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Abstract—Vehicle detection in video is an important problem
in Computer Vision because of the potential applications in
security, vehicle traffic, driving assistance and so on. In this
work, we used Mixture of Deformable Part Models (MDPM)
for vehicle detection in video sequences obtained from static and
dynamic cameras. The MDPM method was originally proposed
by Felzenszwalb et al in the realm of object detection in images.
We tested this method in the realm of video sequences for vehicle
detection. We designed a set of experiments that explore the
number of components of the mixture and the number of parts
model. We performed a comparison study of symmetric and
asymmetric MDPMs for vehicle detection. Our findings show
that not only the MDPM performed well in vehicle detection in
video, but also the best number of components and parts model
confirmed the number suggested in Felzenzwalb et al’s paper.
Finally, the results show some differences between the symmetric
and asymmetric MDPMs in vehicle video detection considering
different scenarios.

Keywords-Mixture of deformable part models; vehicle detec-
tion.

I. INTRODUCTION

Vehicle detection is an important topic of research because
of the several challenges yet to be solved, such as the capa-
bility of detect vehicles in movement, or not, in respect to a
dynamic or static camera. Also, it is part of several real life
applications like driving assistance, security and so on. For
each application, a different and specific solution is usually
expected and applied. This is why the state of the art in vehicle
detection refers to solutions in specific domains.

The literature reports basically two groups of approaches:
(i) model (of a vehicle) based approach, that is initialized
a priori [1], [2], [3], [4], [5], [6]; and (ii) the approaches
that only use information of video sequences, for instance:
background/foreground subtraction or extraction [7], [8], [9],
movement estimation [9], point features [10], [11], Markov
random field [9] and etc. Both groups of approaches can use
2D or 3D information [12], [13], [14], [15].

Model based approaches are usually less subject to class
variability, pose, illumination, occlusion and background vari-
ation [16]. The second group of approaches usually is not
robust to deal with the challenges mentioned above. A recent
model based method is the Mixture of Deformable Part Models
(MDPM) [5]. It was introduced in the context of object detec-
tion in images and it was successfully used in the PASCAL
challenge 2008 [17].

In this work, vehicle detection in videos is done by perform-
ing a matching between a vehicle model based on MDPM
to the features collected, for each frame of the video, by
sliding windows of Histogram Oriented Gradient (HOG). The
principal contributions of this work are: the application of the
MDPM method in the realm of video sequences, the design of
a set of experiments that explore the number of components
and part models in symmetric and asymmetric MDPMs,and a
comparison study of performance of symmetric and asymmet-
ric MDPMs for vehicle detection in video sequences obtained
by static and dynamic cameras. Finally, considering that the
MDPM is built using static images from a image dataset, the
experiments show a considerable diversity of scenes in which
it can be successfully applied.

The following sections discuss related work and give a
general overview of the proposed method. In Section II, an
overview of the MDPM is given. An application of MDPM
for vehicle detection in video is presented in Section III. An
experimental evaluation to explore the number of MDPMs
parameters (mixture components and parts model) and an
evaluation of symmetric and asymmetric MDPMs is discussed
in Section IV. Finally, the directions for future work is given
in the Conclusion (Section V).

A. Related work

Different methods for vehicle detection have been reported
in the literature [16]. Recent literature reports that appearance-
based models achieve good performance in challenging scenar-
ios [18]. These models include edgelets [19], strip features [6],
HOG features [20], [5], [21] and statistical learning of object
parts [22]. A review of recent vision-based on-road vehicle
detection systems, where the camera is mounted on the vehicle
is presented in [23].

Object detection has made successfully use of methods
based on HOG and support vector machines (SVM), intro-
duced by Dalal and Triggs in [20]. One modification of HOG
feature extraction method to treat with sensitive and insensitive
features and the Latent SVM (LSVM) classifier used with
the symmetric MDPM was proposed in [5]. The asymmetric
MDPM case is described in [21].

The Deformable Part Model (DPM) presented by Felzen-
szwalb et al. [5], [21] demonstrates a state-of-the-art perfor-
mance on difficult object detection benchmarks. Variants of it



have been proposed, such as [24], [25], [19] where a technique
has been proposed to modeling the flexibility of objects such
as people, cats and dogs. In some cases, the results obtained
do not present better performance than the results of the state-
of-the-art MDPM.

In respect to the datasets, different sets have been proposed
for learning and evaluation of vehicle detection algorithms
in image dataset. Two examples of such datasets that have
images of cars as an object category are: the PASCAL VOC
challenge [17] and Caltech [26]. One can also find datasets
of vehicles images [18] and videos [27] obtained from urban
surveillance or urban traffic. Finally, it is possible to find
datasets of vehicles videos on the road, considering a dynamic
camera [28]. It is denominated as dynamic camera because of
the video sequences are obtained from a camera equipped in
a vehicle in movement.

B. Technique overview
The approach has two parts: a training and a testing phase.

The training phase refers to the construction of a vehicle model
using the algorithm proposed in [5] and [21] and an image
dataset as data to train it. The vehicle model is the input data
to the testing phase, where the method performs a multi-scale
vehicle detection based on the sliding window technique over
each video frame.

II. MIXTURE OF DEFORMABLE PART MODELS OVERVIEW

In this section, we shortly review the algorithm used to con-
struct MDPMs for the vehicle object. The algorithm basically
consists of a feature extraction step, a model definition and a
classifier induction. One can find a more complete description
in [5], [21].

A. Feature extraction
The feature extraction refers to the 31 HOG features which

are obtained from each image/frame by computing HOGs in
blocks of 8 × 8 pixels. The HOG features include 9 bins
for contrast insensitive characteristics, 18 bins for contrast
sensitive characteristics and 4 texture gradients.

A map of characteristics is defined by the 31 HOG features
computed over a image/frame. A filter is a rectangular template
in a map of characteristics defined by an array of the 31 HOG
features. Two filters, named root and part, are computed on
a map of characteristics pyramid H . The root filter refers to
a coarse representation of a vehicle and the part filter refers
to a finer representation because it is obtained at twice the
resolution of the root filter.

B. MDPM definition
A vehicle class is modeled by a MDPM, where the mixture

is defined by m components (M1, ...,Mm). The model for the
c-th component (Mc) is based in a star model of a pictorial
structure and it is defined by linear filters (root and parts), by
a set of permitted localizations to each part in respect to the
root and by a cost of deformation to each part. Formally, it is
a n+ 2-tuple as defined in 1,

Mc = {F0, (F1, v1, d1), ..., (F1, v1, d1), b}, (1)

where F0 is the root filter, n is the number of parts and b
is a real valued bias term, necessary to make a component
comparable in a MDPM. Each part model is defined by a
3-tuple (Fi, vi, di), where Fi is the i-th part filter, vi is a bi-
dimensional vector which specified the fixed position for part
i relative to the root position, and di is a four dimensional
vector which specify the coefficients of a quadratic function
defining a deformation cost for each placement of the part i
relative to vi.

An object hypothesis hobj specifies a c-th mixture compo-
nent as well as the locations of both the root and part filters
in the feature pyramid. Formally, hobj = (c, p0, ..., pn), where
pi encodes the 2D position and the level in the pyramid H for
the filter i.

The score of a hypothesis, score(hobj), is given by the
scores of the filters at their locations minus a deformation
cost that depends on the relative position of each part with
respect to the root filter, plus the bias, as is shown in 2.

score(hobj) =

n∑
i=0

F ′i .φ(H, pi)−
n∑

i=1

di.φd(dxi, dyi)+b, (2)

where φ(H, pi) is a sub-window in the space-scale pyramid
H with the upper left corner in pi, (dxi, dyi) = (xi, yi) −
(2(x0, y0) + vi) and φd(dxi, dyi) = (dx, dy, dx2, dy2) are
deformation features.

C. Classifier induction

The training data consists of images with labeled bounding
boxes, where a positive example defines a vehicle object and
a negative example is created using random sub-windows of
the images with non vehicle objects. The classifier needs to
learn the model structure, filters and deformations costs. To
the learning process, a latent SVM formulation is used, where
the latent variables are the exact object location in the positive
examples.

Training symmetric MDPM: Training begins by splitting
the positive examples into nc groups of identical size. This
procedure is complex because each group contains examples
grouped based on their bounding boxes aspect ratio. Initialize
the root filter by resizing the positive examples to the average
aspect ratio dimension. Obtain the HOG features and train
the filter using a linear SVM. Combine the root filters into a
mixture without parts and train the model parameters. In this
case, the latent variable is the root filter localization. Next, the
filter parts are initialized to each component using a simple
heuristic and a greedy process. Finally, the mixture is updated
by training it with new data and using hard negatives examples
with a cache.

Fig. 1 shows a symmetric MDPM of 3 components and
6 model parts. Each row represents a component, the first
column shows the root filter (in coarse resolution), the second
column shows the part filters (in finer resolution) and the third
column shows the spatial model for each part, that is black
center is a least cost.



(a) Root filter (b) Part filters (c) Spatial model

Fig. 1: Symmetric MDPM of 3 components and 6 model parts.

Training asymmetric MDPM: The training phase here is
similar to the one exposed before. The difference is that, for
each positive example in a given group, another example is
generated by flipping it vertically. Each group is now clustered
in two subgroups: left view and right view. A cropping and
resizing process is applied to each image before obtaining the
HOG features and the clustering.

The clustering algorithm is a variant of the know k-means
with the restriction that an example and its flipped counterpart
are not in the same cluster. Randomly and repeatedly, an
example and its flipped counterpart are selected and assigned
to a cluster. After all images have been assigned to a cluster,
a local search method is used to improve the clustering.

This local search method is made by repeatedly select
an example and its counterpart and check if swapping their
clusters can reduce the total sum of squared distances (SSD)
from the examples to their assigned center of the cluster. Then,
the next steps are similar to the used in symmetric mixtures.

Fig. 2 shows an asymmetric MDPM of 3 components
and 6 model parts. But the final asymmetric MDPM has
6 components because of the bilateral asymmetry (flipped
counterpart) that allows each component to represent left or
right vehicle poses.

III. MDPM TO VEHICLE DETECTION

The process defined here is to construct the vehicle MDPMs
and detect vehicles objects, i.e., testing phase, in a video
sequence. The first part was obtained following the process
described in the previous section using the annotated image
database. We then use a sliding window technique to detect
vehicles objects over each video frame with the MDPMs. The
system detects vehicles computing a score for each MDPM
and applying a threshold, that was obtained in the training
phase, to the scores obtained in the matching process for each
video frame.

The matching process refers to defining an overall score for
each root location based on best placement of parts. That is,
a high score root locations defined detections. Formally, it is
defined as:

score(p0) = max
p1,...,pn

score(hobj). (3)

(a) Root filter (b) Part filters (c) Spatial model

Fig. 2: Asymmetric MDPM of 3 components and 6 model
parts.

Finally, a post-processing is applied to delete some bound-
ing boxes that are overlapping. Basically, we delete a bounding
box if the overlapping area, ao, of two bounding boxes B1 and
B2 is larger than, or equal, to 0.5 i.e.:

ao =
area(B1 ∩B2)

area(B1 ∪B2)
≥ 0.5. (4)

The principal problem is to find the number of mixture
components and the number of model parts of a MDPM.

The symmetric case, as well as the use of two components
with six model parts, was suggested in [21], a three mixture
components with eight model parts for the asymmetric case
were used. It is worth to note that there is no explanation for
these choices. We present experiments in the Section IV-A that
show the number of components and parts which can be used.

IV. EXPERIMENTAL EVALUATION

To validate our approach using MDPMs, a series of ex-
periments have been done in image and video datasets. The
process is implement and executed in MATLAB R2009b and
C++ in a GNU/Linux operational system.

A. MDPM: number of components and parts model

We proceeded to determined the parameters of the MDPMs
by model selection. For this, we defined MC = {2, 3, 4} to be
the number of mixture components, and MP = {4, 6, 8, 10}
to be the number of model parts. We then build a model for
each combination (MC ×MP ) and tested this model in the
test set of the image dataset.

Dataset: The MDPM is created using the PASCAL VOC
2007 dataset [29]. This dataset is composed of a set of
images, a set of annotations (bounding boxes) and, in addition,
standard procedures for evaluation. The dataset is partitioned
in 50% to train/validation and 50% to test. The PASCAL VOC
2007 dataset (classification/detection task) for the class car has



713 images (1250 objects to train/validate) and 721 images
(1201 objects) to test.

Metric: The metric used to evaluate object detection is
based on the Average Precision (AP) of its precision-recall
curve across a test set. The precision is given by the fraction of
predicted bounding boxes that are correct detections and recall
is the fraction of detections obtained. The objective is to have
a high recall and precision values, that is, values close to 1 in
the range of [0, 1]. Therefore, in practice, for each image, the
predicted bounding boxes are computed and also a confidence
value for the prediction. The predicted bounding boxes are
ordered in respect to the confidence value in a decreasing order
and the precision and recall values are calculated for the first
test image, then for the first two test images and so on until
they are calculated for the entire test set. Finally, the AP is
obtained by 5 where printerp(r̃) is an interpolated precision
that takes the maximum precision over all recalls greater than
r.

AP =
1

11

∑
r∈0,.1,.2,...,1

[
max
r̃:r̃≥r

printerp(r̃)

]
. (5)

A correct detection is a true positive if the overlap area (as)
between the predicted bounding box (Bp) and the annotated
ground truth (Bgt) is more than 50%, as defined in 4, otherwise
it is a false positive. True positive detections can end up being
false positive detections if multiple detections overlap with the
ground truth. In this case, only one of them, the one with the
best confidence, is considered a true positive, the others will
be considered false positives.

For our purposes, two objectives are defined in our exper-
iments: the first is only to apply a detection process (Base)
and the second one is to apply a bounding boxes prediction
process (BB); both are defined in [5].

Results: Table I shows the results obtained for the sym-
metric and asymmetric MDPMs. The titles are self described,
for instance, 2M 4P means 2 components of the mixture and
4 parts of the model. We also have as headers, symmetric
and asymmetric MDPMs, precision, recall and AP for each
objective defined. The overall APs best results were obtained
using a mixture of 3 components and using 6, 8 and 10 parts
which are in bold in the table. We select these three best model
parameters and use them in the detections in the video datasets.

We also compare our best results obtained using PASCAL
VOC 2007 test set in respect to the obtained by the original
work [5], [21] and by the different techniques in the literature
such [30], [31], [32], [33] in the same test set. This is shown
in Table II where we observe that the technique outperforms
other approaches on this kind of data and an equivalent result
that was obtained in the original work.

B. Vehicle detection considering a static camera

The second experiment tests the method on a video dataset
which were obtained considering a static camera. Symmetric
and asymmetric MDPMs of 3 components and 6, 8 and 10
parts are tested in the experiment. Two video datasets that
represent different traffic situations have been selected and the

TABLE I: Precision, recall, AP obtained modifying the sym-
metric and the asymmetric MDPMs parameters.

Base BB
MDPM’s Prec Recall AP Prec Recall AP

Sy
m

m
et

ri
c

2M 4P 0.024 0.668 0.449 0.024 0.669 0.482
2M 6P 0.023 0.664 0.464 0.024 0.679 0.502
2M 8P 0.020 0.671 0.471 0.020 0.674 0.495
2M 10P 0.022 0.651 0.463 0.023 0.667 0.488
3M 4P 0.020 0.677 0.444 0.021 0.689 0.468
3M 6P 0.028 0.657 0.462 0.028 0.670 0.486
3M 8P 0.017 0.678 0.481 0.018 0.690 0.503
3M 10P 0.019 0.684 0.490 0.020 0.702 0.511
4M 4P 0.062 .637 0.458 0.063 0.641 0.486
4M 6P 0.061 .629 0.463 0.063 0.646 0.485
4M 8P 0.051 .655 0.473 0.052 0.667 0.497
4M 10P 0.043 0.655 0.487 0.043 0.666 0.505

A
sy

m
m

et
ri

c

1M 4P 0.020 0.700 0.496 0.021 0.681 0.517
1M 6P 0.025 0.701 0.525 0.027 0.685 0.544
1M 8P 0.022 0.702 0.515 0.023 0.692 0.545
1M 10P 0.022 0.704 0.519 0.023 0.687 0.543
2M 4P 0.020 0.712 0.521 0.022 0.700 0.546
2M 6P 0.029 0.720 0.538 0.030 0.709 0.568
2M 8P 0.032 0.722 0.537 0.034 0.711 0.564
2M 10P 0.035 0.714 0.537 0.036 0.699 0.559
3M 4P 0.028 0.735 0.534 0.029 0.724 0.572
3M 6P 0.033 0.732 0.548 0.035 0.714 0.579
3M 8P 0.035 0.731 0.549 0.037 0.719 0.583
3M 10P 0.048 0.732 0.545 0.050 0.710 0.568
4M 4P 0.033 0.719 0.539 0.035 0.709 0.571

TABLE II: Comparison of the best AP obtained using PAS-
CAL VOC 2007 test set.

Method AP

Symmetric MDPM 0.511
Asymmetric MDPM 0.583
UofCTTIUCI [5] 0.516
UoCTTI [21] 0.596
MKL [30] 0.506
Active Masks [31] 0.540
NUS-Context [32] 0.560
Superposition potential (SP) [33] 0.539
SP+HOG-bundle potentials [33] 0.529

performance of the MDPMs was analysed to detect vehicles
in that situations. Because we do not have the ground truth
of each vehicle in the videos sequences, we show the results
obtained and visually analyse the results.

Dataset 1: The first dataset represents a highway traffic
situation [27]. The frame resolution is 320 x 240 pixels. The
dataset was created with the objective of classify the traffic
as: heavy, medium and light, based on the time or number of
frames in which a specific car appears. The dataset has been
acquired in different weather and times of the day such as:
normal weather, clear and/or sunny day and in a rainy day.

The dataset consists of nine different videos which are
detailed in Table III. They represent the three different classes
in three different situations. For the medium and heavy traffic
class in a rainy day situation, the camera has drops on the
lenses In addition, the area of the road where most of the



TABLE III: The videos from traffic used on the experiments
results.

Class ID Filename Weather Frames

Ligth
V1 cctv052x2004080516x01640 overcast 48
V2 cctv052x2004080613x00015 clear 53
V3 cctv052x2004080606x01821 rain 47

Medium
V4 cctv052x2004080516x01638 overcast 53
V5 cctv052x2004080516x01644 clear 53
V6 cctv052x2004080618x00079 rain 53

Heavy
V7 cctv052x2004080516x01646 overcast 49
V8 cctv052x2004080517x01654 clear 53
V9 cctv052x2004080618x00080 rain 53

Fig. 3: The selected area to apply the detection process.

traffic is presented has been masked to make the detection
process more precise, see Fig.3 where the green bounding box
represents this area.

Figure 4 represents some results for the first dataset. For
each video, the first three columns was obtained using sym-
metric MDPMs and the last three columns using asymmetric
MDPM. We observe that using symmetric MDPMs, in general,
better results were obtained. The description of results is
defined by considering the MDPM that has the least number
of false positives (FP) and also the least number of false
negatives (FN) over all videos. For videos V1 e V2, they
have the least FP and the least FN using a symmetric MDPM
of 3 mixture components and 6 part models (3M 6P). For
videos V4, V8 e V9, they have the least FP and the least
FN using a symmetric MDPM of 3M 10P. For V3, it has the
least FP with an asymmetric MDPM of 3M 10P and least
FN with a symmetric MDPM of 3M 6P but, in general, it has
better results using symmetric MDPM of 3M 6P. For V5, a the
least FP was obtained with an asymmetric MDPM of 3M 6P
and the least FN and in general, better results were obtained
using symmetric MDPM of 3M 6P. For V6 better results were
obtained using symmetric MDPM of 3M 8P and for V7 using
symmetric MDPM of 3M8P. We saw that better results was
obtained using symmetric MDPMs. A possible reason for that
is because the vehicles in the video are in a symmetric view
(i.e. back view).

In respect to the clear day videos, the principal reason
to have more false negative was the shadows generated by
each vehicle, this can be see in the results for the video: V5.

Finally, observing the results, the video where better results
were obtained is V7 using a symmetric MDPM of 3M 8P.

Dataset 2: The second set is represented by video:
AV SS−PV−EV AL.avi from [34]. This video was created
to analyse parked vehicles, therefore there is no bounding box
for each car present in the video sequence. The video has 6586
frames with a resolution of 720 x 576 pixels.

Figure 5 shows some examples of the results obtained for
the second dataset [34]. The results show the bounding boxes
obtained using symmetric (first three columns) and asymmetric
(last three columns) MDPM of 3 components and 6, 8, 10
parts. The frames 2241, 3196, 4241, 5261, 6411 are presented.

We observe that good results were obtained for the different
views of the vehicles that appear in the scene. In some
cases, the vehicles of a side view are better detected with an
asymmetric MDPM (see the second row in Fig. 5). However,
the better results were obtained with symmetric MDPMs. This
suggests that we could consider both types of MDPM, in order
to improve the results.

C. Vehicle detection considering a dynamic camera

In this experiment, we test the method based on MDPM over
the video dataset which were obtained considering a dynamic
camera without any ground plane information.

Dataset: In this case, the video dataset used is [28].
This data was captured by Nico and Kurt Cornelis at KU
Leuven and it is available for non-commercial research use.
The sequence contains 1175 image pairs acquired with a stereo
camera mounted on top of a moving vehicle and recorded
over a distance of approximately 500 meters. Each frame
has a low resolution of 380 x 288 pixels. The dataset have
the annotation of all cars that were within a distance of 50
meters and visible by at least 40-50%, that is, it contains 77
(sufficiently visible) static and 4 moving cars. In addition, the
dataset contains information of the external camera calibration
and ground plane estimated by Structure from Motion [28]. We
select the data generated by the left camera.

Results: The metric used to evaluate detection in video
is the same as used in PASCAL VOC, that is: recall, precision
and average precision (AP). We believe that the PASCAL
metric gives a reliable measure of performance. In addition,
we present the false positive per image (FPPI) measure that is
obtained by the rate of FP/#TotalFrames, where FP are
the false positives.

The results of this experiment are shown in Fig. 6, were
the green bounding boxes represent the ground truth and red
bounding boxes the detections, and in Fig. 7. As one can see
from the plot, detection reaches a level of about 40.24% recall
and 1.88 false positives per image (FPPI) at this level of recall
using an asymmetric MDPM of 3 mixture components and 8
parts model. While in [14], it reaches a recall of 50% and
yields 1.3 FPPI at this level of recall and in the most recent
experiment showed in [13] it yields with 4 FPPI also at 50%
of recall without using ground plane information.

We observe that the technique has equivalent results as the
one obtained in [13], [14], even considering that we are not
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Fig. 4: Examples of results for videos of the class LIGHT: (a)V1, (b)V2, MEDIUM: (c)V5, (d)V6 and HEAVY: (e)V7, (f)V8,
(g)V9; using symmetric (first three columns) and asymmetric (last three columns) MDPM.

consider the ground plane and camera information. We believe
that with this information, we can get better results, i.e., less
false positives. In respect to the false positives, we observe
that there are bad detections such as windows of buildings
and also because of the technique detect little cars that do not
have ground truth, the authors define the ground truth only
to the cars that are at a specific distance from the camera
position.

V. CONCLUSION

In this paper we presented a vehicle detection approach in
videos using MDPM obtained from image datasets. Several

experiments have been made and we even confirmed the
number of mixtures and part models suggested by Felzenzwalb
et al.

The method proposed by Felzenszwalb et al has been tested
to different video sequences and the results are good mainly
considering that the models have been created by images
and the low quality of some of the video sequences (of
the static camera). It is important to notice that we do not
separate the images by their view, i.e. left, right, rear, to
train the MDPMs. This could be interesting to obtain a more
discriminative MDPM but we did not explored this approach
in this paper. Considering the high intraclass-view variability



3M6P 3M8P 3M10P 3M6P 3M8P 3M10P

Fig. 5: Examples of results using symmetric (first three columns) and asymmetric (last three columns) MDPM of 3 components
and 6, 8, 10 parts using o AVSS video [34].
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Fig. 7: Results over symmetric and asymmetric MDPMs of 3 components and 6, 8, 10 parts model. The left plot shows the
Precision vs Recall curve and AP value. The right plot shows the Recall vs False Positive Per Image (FPPI).

of PASCAL dataset, this must have affected negatively the
performance [35].

For the case of video sequences obtained from a dynamic
camera, the results obtained are comparable to [13], [14], in
some cases with less false positives per images. We plan to

extend the application to this video sequence but considering
the camera and ground plane information in future work.
Future work could includes also the combination of both
types of MDPM in order to improve the performance of the
detections as was discussed before. We also plan to reduce the



Fig. 6: Examples of results over [28] using an asymmetric
MDPM of 3 components and 8 parts.

size of part filters and consequently increment their number in
the model in order to avoid consider the background as part
of the foreground.
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