantages of ray tracing, its
capacity of rendering from almost any form of
geometric modeling technique.

5. Bump mapping
We can turn one of the drawbacks mentioned earlier in
an advantage to our technique.

Because the dot products must be recalculated
anyway due to variations in the vectors T, (which also
affect the vectors 7;) we can make a parameter out of
the normal vectors too.

This parameter can be used to implement bump
mapping [Blinn (1978)], a technique used for
generating realistic texture or wrinkles in smooth
surfaces. By parameterizing the normal, besides being
capable of altering one more geometric parameter, we
can save memory, making the requirements reduce to
24 bytes/node.

6. Preliminary results

The images shown in this paper were synthesized with
a software called RTp being developed at LSI-USP.

The original image (fig. 3) took 1684 seconds (=
28 minutes), at 1000x1000 pixels resolution, in a SGI
4D/480VGX super workstation (using only one
processor). The generation of the image in figure 4 took
only 4% of this time.

Figure 7 compares the processing times of
conventional ray tracing, parameterized ray tracing (for
the first image) and image re-evaluation by
parameterized ray tracing. Note that the generation of
the first image by parameterized ray tracing is slightly
slower (7%) than conventional ray tracing because it is
necessary to create and store a parameter file.

Figure 8 shows the processing times of the
proposed algorithm.

Anais do VII SIBGRAPI, novembro de 1994

254

Parameterized and conventional ray

ORT w/o light buffer

8 Param. RT - 1st image]
(w/o light buffer)

W Param. RT - re-
evaluation

FIG. 7 - Conventional algorithms processing times

O Parameter file
generation

@ Re-evaluation w/o light]
buffer

M Re-evaluation (SW
version)

B Re-evaluation (HW
version)

New algorithm
Conventional Ray Tracing = 100%

FIG. 8 - New algorithm processing times

When light buffers are used, 13% of the
conventional ray tracing time is required to generate
the additional images, after the first one. If graphical

hardware is employed, this fraction is reduced to about
7%.

7. Conclusions

We presented a new algorithm that enables the
modification of geometrical parameters in
parameterized ray tracing. With its use, the light
sources can be repositioned in a scene without the
overhead of a full rendering. Also, bump mapped
textures can be modified.

The proposed algorithm takes twice the time of
conventional parameterized ray tracing but is still 14
times faster than a full ray tracing, the only other
alternative if one needs to move a light source and still
keep image quality.

Both surface attribute setting and light source
positioning are iterative tasks that are preferably done
interactively. Although interactive rates couldn't be
achieved yet, efforts are being made towards this goal.

There are several enhancements for reducing the
amount of memory used by the algorithm as well as for
accelerating its execution time by exploring coherence.
We have plans for parallelizing the algorithm and for
using graphical hardware for dot product calculation.

The bump mapping parametrization is under
implementation in the RTp program.

Acknowledgments

I would like to thank the reviewers for their helpful
suggestions and Fernando F. D. Martins for
implementing some of the proposed algorithms.

Anais do VII SIBGRAPI, novembro de 1994

E. T. SANTOS

References

T. Whitted, An improved illumination model for
shaded display, Comm. of the ACM 23 (1980) 343-
349.

C. H. Séquin, E. K. Smyrl, Parameterized ray tracing.
Computer Graphics 23 (1989) 307-314.

R. L. Cook, T. Porter, L. Carpenter, Distributed ray
tracing, Computer Graphics 18 (1984) 137-145.

J. Amanatides, Ray tracing with cones, Computer
Graphics 18 (1984) 129-135.

J. Arvo, D. Kirk, A survey of ray tracing acceleration
techniques, in: An introduction to ray tracing (1989).
A. Glassner (ed.). Academic Press, London.

E. A. Haines, D. P. Greenberg, The light buffer: a
shadow-testing accelerator, IEEE Computer Graphics
and Applications 3 (1986) 6-16.

E. T. Santos, Movimentagdo de fontes de luz em ray
tracing parametrizado, Anais do Congresso
Internacional de Computacao Grdfica (1994),
CICOMGRAF '94, p.18, SOBRACON, Sio Paulo.

H. Weghorst, G. Hooper, D. P. Greenberg, Improved
computational methods for ray tracing, ACM Trans.
on Graphics 3 (1984) 52-69.

J. F. Blinn, Simulation of wrinkled surfaces, Computer
Graphics 12 (1978) 286-292.

CHANGING SOME GEOMETRIC PARAMETERS IN PARAMETRIZED RAY TRACING

Figure 3 Figure 4

Figuras a cores do artigo Changing some geometric parameters in
parameterized raytracing.

Anais do SIBGRAPI VII, novembro de 1994

user
Texto digitado
CHANGING SOME GEOMETRIC PARAMETERS IN PARAMETRIZED RAY TRACING

