
Design of Statistically Optimal Stack Filters

N. S. T. Hirata1, J. Barrera1, E. R. Dougherty2

1 Instituto de Matem�atica e Estat��stica { USP
Rua do Mat~ao, 1010 , 05508-900 S~ao Paulo - SP - Brasil

<nina,jb>@ime.usp.br
2 Department of Electrical Engineering { Texas A & M University

214 Wisenbaker Engineering Research Center
College Station { TX { 77843-3407, US

edward@ee.tamu.edu

Abstract. Any gray-scale image can be represented as a \stack" of a decreasing sequence of binary
images, obtained by thresholding the gray-scale image at each level. Stack �lters are a special class
of gray-scale image operators whose �ltered images can be represented as the stack of binary images
resulting of applying an increasing binary operator for each image of the stack. A classical example of
stack �lter is the median �lter: the median of a gray-scale image is the same as the sum of the binary
median computed for each of the binary images in the stack. Thus, the design of stack �lters can be
reduced to the design of the binary operators that characterize them. This paper reviews stack �lters
in the context of mathematical morphology on discrete images, and shows that the problem of designing
optimal mean-absolute error (MAE) stack �lters is an optimization problem equivalent to the design of
optimal MAE binary increasing operators. A new combinatorial algorithm for designing binary increasing
operators is applied on the design of stack �lters for impulse and speckle noise reduction.

1 Introduction

Systematic and automatic design of image operators is
an important requirement for many application �elds
that deal with digital images. In recent years, some ef-
forts have contributed to the development of automatic
methods for designing translation invariant morpholog-
ical operators that depend on an observation window
W (i.e., W -operators) [1, 2]. These methods consist
usually of machine-learning based approaches, where
training images are used for the estimation of a W -
operator with best performance according to some er-
ror criterion [1]. However, the optimization over the
entire class of W -operators, for large windows, is com-
putationally hard due to the size of this space. For a
window of size n, there are exactly 2(2

n) possible binary
W -operators. Another diÆculty is related to the preci-
sion of the estimated operators [3]. For large windows,
the amount of data needed for good estimations is so
large that often it is impossible to obtain an operator
with an acceptable precision.

One of the possible approaches to deal with these
diÆculties is the reduction of the search space. This
can be achieved, for instance, by imposing that the
operators must satisfy some algebraic property. The
class of increasingW -operators have been largely stud-
ied due to its relatively simple representation, implying
also implementation simplicity. The authors have pro-

posed recently a new algorithm for the design of binary
increasing W -operators, based on switching of the op-
timal operator in such a way to generate an increasing
operator [4].

The design of operators for gray-scale images is
much harder, because the number of possible gray-scale
W -operators is k(k

n), where k is the number of im-
age gray-scales. There exists, however, a special class
of gray-scale W -operators that can be represented in
terms of their corresponding binaryW -operators, such
as the median �lter. The median [5] of a gray-scale im-
age is equal to the sum of the binary median applied to
each of the binary images that are obtained by thresh-
olding the gray-scale image at each level. The class
of gray-scaleW -operators having the above character-
istic form the class of stack �lters [6]. In fact, stack
�lters are characterized by positive Boolean functions
(or equivalently, increasing binaryW -operators). Con-
sequently, an algorithm for the design of increasing bi-
nary operators may be useful for designing stack �lters.

This paper reviews the class of stack �lters in the
context of mathematical morphology and discrete im-
ages (i.e., with discrete domain and range), and shows
how the problem of designing optimal MAE stack �l-
ters can be viewed as a problem of designing optimal
MAE increasing binaryW -operators. In particular, we
show the use of the switching algorithm for this pur-

pose.
Following this introduction, section 2 presents the

class of stack �lters and shows their correspondence to
the class of positive Boolean functions. Section 3 re-
views the representation of stack �lters in terms of ero-
sions. Section 4 discusses the notion of optimal stack
�lters relative to the MAE criterion, and de�nes an op-
timization problem in terms of the probabilities of the
random sets associated to each of the threshold levels.
Section 5 presents a review of the switching algorithm
that may be used to solve the optimization problem
stated on section 4. Section 6 discusses estimation,
from training images, of the costs needed for the ap-
plication of the switching algorithm for the design of
stack �lters. Section 7 presents examples of stack �l-
ter application for impulse and speckle noise �ltering.
Complete proofs for propositions stated without proof
can be found in [7].

2 Stack Filters

Let E = Z2 andK = f0; 1; : : : ; kg, where k is a positive
integer. A function f from E to K is a gray-scale
image. The set of all gray-scale images is denoted by
KE . For any f; g 2 KE , f � g , f(x) � g(x);8x 2 E.

Let P(E) denote the power set of E. The image
threshold at level t 2 K is a mapping Tt from KE to
P(E), given by, for any f 2 KE and t 2 K,

Tt[f] = fx 2 E : f(x) � tg : (1)

The set Tt[f] is called the cross-section of f at level t.
The value threshold of an element in K at level t 2 K
is a mapping from K to f0; 1g, given by, for any v 2 K
and t 2 K,

Tt(v) = 1, v � t : (2)

Note that Tt[f] denotes a subset of E, while Tt(v) de-
notes a binary value.

Proposition 2.1 Let t1; t2 2 K and f 2 KE. If t1 �
t2, then Tt2 [f] � Tt1 [f].

Proposition 2.2 Given f; g 2 KE, f � g , Tt[f] �
Tt[g];8t 2 K.

A binary image is an element of f0; 1gE. Each bi-
nary image de�nes a unique subset of E and vice-versa.
Given a binary image f 2 f0; 1gE, the corresponding
subset is T1[f]. Given a subset S � E, the correspond-
ing binary image is the function 1S given by, for any
x 2 E,

1S(x) = 1, x 2 S : (3)

One can verify that, for any f 2 f0; 1gE and X � E,
1T1[f] = f and T1[1X] = X . Moreover, X � Y ,
1X � 1Y .

If S1; S2; : : : ; Sm is a sequence of m subsets of E,
we say that it obeys the stacking property if

Sm � : : : � S2 � S1 : (4)

The cross sections Tt[f], t 2 K, form a sequence of
subsets characterizing binary images. Any gray-scale
image f 2 KE can be represented as the sum of a
sequence of binary images, i.e., for any x 2 E,

f(x) =

kX
t=1

1Tt[f](x) : (5)

Moreover, since the cross-sections of f obey the stack-
ing property (Proposition 2.1), it is also true that

f(x) = maxft 2 K : x 2 Tt[f]g : (6)

Formulas 1, 3 to 6, and Proposition 2.1 and 2.2 are also
valid when E is changed by a �nite subset W � E.

From now on, we consider a �nite subset W � E,
W = fw1; w2; : : : ; wng, called window. The set of func-
tions from W to K is denoted KW . The translation
of X � E by a vector z 2 E is denoted Xz and de-
�ned by Xz = fx + z : x 2 Xg. The restriction of
f 2 KE to Wx de�nes a function f jWx in KW given
by (f jWx)(w) = f(x+w), for any w 2W . The trans-
lation of f by a vector z 2 E is denoted fz and de�ned
by, 8x 2 E, fz(x) = f(x� z).

An image operator 	 : KE ! KE is :

� translation-invariant (t.i.) if and only if (i�), for
any f 2 KE and z 2 E,

	(fz) = [(f)]z (7)

� locally de�ned (l.d.) within W i�, for any f 2 KE

and x 2 E,
	(f)(x) = 	(g)(x) (8)

for any g 2 KE such that f jWx = gjWx.

� increasing i�, for any f; g 2 KE, if f � g, then
	(f) � 	(g).

An image operator 	 : KE ! KE is aW -operator
i� it is both t.i. and l.d. A W -operator 	 : KE ! KE

can be uniquely characterized by a function : KW !
K [8], i.e., for any x 2 E and f 2 KE ,

	(f)(x) = (f jWx) : (9)

Given an image operator 	 : KE ! KE, let
~	 : P(E) ! P(E) be the binary image operator (also
called set operator) de�ned by, for any X 2 P(E),

~	(X) = T1[(1X)] : (10)

Similarly, given : KW ! K, let ~ : P(W) !
f0; 1g be the Boolean function de�ned by, for any X 2
P(W),

~ (X) = minf1; (1X jW)g : (11)

De�nition 2.1 An image operator 	 : KE ! KE is
a stack �lter i�
1. 	 is a W -operator
2. 	 commutes with threshold, i.e., for any t 2 K and
f 2 KW ,

Tt((f)) = ~ (Tt[f]) : (12)

Proposition 2.3 If 	 : KE ! KE is a stack �lter,
then and 	 are increasing (see [9] for a proof.)

Proposition 2.4 The set of stack �lters and the set
of positive (i.e., increasing) Boolean functions are iso-
morphic.

Proof : First, we will de�ne two mappings, � from the
set of positive Boolean functions to the set of stack
�lters, and � from the set of stack �lters to the set of
positive Boolean functions (see also Fig. 1). Second,
we will show that they de�ne a lattice isomorphism.

For any positive Boolean function ~�, f 2 KE and
x 2 E, let

�
�(~�)(f)

�
(x) = a(~�)(f jWx) (13)

where, for any g 2 KW ,

a(~�)(g) = maxft 2 K : ~�(Tt[g]) = 1g : (14)

For any stack �lter 	 (with respective character-
istic function) and X �W , let

�()(X) = ~ (X) : (15)

Positive Boolean
functions

Stack �lters

~�

�

�

�(~�)

	�()

Figure 1: Isomorphism between positive Boolean func-
tions and stack �lters.

a) �(~�) is a W -operator by construction. We show
that it commutes with threshold too. First, we show

that the Boolean function ~a(~�) corresponding to a(~�)
is ~� itself. For any X 2 P(W),

~a(~�)(X) =
(1)
= minf1; a(~�)(1X jW)g
(2)
= minf1;maxft 2 K : ~�(Tt[1X jW]) = 1g

(3)
=

8<
:

1; if ~�(;) = 1,

0; if ~�(W) = 0,
~�(T1[1X jW]); otherwise.

(4)
=

8<
:

1; if ~�(;) = 1,

0; if ~�(W) = 0,
~�(X); otherwise.

(5)
= ~�(X)

Equality (1) follows from Eq. 11, (2) from Eq. 14, (3)
from the fact that Tt[1X jW] = ; for any t � 2, and
(4) from the fact that T1[1X jW] = X . Hence, for any
g 2 KW and t 2 K,

Tt(a(~�)(g)) = 1,
(1), a(~�)(g) � t
(2), maxfi 2 K : ~�(Ti[g]) = 1g � t
(3), maxfi 2 K : ~a(~�)(Ti[g]) = 1g � t
(4), ~a(~�)(Tt[g]) = 1

Equivalence (1) follows from Eq. 2, (2) from Eq. 14,
(3) from the fact that ~a(~�) = ~�, and (4) from Eq. 14.
b) We show that �() is a positive Boolean function.
Let X;Y �W . If X � Y , then

�()(X)
(1)
= minf1; (1X jW)g
(2)� minf1; (1Y jW)g
(3)
= �()(Y)

Equalities (1) and (3) follow from Eq. 15 and 11, and
(2) from the fact that is increasing (Proposition 2.3)
and X � Y , 1X jW � 1Y jW .
c) The mappings � and � de�ne a bijection. On one
hand, �(�()) = 	 for any stack �lter 	, as shown
below.�

�(�())(f)
�
(x) =

(1)
= maxft 2 K : �()(Tt[f jWx]) = 1g
(2)
= maxft 2 K : minf1; (1Tt[f jWx])g = 1g
(3)
= maxft 2 K : (1Tt[f jWx]) � 1g
(4)
= maxft 2 K : T1((1Tt[f jWx])) = 1g
(5)
= maxft 2 k : ~ (T1[1Tt[f jWx]]) = 1g

(6)
= maxft 2 K : ~ (Tt[f jWx]) = 1g
(7)
= maxft 2 K : Tt((f jWx)) = 1g
(8)
= (f jWx)

= 	(f)(x)

Equality (1) follows from Eq. 13 and 14, (2) from Eq. 15,
(3) from property ofmin, (4) because T1(v) = 1, v �
1, (5) and (7) because commutes with threshold, (6)
because T1[1X] = X ; and (8) from Eq. 6 for values.

On the other hand, �(�(~�)) = ~�, for any positive
Boolean function ~�, as shown below.

�(�(~�))(X) =
(1)
= minf1; a(~�)(1X jW)g
(2)
= minf1;maxft 2 K : ~�(Tt[1X jW]) = 1gg

(3)
=

8<
:

1; if ~�(;) = 1,

0; if ~�(W) = 0,
~�(T1[1X jW])); otherwise.

= ~�(X)

Equality (1) follows from Eq. 15 and the fact that a(~�)
is the function that characterizes �(~�), (2) from Eq. 13
and 14, and (3) from the fact that T1[1X jW] = X .
d) The proof that � and � preserve the partial order
relation follows directly from their de�nition. 2

Proposition 2.4 means that each stack �lter is
uniquely characterized by a positive Boolean func-
tion and, conversely, each positive Boolean function
uniquely characterizes a stack �lter. The mappings �
and � show, respectively, how to build the stack �lter
corresponding to a given positive Boolean function and
how to build a positive Boolean function corresponding
to a given stack �lter.

3 Representation of stack �lters

In this section, we show that stack �lters can be repre-
sented as a maximum of erosions by
at structuring el-
ements. Moreover, given the minimal sum of products
decomposition of the Boolean function that character-
izes the stack �lter, we show how to determine these
structuring elements.

De�nition 3.1 Let B � E, B �nite. The mapping
EB : KE ! KE given by, for any f 2 KE and x 2 E,

EB(f)(x) = "B(f jWx) (16)

where, for any g 2 KW ,

"B(g) = minfg(y) : y 2 Bg (17)

is called the erosion of f by the set B.

If B � W , then EB is a W -operator. The set
operator corresponding to EB is the mapping ~EB :
P(E)! P(E), given by

x 2 ~EB(X), EB(1X)(x) = 1 : (18)

The Boolean function ~"B corresponding to "B is
given by, for any X �W ,

~"B(X) = 1, "B(1X jW) = 1, B � X (19)

Proposition 3.1 The erosion operator de�ned by
Eq. 16 commutes with threshold.

De�nition 3.2 The kernel of a binary W -operator ~	,
with characteristic function ~ , is given by

K(~) = fX 2 P(W) : ~ (X) = 1g (20)

De�nition 3.3 The basis of an increasing binary W -
operator ~	 is denoted B(~) and de�ned as the set of
minimal elements of K(~) (i.e., if X 2 B(~), then
X 0 � X implies X 0 = X, for all X 0 2 K(~)).

A mapping ~ : P(W)! f0; 1g is a Boolean func-
tion on n variables x1; x2; : : : ; xn. The value of ~
for a given input X 2 P(W) is computed by mak-
ing xi = 1 , wi 2 X , for all i 2 f1; 2; : : : ; ng, and
evaluating the logical expression representing ~ .

It is well known that positive Boolean functions
can be represented as a logical sum of products, where
no complemented variable appears. More speci�cally,

~ =
X
j2J

mj (21)

where J is a set of indices,
P

represents a logical sum,
and the terms mj : P(W) ! f0; 1g are prime impli-

cants of ~ . Each of the prime implicants is a product
term with no complemented variable

mj =
Y
i2Ij

xi; Ij � f1; 2; : : : ; ng (22)

Hence, mj(X) = 1 , (wi 2 X;8i 2 Ij). If we de�ne
Bj = fwi : i 2 Ijg, then mj(X) = 1 , Bj � X .
Hence, mj(X) = 1, ~"Bj

(X) = 1.

Proposition 3.2 If ~ : P(W) ! f0; 1g is a positive
Boolean function, then, for any X 2 P(W),

~ (X) = maxf~"B(X) : B 2 B(~)g : (23)

Proof : From the discussion above, any positive
Boolean function can be expressed in terms of a set
of binary erosions. We just need to show that the set

fBj : j 2 Jg (which corresponds to the set of all prime

implicants of ~) and B(~) are the same.
Let B 2 B(~). Since B(~) � K(~), we must

have ~ (B) = 1. Hence, there exists j 2 J such that
mj(B) = 1, what means that Bj � B. We can not

have Bj � B because B is a minimal element in K(~).
Hence, B = Bj , j 2 J , i.e., B 2 fBj : j 2 Jg. On the
other hand, let Bi 2 fBj : j 2 Jg. Since mi(Bi) = 1,

it follows that ~ (Bi) = 1, and therefore Bi 2 K(~).
Then, there exists B 2 B(~) such that B � Bi, but
we can not have B � Bi because that would imply
that mi is not a prime implicant of ~ . Hence, Bi = B,
B 2 B(~). 2

Proposition 3.3 If 	 : KE ! KE is a stack �lter,
then, for any x 2 E and f 2 KE,

	(f)(x) = maxf"B(f jWx) : B 2 B(~)g (24)

Proof : Since 	(f)(x) = (f jWx), 8f 2 KE and x 2
E, we just need to show that

 (f jWx) = maxf"B(f jWx) : B 2 B(~)g
In fact, 8g 2 KW ,

 (g) =
(1)
= maxfy 2 K : Ty((g)) = 1g
(2)
= maxfy 2 K : ~ (Ty[g]) = 1g
(3)
= maxfy 2 K : maxf~"B(Ty[g]) : B 2 B(~)g = 1g
(4)
= maxfy 2 K : maxfTy("B(g)) : B 2 B(~)g = 1g
= maxfmaxfy 2 K : Ty("B(g)) = 1g : B 2 B(~)g
(5)
= maxfmaxfy 2 K : "B(g) � yg : B 2 B(~)g
= maxf"B(g) : B 2 B(~)g

Equality (1) follows from Eq. 6, (2) because com-
mutes with threshold, (3) from Proposition 3.2, (4)
from Proposition 3.1, and (5) from Eq. 2. 2

4 Optimal stack �lters

The optimal stack �lter is one that, among all stack
�lters, minimizes some error criterion. The mean-
absolute-error (MAE) criterion has been largely used
since it has the nice property that the MAE of a stack
�lter 	 is the sum of the MAE of its corresponding
Boolean function over all the cross sections [10].

Let f be an image to be �ltered and f0 be its
respective ideal image. The MAE of a stack �lter 	 is
given by

MAEh	i = E
h
jf0(z)� (f jWz)j

i
: (25)

The MAE of the corresponding positive Boolean func-
tion ~ at level i is given by

MAEih ~ i = E
h
jTi(f0(z))� ~ (Ti[f jWz])j

i
: (26)

Proposition 4.1 Let 	 be a stack �lter and ~ the cor-
responding positive Boolean function. The following
equality is true (see [10] for a proof.)

MAEh	i =
kX
t=1

MAEth ~ i (27)

If f and f0 are jointly stationary, then the value
Tt(f0(z)) can be regarded as a random realization of
a binary random variable ~Y and the set Tt[f jWz] as
a random realization of a random set ~X. Let Pi(x) =
Pi(~X = x) denote the probability of ~X = x at level
i, and Pi(yjx) = Pi(~Y = yj ~X = x) the conditional
probability of ~Y = y given that ~X = x at level i,
where x 2 P(W) and y 2 f0; 1g. Hence, Eq. 26 can be
rewritten as

MAEih ~ i =
X
x

Pi(x)
X
y

jy � ~ (x)jPi(yjx) : (28)

By expanding Eq. 27, we obtain

MAEh	i = (29)

=

kX
i=1

X
x

Pi(x)
X
y

jy � ~ (x)jPi(yjx)

=
X
x

kX
i=1

Pi(x)
X
y

jy � ~ (x)jPi(yjx) :

Hence, minimization of Eq. 25 is equivalent to min-
imization of Eq. 29. However, no simple solution to
this problem is known. The diÆcult lies on the fact
that ~ must be increasing, meaning that the terms
Mx(~) =

Pk
i=1 Pi(x)

P
y jy � ~ (x)jPi(yjx) can not be

minimized independently; if ~ (x) is set to 1, then ~ (y)
for any y > x must be also set to 1. Conversely, if ~ (x)
is set to 0, then ~ (y) for any y < x must be also set to
0.

Let M(~) =
Pk
i=1MAEih ~ i. If we consider

the problem of determining a (not necessarily posi-
tive) Boolean function that minimizes M , then M is
minimized when Mx is minimized for each x. Since
y 2 f0; 1g,

Mx(~) =

kX
i=1

Pi(x) ~ (x)Pi(0jx)

+

kX
i=1

Pi(x) (1� ~ (x))Pi(1jx) :

If we set ~ (x) = 0 then the error incurred by this

choice is c0(x) =
Pk
i=1 Pi(x)Pi(1jx). On the other

hand, if we set ~ (x) = 1 then the error incurred by this

choice is c1(x) =
Pk
i=1 Pi(x)Pi(0jx). Hence, M(~) is

minimized by the following Boolean function :

~ opt(x) =

�
1; if c0(x) > c1(x),
0; if c0(x) � c1(x).

(30)

Note that, the Boolean function given by Eq. 30 may
not be positive.

Given a Boolean function ~ , the di�erence

�M (~ ; ~ opt) =M(~)�M(~ opt) (31)

is called the error increase of ~ in relation to ~ opt. The

amount that x contributes to �M (~ ; ~ opt) is given by

Æ(x) =Mx(~)�Mx(~ opt)

= c1(x)[~ (x)� ~ opt(x)] + c0(x)[~ opt(x)� ~ (x)]

=

8>>>>>><
>>>>>>:

c1(x)� c0(x);

if ~ opt(x) = 0 and ~ (x) = 1,
c0(x)� c1(x);

if ~ opt(x) = 1 and ~ (x) = 0,
0;

if ~ opt(x) = ~ (x).

Hence, �nding a positive Boolean function that
minimizes Eq. 25 is equivalent to �nding a positive
Boolean function ~ that minimizes �M (~ ; ~ opt) =P

x: ~ opt(x)6= ~ (x) c(x), where
~ opt is given by Eq. 30 and

the costs c(x) are given by, for any x 2 P(W),

c(x) =

�
c1(x)� c0(x); if ~ opt(x) = 0,

c0(x)� c1(x); if ~ opt(x) = 1.
(32)

Note that, if ~ is increasing, then M(~) = MAEh	i,
where 	 is the stack �lter corresponding to ~ .

5 Optimal increasing set operators

Let X be a random set whose realizations are elements
of P(W) and Y be a random variable taking values in
f0; 1g, and suppose (X;Y) is a jointly stationary pro-
cess. An optimal set operator opt, relative to some
error criterion M , is a mapping : P(W) ! f0; 1g
that minimizes the expected value E[dM ((X); Y)] =
M(), where dM ((X); Y) is the function that mea-
sures the di�erence between (X) and Y with relation
to M . For instance, dMAE((X); Y) = j (X)� Y j.

Since opt has the smallest errorM among all set
W -operators, any W -operator has a nonnegative er-
ror increase with relation to the error of opt, which is

given by

�M (; opt) =M()�M(opt) (33)

An optimal increasing set W -operator is one that,
among all increasing set W -operators, possesses the
smallest error M . Hence, an optimal increasing W -
operator is one that, among all increasing operators,
possesses the smallest error increase with relation to
 opt.

Let c(x) be the switching cost (i.e., the amount
x contributes to the increase of �M) if the value of
 opt(x) is switched (from 1 to 0 or from 0 to 1). For the
particular case where the error criterion is the MAE,
the switching cost is given by c(x) = j2 px � 1jP (x),
where px = P (Y = 1jX = x) and P (x) = P (X = x)
(see [4]). For the stack �lters, costs are given by Eq. 32.

In the remaining of this section, an algorithm, to
be called switching algorithm, that, given an optimal
operator opt and switching costs c(x), computes an
increasing operator that minimizes �M (; opt), will
be presented.

Let h0i = fx 2 P(W) : (x) = 0g be the 0-set
of , and h1i = fx 2 P(W) : (x) = 1g be the 1-set
of . For any W -operator , its inversion set, to be
denoted by Q , is the set consisting of all 1-set ele-
ments having at least one 0-set element above them,
and all 0-set elements having at least one 1-set element
beneath them (with relation to the set inclusion �).
is increasing if and only if Q = ;. Hence, an increas-
ing operator can be obtained from a W -operator by
switching the value of for some elements of Q , un-
til the inversion set of the resulting operator becomes
empty.

Given A � P(W), let A h1i = A \ h1i and
A h0i = A \ h0i. If A � Q denote the set of el-
ements where will be switched, then the resulting
operator (from the switchings) is denoted A and given
by, for any x 2 P(W),

 A(x) =

�
1; if x 2 (h1i nA h1i) [A h0i
0; if x 2 (h0i nA h0i) [A h1i (34)

We are interested only on sets A that produce increas-
ing operators. Such sets will be called switching sets .

In particular, if a switching set for opt is chosen in
such a way to minimize the error increase �M (; opt),
then the resulting operator is an optimal increasing
operator. Switching opt by a switching set A yields
an increasing operator optA with error increase

�M (optA; opt) =
X
x2A

c(x) (35)

From now on, we will consider the inversion set
Q, switching costs c(x), 1-set and 0-set relative to an

operator opt, without explicitly using the subscripts
 opt.

A valid partition of Q is an ordered pair (L;U)
such that L [U = Q, L \ U = ;, and no element
of L lies above any element of U (or equivalently, no
element of U lies beneath any element of L). The sets L
and U are called lower and upper sets of the partition,
respectively.

The problem of �nding a switching set that min-
imizes Eq. 35 can be modeled as a problem of �nding
a binary partition of Q. More speci�cally, let A � Q

be a switching set, and (L;U) be a valid partition of
Q. If we let LA = (Qh0i nAh0i) [Ah1i, UA = (Qh1i n
Ah1i)[Ah0i, and A(L;U) = (L\Qh1i)[(U\Qh0i), then
(LA; UA) is a valid partition of Q, A(L;U) is a switch-
ing set, A(LA;UA) = A, and (LA(L;U)

; UA(L;U)
) = (L;U),

which means that switching sets are equivalent to valid
partitions.

Because of this equivalence between switching sets
and valid partitions, given a switching set A, the error
increase of optA (Eq. 35) can be rewritten in terms of
the corresponding valid partition (LA; UA) as

~�(LA; UA) =
X

x2UAh0i

c(x) +
X

x2LAh1i

c(x) (36)

i.e., ~�(LA; UA) = �M (optA; opt). The valid parti-

tion of Q that minimizes ~� is an optimal partition of
Q.

If just a small part of Q is analyzed at a time, it
may be possible to decide in which side of the optimal
partition it should belong. This idea is exploited by
the switching algorithm to build the partition by pro-
gressively removing small subsets from the inversion
set.

To simplify the presentation, for any Z � Q, let
!(Z) =

P
x2Zh0i c(x) �

P
x2Zh1i c(x). Feasible sets,

de�ned as follows, form a key element of the algorithm.

De�nition 5.1 Let FU be the class of non-empty sub-
sets F of Q satisfying
1. (Q n F; F) is a valid partition of Q, and
2. !(F) < 0.
A subset F 2 FU is U-feasible if and only if F is min-
imal in FU relative to �.
De�nition 5.2 Let FL be the class of non-empty sub-
sets F of Q satisfying
1. (F;Q n F) is a valid partition of Q, and
2. !(F) � 0.
A subset F 2 FL is L-feasible if and only if F is min-
imal in FL relative to �.

For convenience, (;; ;) is considered a valid and
optimal partition of ;. To refer to U - or L-feasible

sets, without explicit distinction, we will simply use
the term \feasible sets".

Theorem 5.1 Let F be a feasible set of Q, and
(L0; U 0) be an optimal partition of Q n F . Then,
(a) if F is U-feasible then (L0; U 0 [F) is an optimal
partition of Q, and
(b) if F is L-feasible then (L0 [F;U 0) is an optimal
partition of Q.
(see [4] for a proof.)

It can be shown that an inversion set always con-
tains at least one feasible set. The switching algorithm
(Algorithm 5.1) starts with empty upper and lower
sets, and then sequentially removes feasible sets from
the remaining inversion set to one of the sides of the
partition being built. Since it is a greedy algorithm,
once a subset is removed, it will never be put back into
Q.

Algorithm 5.1

1. Set U ; and L ;.

2. If Q is empty, then return (L;U) and exit.

3. Search for a feasible set F in Q. If F is U -feasible,
then do U U [F ; if F is L-feasible, then do
L L [F . Do Q Q n F and return to step 2.

More details and a proof that this algorithm works
is given in [4]. A key point to understand this algo-
rithm is to observe that when a feasible set is moved
from the inversion set to one of the sides of the parti-
tion being built, the switchings implied by this moving
do not a�ect other elements in the remaining inversion
set.

An eÆcient implementation of the algorithm needs
to �nd feasible sets quickly. Due to the minimality con-
dition of feasible sets, the algorithm needs to make sure
that no proper subset of the set to be tested is a feasible
set. Hence, the search procedure may �rst check sub-
sets with one minimal/maximal element that do not
contain proper subsets not tested yet. In sequence,
it may check subsets with two minimal/maximal ele-
ments that do not contain proper subsets not tested
yet, and so on.

In general, feasible sets have few minimal / max-
imal elements and therefore the search need not go
through all possibilities. However, it is possible that
at some instance of the problem all feasible sets are
very large. In such a case, the algorithm will need to
test a large number of subsets before being able to �nd
a feasible set, a critical situation in terms of processing
time.

This situation can be avoided by using a relaxed
de�nition of feasible sets, m-feasible sets, which allows

at most m minimal/maximal elements in the set.
If only m-feasible sets are searched, the search

procedure described previously needs to consider only
subsets with up to m minimal/maximal elements, and
therefore the processing time can be controlled by
changing the value of m. However, this relaxation may
introduce suboptimality, meaning that the result may
be non-optimal, although, conceptually, it is always
possible to choose a suÆciently large m to produce an
optimal result.

Due to the relaxation, there is no guarantee that
a feasible set will be always found. Hence, step 3 of
Algorithm 5.1 must be changed to treat cases where a
feasible set is not found, as follows :

Algorithm 5.2

30. Search for an m-feasible set F in Q.

� If F is found, and if it is U -m-feasible, then
do U U [F ; if F is L-m-feasible, then do
L L [F . Do Q Q n F .

� If F is not found, compute ~�(Q; ;) and
~�(;; Q). If ~�(Q; ;) � ~�(;; Q) then do
L L [Q, otherwise do U U [Q. Do
Q ;.

Return to step 2.

Once an optimal partition (L;U) is computed, the
corresponding switching set A(L;U) can be computed.
The optimal increasing set operator is the one whose
basis consists of all minimal elements of optAh1i (the
1-set of the resulting increasing operator.)

6 Designing Stack Filters

From the results of section 4 and 5, by computing the
costs (Eq. 32) for the elements in the inversion set of
 opt (Eq. 30), the switching algorithm can be directly
applied for the computation of a positive Boolean func-
tion corresponding to an optimal stack �lter.

However, in practice, the probabilities needed for
the computation of the costs are not available. Usually,
they are estimated from sample images. Let

� Ni be the number of observations in the cross sec-
tions at level i

� Ni(x) be the number of times x is observed in the
cross sections at level i

� Ni(x; 1) be the number of times x is observed in
the cross sections at level i with y = 1

� Ni(x; 0) be the number of times x is observed in
the cross sections at level i with y = 0

The probabilities Pi(x), Pi(1jx) and Pi(0jx) are usually
estimated, respectively, by P̂i(x) = Ni(x)

Ni
, P̂i(1jx) =

Ni(x;1)
Ni(x)

and P̂i(0jx) = Ni(x;0)
Ni(x)

.

We show that, the estimation of the optimal
operator and costs can be easily computed. Us-
ing the estimators above, an estimator ̂opt for the
optimal Boolean function is obtained by replacing
the probabilities of Eq. 30 by the respective estima-
tors. Letting ĉ1(x) =

Pk
i=1 P̂i(x)P̂i(0jx) and ĉ0(x) =Pk

i=1 P̂i(x)P̂i(1jx), we obtain

 ̂opt(x) =

�
1; if ĉ0(x) > ĉ1(x),
0; if ĉ0(x) � ĉ1(x).

: (37)

Similarly, an estimator for the cost of Eq. 32 is given
by

ĉ(x) =

�
ĉ1(x)� ĉ0(x); if ̂opt(x) = 0,

ĉ0(x)� ĉ1(x); if ̂opt(x) = 1
(38)

If Ni = N for all i 2 K, N being a positive integer
(which is the case when we consider the cross sections

of a gray-scale image), then both ̂opt and ĉ(x) can be
simpli�ed, respectively, to

 ̂opt(x) =

�
1; if

P
Ni(x; 0) >

P
Ni(x; 1),

0; if
P
Ni(x; 0) �

P
Ni(x; 1).

(39)

and

ĉ(x) =

�
1
N
[
P

Ni(x; 0)�
P

Ni(x; 1)]; if ̂opt(x) = 0,
1
N
[
P

Ni(x; 1)�
P

Ni(x; 0)]; if ̂opt(x) = 1.
(40)

Hence, there is no need to estimate the probabilities
for each of the cross sections.

7 Experimental Results

This section presents some applications of stack �l-
ters, designed using the switching algorithm proposed
in section 5 and cost estimation discussed in section
6. After a �lter 	1 is designed from training images f
and f0 (where f is the image to be �ltered and f0 is
the respective ideal image), a second �lter 	2 can be
designed using 	1(f) and f0 as the training images.
This procedure can be repeated several times, that is,
	n can be designed using 	n�1(: : : (1(f)) : : :) and f0
as the training images. The �lter 	n is called an n-
iteration �lter. The experiments were performed on a
dual Pentium Pro 200 MHz processor.

7.1 Impulse noise removal

The noise to be �ltered consists of a composition of
two-side impulse (uniformly distributed with probabil-
ity of occurrence of 10%, and with amplitude 200) plus

horizontal dropout noise (i.e., horizontal line segments
of intensity 255 with probability of occurrence 0:35%,
whose length follows a normal distribution with mean
5 and variance 49). Figure 2 shows the observed-ideal
pair of images used for the training of a stack �lter
over a 17-point window, and Fig. 3 shows an image
corrupted by a realization of the same noise process
(MAE=13:2344), and the respective �ltered image by
the designed �lter (MAE = 1:4053). The training time
was about 7 minutes.

Figure 2: Training images.

Figure 3: Test and output images.

7.2 Speckle �ltering

Speckle is a noise that appears in images obtained by
coherent imaging systems such as the synthetic aper-
ture radar (SAR) technologies [11, 12].

Here we show the use of stack �lters for simu-
lated speckle noise removing. Figure 4 shows, respec-
tively, an image with 6 stripes with increasing gray-
scale, a simulated 4-look amplitude SAR image, and
the results obtained by a 1-iteration and 5-iteration
stack �lters over a 21-point window, trained using an-
other simulation of the same type of noise. The MAE

of the speckled image, 1-iteration and 5-iteration �l-
tered images are, respectively, 16:752882, 4:9392, and
2:5917. The average speckle reduction index E(�),

where � =

p
V ar((f)(x))

E((f)(x)) , over the 6 homogeneous re-

gions is 0:2622 for the original speckled image, 0:07968
for the 1-iteration and 0:04326 for the 5-iteration �l-
tered images. The training time was about 2 hours
for the �rst iteration, and a couple of minutes for the
subsequent iterations.

Figure 4: Ideal, test and output images.

Figure 5 shows, respectively, a synthetic image,
a simulation of 1-look intensity SAR image, and the
images produced by the 1 and 5-iteration stack �lters
obtained using another simulation of the same noise as
the training image. TheMAE of the speckled image, 1
and 5-iteration �ltered images are, respectively, 21:643,
7:8531, and 3:2844. Here we considered the 17-point
window. The training time was about 8 minutes.

8 Conclusion

This paper presented an overview of stack �lters in the
context of mathematical morphology and discrete im-
ages. The equivalence between stack �lters and pos-
itive Boolean functions was studied. In particular, a
lattice isomorphism between the set of stack �lters and
the set of positive Boolean functions was given, and the
representation of stack �lters as a union of erosions was
recalled. The relationship between the design of opti-
mal stack �lters and the design of increasing set opera-
tors was studied. A previously proposed algorithm for
the design of increasing operators for relatively large
window size was shown to be directly applicable for
the design of optimal MAE stack �lters. Examples on

Figure 5: Ideal, test and output images.

impulse and speckle noise �ltering illustrated the ap-
plication of the design technique proposed. Next issues
of this research include investigation of other error cri-
terion and new applications of this design technique.

Acknowledgments

The authors thank Nelson D. A. Mascarenhas for the
help received on several issues related to speckle noise
�ltering. N. S. T. Hirata acknowledges partial support
from CNPq and FAPESP.

References

[1] J. Barrera, E. R. Dougherty, and N. S. Tomita.
Automatic Programming of Binary Morphological
Machines by Design of Statistically Optimal Op-
erators in the Context of Computational Learning
Theory. Electronic Imaging, 6(1):54{67, January
1997.

[2] J. Barrera, E. R. Dougherty, and N. S. T. Hi-
rata. Design of Optimal Morphological Operators
from Prior Filters. Acta Steriologica, 16(3):193{
200, 1997. Special issue on Mathematical Mor-
phology.

[3] E. R. Dougherty and R. P. Loce. Precision
of Morphological-Representation Estimator for
Translation-invariant Binary Filters: Increasing
and Nonincreasing. Signal Processing, 40:129{154,
1994.

[4] N. S. T. Hirata, E. R. Dougherty, and J. Barrera.
A Switching Algorithm for Design of Optimal In-
creasing Binary Filters Over Large Windows. Pat-
tern Recognition, to appear, 1999.

[5] J. P. Fitch, E. J. Coyle, and N. C. Gallagher
Jr. Median Filtering by Threshold Decomposition.
IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, ASSP-32(6):1183{1188, December
1984.

[6] P. D. Wendt, E. J. Coyle, and N. C. Gallagher Jr.
Stack Filters. IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-34(4):898{
911, August 1986.

[7] N. S. T. Hirata, J. Barrera, and E. R. Dougherty.
Design of statistically optimal stack �lters. Tech-
nical Report to appear, Instituto de Matem�atica
e Estat��stica - USP, 1999.

[8] G. J. F. Banon. Characterization of Transla-
tion Invariant Elementary Operators for Gray-
level Morphology. In E. R. Dougherty, F. Preteux,
and S. Shen, editors, Neural, Morphological, and
Stochastic Methods in Image and Signal Process-
ing, SPIE Proceedings, pages 68{79, 1995.

[9] P. Maragos and R. W. Schafer. Morphologi-
cal Filters: Part I: Their Set-Theoretic Analy-
sis and Relations to Linear Shift-Invariant Fil-
ters. IEEE Trans. Acoust. Speech Signal Process.,
ASSP-35:1153{1169, August 1987.

[10] E. J. Coyle and J.-H. Lin. Stack Filters and the
Mean Absolute Error Criterion. IEEE Transac-
tions on Acoustics, Speech and Signal Processing,
36(8):1244{1254, August 1988.

[11] J. S. Lee, I. Jurkevich, P. Dewaele, P. Wambacq,
and A. CosterLinck. Speckle Filtering of Synthetic
Aperture Radar Images : A Review. Remote Sens-
ing Reviews, 8:313{340, 1994.

[12] N. D. A. Mascarenhas. An Overview of Speckle
Noise Filtering in SAR Images. In Image Process-
ing Techniques, Proc. of First Latino-American
Seminar on Radar Remote Sensing, pages 71{79,
Buenos Aires, Argentina, 2-4 December 1996.

