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Fig. 1. From left to right: original image, saliency map, candidate regions in the saliency map. A very usual approach to search for an image object is
sliding window, which performs a dense search in image space. By using a multi-scale saliency map, we are able to tease out image regions which are
likely unnecessary for object search when sliding image windows. After that, a detector can be attached to only selected regions, allowing faster object
detectors.

Abstract—Accuracy in image object detection has been usually
achieved at the expense of much computational load. Therefore
a trade-off between detection performance and fast execution
commonly represents the ultimate goal of an object detector in
real life applications. In this present work, we propose a novel
method toward that goal. The proposed method was grounded
on a multi-scale spectral residual (MSR) analysis for saliency
detection. Compared to a regular sliding window search over the
images, in our experiments, MSR was able to reduce by 75% (in
average) the number of windows to be evaluated by an object
detector. The proposed method was thoroughly evaluated over a
subset of LabelMe dataset (person images), improving detection
performance in most cases.
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I. INTRODUCTION

Image object localization has been reaching remarkable
results in real life applications. However, the more accurate
is the method, the heavier it is with respect to computational
cost. Achieving the best trade-off between detection perfor-
mance and computational cost usually represents a challenging
task. Indeed, in many practical situations, object detection
requires on-the-fly execution in order to be feasible in practice.
Among these time-critical tasks, there are: perception for
driver assistance [1], video traffic analysis [2] and surveillance
systems [3]. If we still consider the current availability of high
resolution images, which demands additional processing time,
the mentioned trade-off presents an even bigger challenge.

To cope with the aforementioned trade-off problem, many
methods have been proposed. Zhu et al. [4] and Viola and
Jones [5] have developed rejection cascades, reducing the time
required to detect non-objects. These works were based on the
so called sliding window search. Toward methods to avoid or
to reduce the overhead of a dense search, saliency detectors
have demonstrated promising results. As saliency detectors are
able to locate regions of interest in images, they can be used in
a broad spectrum of applications – from thumbnail generation
[6] to semantic colorization [7]. Examples of such saliency
methods are found in [8], which uses statistical properties
of natural scenes to select regions of interest, and also in
[9] based on the computation of saliency inspired on the
pre-attentive phase of human visual system, responsible for
drawing attention to specific parts of the visual stimuli.

The positive traits of saliency methods on search space
reduction allowed Ip et al. [10] to make a saliency analysis
in very large images in order to assist human visualization
by means of possible regions of interest (ROI). ROI are
found through a difference of Gaussians at multiple image
scales1. Likewise, Rutishauser et al. [11] proposed an object
recognition (among grocery items) based on the saliency
method found in [9] and a scale invariant feature transform
(SIFT) keypoint detector [12]. First, the saliency method is
applied to determine the most likely areas to have an object;
instead of thresholding the saliency map generated in the first

1Throughout the text, the words ‘octave’ and ‘scale’ are used interchange-
ably.



step, a region growing segmentation defines the best object
hypothesis; at the end, image object silhouette is delineated
by means of the keypoints detected over the salient areas.
Feng et al. [13] address the problem of object detection using
a sliding window over an image, specifying each window
saliency as the cost of composing it with remaining parts of
the image; therefore the image is segmented into regions based
on similarity; the difference between regions is calculated over
LAB histograms and spatial distances; these features are then
used to select the most differentiated windows which hopefully
present the most salient objects.

On the reduction of image search space, Lampert et al. [14]
propose the use of a branch-and-bound optimization applied
on the score of the classifier, which is used to separate input
space. The method was called Efficient Subwindow Search
(ESS). The target function is subjected to maximize the clas-
sification score whereas minimizing the number of windows
evaluated by a detector. In its original form, that method only
detects one object per image, but it can be modified to search
for multiple objects. ESS effectively reduces the number of
evaluated windows over the image in contrast to regular sliding
window based detectors [5], [15], [16].

Following all these ideas, the multi-scale spectral residue
(MSR) analysis aims to speed up sliding window-based object
detection by spectral residual analysis on multiple scales. Our
method relies on a sliding window approach based on the
image saliency with the goal of assigning a score to each
window before object detection stage (see Fig. ). Although
Feng et al. [13] also assign a saliency score to each window,
our approach has some important differences. MSR computes
an image-wise saliency following the rationale in [8], in a
more flexible way, allowing saliency detection in the original
image aspect ratio. Additionally, we explore properties of the
frequency domain to extract interesting regions in contrast
to the use of spatial properties such as composability of
segments. MSR differs from ESS in the requirements and
methodology. ESS avoids a dense detector search by using an
optimization method that requires a linear classifier and local
image descriptors such as [12]. MSR does not impose such
constraints, and can be used on most sliding window based
detectors by relying solely on an object saliency. Our approach
also avoids assumptions about an object shape to reduce the
search space, as such, it does not attempt to segment an object
based on salient locations, as in Rutishauser et al. [11]; instead,
MSR indicates regions of interest and relies on a classifier
for actual object detection and localization. Recent solutions
of rejection cascades [4] [5] in a sliding window search can
easily be integrated to MSR. This latter can be combined with
MSR in order to achieve faster processing time.

This work is structured as follows: an overview of saliency
detection methods is given in Section II. Section III describes
MSR and a methodology to evaluate the impact of window
selection on detector performance. In Section IV, the MSR
is compared to other saliency methods, and its runtime and
detection performance are measured over a person dataset.
Finally, overall conclusions are drawn in Section V.
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Fig. 2. Overview of MSR. For each octave of the original image, the saliency
map is computed, and a sliding window is applied on the saliency map.
Candidate windows are selected according to their scores given by a quality
function. Finally, an object detector is applied only in the candidate windows.

Contributions: Our contribution resides in a novel
method, called MSR, with the aim of achieving a better trade-
off between the number of windows selected to be evaluated
by a detector, and the number of miss detections. MSR has
demonstrated an average reduction of 75% of windows to be
evaluated, while keeping or improving detection performance.

A. Proposed method at a glance

When performing a dense search for an object, only a
small subset of the image might contain objects. However,
sliding window based detectors are only able to provide image
object localization after running a classification function over
each window on multiple orientations and octaves (scales).
For that, the use of a full-fledged object detector implies
an expensive operation, requiring preprocessing, feature ex-
traction and classification. In order to reduce the number of
windows which will be evaluated by a detector, we propose
a bottom-up saliency approach to select windows of interest
before running the detector in each window. Although MSR
has been motivated by [8], it was conceived to overcome some
limitations of that method when used on uncontrolled scenes.
These improvements are listed below:

1) resizing each image octave by a constant resizing factor
– 15% of its size, instead of making assumptions about
object scale by using a fixed image size for saliency
detection. This change allows search of salient objects
at multiple scales;

2) choice of threshold k for region selection is not depen-
dent on each image saliency map, but on a constant
global value based on a trade-off between selected
regions and false negatives (FN) in the classification.
In [8], the threshold is calculated as k = 3 ·E(S(x)), or
three times the mean saliency map S(x) intensity. How-



ever, this latter formulation incorrectly regards objects
in cluttered images (many objects) as non-salient.

3) saliency quality in a region is calculated from a window-
wise saliency mean, instead of using pixel values indi-
vidually as in [8], allowing detection of entire objects
even when their saliency is non-uniform along its length.

Instead of relying on the object detector to choose the most
likely image region to contain an object (just after obtaining
the saliency map), windows are slid over an integral saliency
space. This latter step corresponds to computing the integral
image of the pixels in the saliency space in the same way
as Viola and Jones [5]. After that, a quality function f(·) is
applied at each window w, providing a score. The score of
a given window is calculated using the mean of its saliency
intensity, and a window is selected if its score is greater than
or equal to a threshold k. A higher k selects smaller number
of windows, while potentially missing more true positive (TP)
detections in the further steps of the method. Conversely, as
value of k gets lower, MSR approaches to a method based
on regular sliding window search. An overview of MSR
mechanism for window selection is summarized in Fig. 2.

II. OVERVIEW OF SALIENCY DETECTION APPROACHES

An object draws more attention when it has a strong contrast
in relation to its neighbourhood, objects such as traffic signs or
a stop light were created to explore this property in order to be
perceived faster than surrounding objects. While an attention
mechanism can help a person focus on specific objects in a
scene, in a similar way, an algorithm capable of detecting
salient objects in images must search for characteristics such
as visual uniqueness, rarity and unpredictability [17]. This is
so in order to correctly highlight image regions which demand
extra attention. Following these ideas, we briefly summarize
some of saliency detectors:

Itti’s method (IT): Among the first salient methods, a
biologically inspired approach was developed by Itti et al.
[9]. In that approach, saliency of a given pixel is calculated
based on its uniqueness in relation to local surroundings.
Uniqueness is defined on the analysis of color, intensity and
orientation over multiple scales. After that, these features are
then normalized and combined in a way where channels with
larger contrasts are preferred.

Graph based (GB) visual saliency: Similarly to Itti,
Harel et al. [18] form activation maps from particular fea-
ture channels, and normalize them to better highlight salient
regions.

Frequency tuned (FT) saliency region detection: Instead
of using local information to define the saliency, Achanta et al.
[19] define saliency of a pixel as its distance from the image
pixel mean on LAB space, formally represented as

Sa(x, y) = ||Iπ − I(x, y)||2 , (1)

where Iπ is the mean image feature vector, I(x, y) is the
original pixel value, || · ||2 represents an L2 norm where each
pixel is a feature vector of type [L, a, b].

Luminance contrast (LC): Also using global contrast,
Zhai and Shah [20] developed a method for pixel-level saliency
detection using the contrast of a pixel with respect to the others
in a scene. It is given by

Sz(Ik) =
∑
∀Ii∈I

||Ik − Ii|| , (2)

where Ii and Ik are pixels in the image and || · || represents
the Euclidean distance.

Spectral residual (SR): Similar to global methods, fre-
quency based approaches also explore properties of the entire
image. Hou and Zhang [8] used these properties based on
1/f ’s law, which states that an ensemble of images on the
Fourier Spectrum obeys the distribution

E{A(f)} ∝ 1/f , (3)

where A(f) is the amplitude averaged over orientations, and f
is a given spectrum in the frequency domain. Whilst objects do
not follow properties of natural scenes, detection of potential
salient points is based on finding statistical singularities on the
spectrum of an image. These singularities are called spectral
residues.

III. PRUNING WINDOWS BY MULTI-SCALE SPECTRAL
RESIDUE

Saliency detectors are able to associate a degree of local or
global uniqueness for each image pixel (or group of pixels).
This information is useful to help pruning undesired windows.
In this regard, during a search for objects via sliding windows,
the capability to choose whether a detector will evaluate a
particular window or ignore it (based on its object likelihood)
can bring benefits to speed up the classification task in further
steps.

Saliency detectors face additional complexities when deal-
ing with uncontrolled scenes, such as variations in object
(color, size, illumination and noise). Particularly, it is note-
worthy that spectral residual (SR) analysis [8] is susceptible
to those factors when selecting image ROI, since an object
may have intense intra-variability. To avoid that, in MSR,
saliency is measured in a per-window basis, and the saliency of
a window is defined as the mean intensity of its salient pixels,
enabling higher resilience to variability of salient pixels.

Another limitation of SR in the context of aiding object
detectors is its threshold for region selection, defined as
k = 3 ∗ E(S(x)) where E(S(x)) denotes the mean value
of the saliency map and k the threshold. Such scheme expects
that images have but a small number of salient regions. If
it is not the case, that method potentially excludes important
objects because of the high lower bound. Given that situation,
we define the threshold k as a constant value throughout the
entire collection of images, representing an average trade-off
between the number of selected windows and false negatives
(FN) caused by window selection.

From the aforementioned improvements, summarized on
Fig. 3, the underlying concepts required for multi-scale anal-
ysis have been conceived in Section III-A.



Fig. 3. Comparison between SR and MSR. From left to right: the original image, SR saliency map, region selection using SR formulation in original image,
and MSR window selection at a particular octave.

(a) SR with image at 15% of its size

(b) SR with image at 7% of its size

Fig. 4. Differences in saliency at multiple scales. In 4a, SR was calculated
in 15% of the original image size, generating strong reactions on mostly
small objects; in 4b, using 7% of the original image size, bigger objects were
also selected. The image reduction examples demonstrate how the image size
influences on the scale of saliency detection, which will be tuned to best select
objects in a given octave.

A. Multi-scaling the spectral residue

Most saliency methods are able to detect objects of different
sizes. Methods such as [9] and [18] make direct use of
feature analysis at multiple image scales to achieve that result.
In contrast, SR searches objects at a single scale, which is
specified based on a estimation of common object sizes over
normal visual conditions [8]. For that, SR cannot be used
in an uncontrolled multi-scale environment, as the saliency
detector will not search for objects at the same scale as the
object detector. Because of that, it was necessary to establish
a connection between the search scale of the object detector
and the saliency detector.

The scale of salient objects in SR is implicitly defined by
the image size. Therefore smaller objects are more salient on
bigger images, because the smaller an image gets, the bigger
are the objects that become salient, as depicted on Fig. 4. In
this case, searching for salient objects with various sizes has a
strong relation to how a sliding-window based object detector

searches for bigger objects in an image using a fixed size
window. This search is accomplished by resizing an image
at a fixed compound rate, such as Ii+1 = R(Ii, s), where R
represents the resize function, Ii denotes the i-th image octave
and s the resizing factor; the detector thus slides the detection
window over each octave i.

As we focus on detection of saliency and objects within
the same search scale, using a fixed-size window, we may
conclude that from a particular octave Ii, there is a constant
resizing factor β capable of adjusting the two detectors to
the same scale. Given a value of β, saliency detection will be
executed on each octave i over a reduced image, R(Ii, β), with
its color histogram normalized. This histogram normalization
is applied to increase object contrast, enhancing the overall
saliency of the object against the scene. Another practical
use of further resizing the image using β is to reduce the
computational load of saliency calculation. Defining a specific
value for β will depend on factors such as: object of interest,
scale of search and saliency detector. A β value of 0.15 was
chosen based on experimental data. The choice of this value
is discussed in detail in Section III-C.

After obtaining the image octaves, and consequently the
generated saliency maps for each octave, a quality value f(w)
for each window w was calculated from its mean saliency
intensity. To speed up mean computation, the quality value
f(w) is calculated after computing the integral image of the
saliency map (having then mean calculation with constant time
complexity).

B. Determining the quality function threshold

Proper evaluation of window selection impact on perfor-
mance was done by means of an analysis of the window
selection rate (WSR) and saliency false negative rate (SFNR).
WSR denotes the number of windows selected for further
processing, while SFNR represents how many objects the
detector failed to recognize after MSR pruning.

Both WSR and SFNR depend on a threshold k which
represents a minimum score for a window to be selected for
actual object detection. Thus, given that W is the set of all
windows generated from sliding on the entire collection of
images at every scale and M the set of all objects of interest
from this same collection of images, we can calculate the
trade-off between WSRk and SFNRk in a five-step process.
First, we define the set of selected windows Sk as



Sk = {w ∈ W | f(w) ≥ k} , (4)

where f(w) is the quality value of a window w and k is the
threshold for window selection. Given Sk, it is possible to
calculate the window selection rate with

WSRk =
n(Sk)

n(W )
, (5)

where n(·) denotes cardinality of a set. To calculate the
SFNRk one should enumerate for each object j ∈ M the
number of windows in which the object was correctly matched,
given by

Ck,j = {w ∈ Sk | o(w) = j} , (6)

where o(w) is a function that, in case an object exists at
window w, and this is correctly classified by a detector, returns
the matched object from set M ; otherwise o(w) returns any
element /∈ M. From that, its trivial to find the set of objects
detected, Fk, defined as

Fk = {j ∈ M | n(Ck,j) ≥ 1} . (7)

Finally, in order to calculate how many miss detections were
caused by the saliency (SFNR), we use

SFNRk =
n(Fkmin)− n(Fk)

n(Fkmin)
, (8)

where kmin is the minimum threshold value, which guarantees
Skmin = W . Thus, to generate a full trade-off curve, this
process is repeated for each k ∈ K where K is the set of
unique window scores.

C. Parameter choice

The proper choice of value for β will change according
to the scale and characteristics of a given object. For person
detection, the best value for β was found to be 0.15. This
was achieved over the LabelMe [21] dataset for persons (see
Section IV-A for more detail). Figure 5 shows the trade-off of
WSR and SFNR for different values of β.

A possible consideration is to use the parameter β only in
the original image (full resolution). It would save processing
time dedicated for calculation of the saliency at each scale.
However, multi-scale methods had dominant superior perfor-
mance in our tests, as can be noted in Fig. 6.

Henceforth, to facilitate result analysis, we focus on the
operating points of 20% and 30% of WSR. The choice of
these operating points intends to evaluate a preferable runtime
performance (20% of WSR) in spite of detection performance,
or to keep detection performance (30% of WSR) with accept-
able speed gains.
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Fig. 5. Trade-off curve for person detection using different β values. When
the curve is closer to the origin it is better.
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Fig. 6. Comparison between multi-scale analysis and using the same saliency
map for all scales. Methods presented are MSR and LC [20]. When the curve
is closer to the origin it is better.

IV. EXPERIMENTAL EVALUATION

A. Methodology

Evaluation of MSR was accomplished by a four-step analy-
sis: (i) comparing the detection performance considering sev-
eral saliency detection methods using the same sliding window
parametrization in a multi-scale analysis; (ii) analysing MSR
scalability with respect to detection, i.e., how it behaves on
different image resolutions; (iii) how MSR affects a detector
receiver operating characteristic (ROC) curve with respect to
a regular sliding window, and, finally, (iv) impact on detection
runtime speed with different parameters.

To standardize comparisons, a set of 330 images was
extracted from the LabelMe [21] dataset. Image sizes range
from 320 by 240 to 2592 by 1944. Additionally, the dataset
encompasses several environments, including city, snow, forest
and river, where each scene contains at least one person.

For all analyses using the aforementioned dataset, a com-



TABLE I
SFNR FOR EACH METHOD AT 20% OF WSR

β

Method 0.15 0.25 0.50 1.00

MSR 08.73% 11.38% 17.99% 17.99%
LC 93.92% 93.92% 94.18% 94.43%
FT 87.83% 82.54% 76.46% 77.25%
GB - - - 47.09%
IT - - - 38.89%

bination of histogram of oriented gradients (HOG) [16] and
Support Vector Machine (SVM) was used as the method
to classify persons. The rationale of using HOG/SVM was
not only because it is a state-of-the-art detector, but also
to facilitate comparison with other future search reduction
methods, since its source code is publicly available. Our
HOG/SVM detector was trained using a person dataset distinct
from the one created with images from LabelMe. Addtionally,
for the sliding window, the detector was set up with window
size of 64 by 128 pixels, a stride of 8 pixels horizontal-wise,
and 16 pixels vertical-wise, and image resizing rate of 0.96,
for each octave.

It is noteworthy that, for analysis (i), two state-of-the-art
saliency methods have not been included – [22] and [23].
The former, because the saliency detection is concentrated
mostly on images with a single and clear salient object;
the latter, because of its very slow runtime speed. In (ii),
we examine how MSR performance changes over different
image resolutions and how each image octave contributes to
its results. This experiment is important to considering recent
increases in availability of high resolution images. In (iii), we
built a ROC curve to show the effects of MSR on a person
detector at different WSR configurations in comparison to a
normal sliding window. Finally, in (iv), we evaluate if the
number of windows discarded before detection is sufficient
to compensate for the additional processing required by MSR.

B. Comparison of saliency methods in a multi-scale structure

A comparison of MSR against other state-of-the-art methods
in the same multi-scale structure is presented in Fig. 7. As the
results represent only the best configuration of each method,
a more detailed information is organized on Table I and II.

In these experiments, both IT [9] and GB [18] were only
evaluated using the original octave size, with no β scaling,
as these methods already perform analysis at multiple scales
internally. We also did not compare MSR with the original SR
[8] since the latter one was designed to operate on a single
image size.

The results indicate that MSR achieved superior perfor-
mance on almost the entire trade-off curve. In addition, SFNR
at 20% and 30% of WSR were at least ten times better when
compared to other methods. Yet, at 50% of WSR, the SFNR is
close to zero (less than 0.3%), which indicates that a detector
could process images twice as fast with a negligible loss in
TP.
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TABLE II
SFNR FOR EACH METHOD AT 30% OF WSR

β

Method 0.15 0.25 0.50 1.00

MSR 02.91% 02.64% 06.08% 05.55%
LC 86.24% 86.24% 85.98% 87.04%
FT 70.37% 64.29% 59.79% 62.69%
GB - - - 33.86%
IT - - - 23.81%

The MSR and IT methods had the best overall trade-off
between WSR and SFNR. Both SR and IT were among the
worst on recent evaluation of general purpose saliency detec-
tion found in [17]. Some possible causes of this discrepancy
are:

1) saliency detection is done in a single scale in [17], while
in our tests the saliency was recalculated at every octave.
This provided a better performance for most methods;

2) differences in scene selection. The dataset used in [17]
was gathered by [19] with images containing mostly
uncluttered objects and natural background. In our tests,
images were extracted from LabelMe [21], wherein the
images contain a wide range of locations and varying
degrees of clutter;

3) little background information on some images (large
objects).

C. Scalability

We compare how well MSR can select image windows
at different starting image resolutions in Fig. 8. From this
information, we can conclude that increasing image size allows
for an even better trade-off between SFNR and WSR.

To further confirm the scalability of MSR on larger res-
olutions, we compare its ability to eliminate windows at a
fixed threshold in several octaves in Fig. 9, showing that
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Fig. 9. Relation between number of windows at each image size and number
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larger size images contribute for better WSR. In this test,
the number of windows in each octave is calculated with
1 + [(wi − ww)/sh] ∗ [(hi − hw)/sv], where wi and hi are
the image width and height, respectively, ww and hw are the
window width and height, sh is the horizontal stride and sv
is the vertical stride.

D. Detection performance

Comparison between an object detector with and without
MSR is presented on Fig. 10. In the tests, MSR at 20% of WSR
provided greater TPR than regular sliding window within the
range of 0 and 1.48 of FPPI. At 30% of WSR and within its
range of 0 and 1.98 of FPPI, our method also obtained larger
TPR than a regular sliding window approach. The maximum
TPR of a regular sliding window is 0.71, while for MSR at
30% of WSR the maximum is 0.69. Even though the difference
was small to match the actual maximum TPR of a regular
sliding window, MSR operated at least on 50% of WSR, which
still represents a twice as fast image processing with only a
negligible performance loss (less than 0.3%).

Detection Performance on LabelMe
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Fig. 10. ROC curve showing differences between person detection perfor-
mance using a regular sliding window and MSR. Both methods use the same
HOG+SVM detector.

Some examples of positive and negative results at 30% of
WSR can be found, respectively, on Fig. 11 and Fig. 12.

E. Runtime performance

In order to evaluate MSR runtime speed, a comparison was
performed with the traditional sliding window HOG detector.
We summarized the results on Table III. Time was calculated
as the proportion of the total detection time for a specific WSR
value of a regular sliding window execution.

Expected gain, considering elimination of 80% and 70%
of windows to be classified, was 5x and 3.3x. However, the
results demonstrated that for both 19.9% and 29.6% of SWR2,
the actual runtime speed gain was smaller then 4.8x and
3.2x. This indicates that MSR window selection mechanism
imposed only a small processing overhead for each window,
which was compensated by the large number of windows
discarded.

TABLE III
RUNTIME SPEED PROPORTION FOR EACH METHOD

Method WSR Total Time
Proportion

Avg. Time Propor-
tion Per Window

Regular Slide 100% 1.0000 1.0000
MSR β = 0.15 19.9% 0.1932 0.1996
MSR β = 0.15 29.6% 0.2852 0.2994

V. CONCLUSION

This work presented a method to speed up sliding window-
based object detectors by multi-scale spectral residual analysis,
named MSR. This way, MSR avoids using a full-fledged object
detector on windows unlikely to contain objects, speeding up
detection. In our experiments, MSR was able to provide better
or similar detection performance, and faster detection with
scalability to increasing image resolutions. Furthermore, our

2The closest thresholds to 20% and 30% of SWR, respectively. Equivalent
to 80% and 70% of window elimination.



Fig. 11. MSR positive results at 30% of WSR after non-max suppression. Blue rectangles indicate avoided false positives (improving performance); TP are
marked with green.

Fig. 12. MSR negative results at 30% of WSR after non-max suppression. Yellow rectangles indicate FN caused by MSR (affecting performance); blue
rectangles indicate avoided false positives (improving performance); TP are marked with green, while red rectangles are FP.

choice for spectral residual analysis has demonstrated compar-
atively better results on the task of faster object detection than
other state-of-the-art saliency methods. Although the initial
goal was of faster execution, we plan to modify MSR to take
object-specific spectral information into account in order to
improve even more detection performance.
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