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Abstract. This work describes a framework for dealing with attention and categorization using a robot platform
consisting of an articulated stereo-head with four degrees of freedom (pan, tilt, left verge, and right verge). As a
practical result of this development, the system can select a region of interest, perform shifts of attention involving
saccadic movements, perform an efficient feature extraction and identification/recognition, incrementally construct
a world map, and keep this map consistent with a current perception of the world. Another important result for the
attentional mechanism is that the system is capable to visit all regions of its restricted world, selecting one region at
a time according to a salience map. For identification, the system starts without any knowledge of the environment
and increases its knowledge base (associative memory) as necessary to deal with a current set of objects.

1 Introduction

This work presents a robotic system which is able to per-
form tasks involving attention and pattern categorization.
We use visual information acquired in real-time by a stereo
head hardware platform to provide on-line feedback about
eventual changes in the environment. This feedback is in
form of actions, resulting in a behaviorally active system
that runs according to its perceptual state. Note that atten-
tion and identification and/or recognition are essential tasks
in active vision systems. Also, we can get another moti-
vation by looking towards finding an useful robotic system
able to foveate (verge) the eyes onto a region of interest,
to keep attention on the same region if more information is
necessary to perform any given task (for example, allowing
an arm to touch or to grasp an object), and to choose another
region if the current one is no more of interest, by shifting
its focus of attention. To validate such a “useful” system,
a task involving all the above aspects must be defined. In
our case, possible tasks are object recognition and identi-
fication for inspection (monitoring or surveillance), spatial
orientation, and eventually navigation (path-planning). A
map of the environment must be incrementally constructed
and dynamically changed. Besides the pattern representa-
tion, this map also contains information about position and
orientation. Once this kind of map is constructed, a robot
agent is allowed to perform more specific tasks. Moreover,
by adopting an active behavioral strategy we provide a dy-
namic way to interact with dynamic environments.
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Basically, we use a bottom up driven salience map to
direct attention. As result of this, a region of interest is se-
lected and saccadic movements are computed for the eyes,
eventually involving neck movements (pan and/or tilt), to
put a region of interest in the fovea. Then a feature ex-
traction is performed providing changes in the perceptual
state. An associative memory maps these features into a
pattern address, allowing the system to recognize/identify
a possible instance of a representation or to discover new
categories (unknown objects). Finally, an efficient mapping
completes the architecture of such a system.

This research does not intend to suggest or describe
biological models, to explain biological behaviors, or to ex-
plain the functionality of biological systems. The main pur-
pose of this work is to give an active vision behavior to a
robot. However, most parts of the computational architec-
ture are inspired by the biological system, with some mod-
ification. So, some terminology resembling the parts of a
biological organism are broadly used in the text.

2 Related work

Identification/recognition, feature mapping, and attention
has been widely studied in the last two decades. Ultimately,
most researchers have tried to reproduce or to imitate the
human biological system and behavior. In this direction, the
work of Kosslyn [6] suggests a descriptive model to explain
how identification and recognition happen. The model sug-
gests that features extracted directly from the eye images
and also brain mental images formation (or image comple-
tion) are used. Besides missing explanations and practi-



cal difficulties, it is relatively easy to develop a visual sys-
tem following that description. Ballard [8] also shows some
work providing good models for recognition and identifica-
tion. That work presents a set of operators based on Gaus-
sian partial derivatives for feature extraction. The operators
are suggested to be similar to biological models. We use
such operators with some modification in our work for the
same purpose.

On joining attention and identification topics, Rybak
et al [10], using a simple model with monocular stationary
images, treat perception and cognition as behavioral pro-
cesses. These include both the sequential image scanning
by an attention-window and the parallel processing of im-
age fragments within the attention window. Pattern recog-
nition is encoded in memory as a sequence of eye move-
ments with verifications of expected image fragments at
the new locations. The two well known pathways “what”
and “where” are encoded using neural-network implemen-
tations. An object is sequentially recognized if the patterns
of the eye movements and each corresponding invariant im-
age fragment pattern are the same as a given stored repre-
sentation of those. The problem with this architecture is its
incompleteness (no stereo features are used to help recog-
nition but only a planar sequential perception). Also, it uses
stationary image frames, not considering temporal aspects
like motion.

A good approach towards providing a computational
model to explain the neuro-physiology of attention can be
found in the works of Van der Laar ([12, 13]. In those
works, yet using stationary images, a multi-feature extrac-
tion is performed computing several feature maps. An at-
tentional neural network receives a task dependent input,
and gathers information from the feature maps to the sa-
lience map. Then, the place where to put attention is sim-
ply given by taking the most salient position in that salience
map. In a similar approach, Koch et al [4] propose a model
for attention that uses linear filters for orientation and spa-
tial frequency extraction. These filters tuned for various ori-
entations and spatial periods are used to compute a phase-
independent linear response to visual stimuli. Then, these
linear filters interact through non-linear excitatory and in-
hibitory pooling. A noise model together with a decision
strategy are assumed in order to relate the model output to
psychophysical data. The salience map is calculated and a
statistical model determines the next attention-window.

For attention, we adopt an approach resembling the
ones described above, considering an adapted set of Gaus-
sian partial derivatives (order 0, 1, and 2 in two directions
each). As we have sequences of image pairs, motion (actu-
ally, two directional gradients of consecutive frames differ-
ences) and stereo are also taken into account to determine
the next region in which to pay attention (generation of a
salience map). The main difference of our approach is that

we realize all of these in an active vision framework accom-
plishing real-time processing, instead of stationary images.
Note that we need to effectively promote saccadic move-
ments, eventually involving also pan and tilt besides the
vergence motors, to get the attention window in the fovea
(center of the current image frame).

An interesting approach involving visual and oculo-
motor mapping is the work of Ferrell [1]. She uses regis-
tered, multi-modal, topographically organized maps of the
sensory-motor space to orient a robot (COG) towards en-
vironmental stimuli. A learning algorithm to train the hu-
manoid robot is presented. In order to learn the connections
between the oculo-motor and visual maps, these are initially
connected to each other through largely overlapping recep-
tive fields. Then the algorithm tries to adjust the connec-
tions by decreasing their neighborhood. The connections
are updatedaccording to a learning function which uses the
error distance between a motion map site and a given target
site.

In our approach we also use topographically organized
multi-scale maps for feature extraction. The system selects
one level at a time for the high level processes (identifica-
tion and mapping). This selective aspect provides a sub-
stantial reduction in the amount of processing necessary for
the feature extraction.

3 Stereo Head and Image Processing Devices

The robot used for this work consists of a Stereo Head plat-
form shown in Figure 1. It has two cameras mounted on the
top of a TRC Bisight head with four mechanical degrees
of freedom which are shown in Figure 2. Some software
restrictions to the movements can also be seen in that Fig-
ure (dotted lines). These restrictions are applied to avoid
hard limit collisions. Motion commands can be sent via a
PMAC/Delta TAU interface to control directly the pan (hor-
izontal or lateral rotation), tilt (head inclination), left cam-
era vergence, and right camera vergence. The cameras also
have a zoom and focus controllable (independent of each
other) via the PMAC controller, which are not used in this
work.

The images acquired from each camera serve as input
for the Datacube which consists of several image process-
ing devices integrated using a pipeline array processing ar-
chitecture. This architecture allows to real-time process the
acquired images up to 30 frames per second. The image
processor uses the concept of surfaces, pipes, and PATs.
Each surface is an array of integer values (an image) that
can be stored in one of 6 memories (storing devices, up to
4 Mb each one) for each one of two stereo boards. A pipe
consists of taking one or more source surfaces, perform one
or more image processing operations, and store the result-
ing surface or surfaces in a specified storing device. One



Figure 1: Stereo Head platform, consisting on two cameras
mounted on a head, with 4 mechanical degrees of freedom.

can have up to 4 pipes running in parallel at a time. A PAT
is necessary if one needs to execute pipes which depends
upon the execution of other pipes (for example, if it uses
data generated by other pipes). By using a PAT, the exe-
cution of a pipe can be deferred to be performed cyclically
on every occurrence of an event which is generated by an-
other pipe. Or a pipe can be executed as a one-shot pipe,
on the generation of a triggering event created either by a
pipe or by any host procedure, for example to solicit data
from the IP device. In this sense, a control-loop architec-
ture would include a combination of continuous and one-
shot running pipes, to transform the input data and provide
sufficient abstraction (or data reduction). The last opera-
tion on a processing cycle would eventually be the trans-
ference of abstracted data from the Datacube architecture
to the host computer application. The last will decide in a
final instance which high-level actions to perform (eventu-
ally a head movement). Some examples of common math-
ematical operations that can be computed inside the image
processor are: correlations (or convolutions), Sobel gradi-
ents, Hough transforms, statistical operations, dyadic oper-
ations (sum, subtraction, or multiplication of two images)
and monadic operations (thresholding and transformations
using look-up tables), and feature extraction. The neighbor-
hood multiply andaccumulate device (convolutor) allows a
pre-definition of a set of kernel masks with diameters up
8x8 pixels. Then, one of these kernels can be selected at a
very fast speed to be applied on a given surface.

4 Controllers and the Architecture

We have developed a control architecture for a multi-mod-
al sensory system which is described in [2, 3]. Based on
that architecture, a ”Controller Oriented” approach is used
in this work for the implementation of the active vision
system. A controller operates in a loop, transforming the

−8000+8000

0

+ 4000

−4000

−7500 +7500

Pan Tilt

y

x

z

y

y

x

y

x

Left Verge Right Verge

+15000

0

0 0

+15000 −15000

+7500 −7500

−15000

−7556+7556

+3955

−3955

Figure 2: Degrees of freedom of the Stereo Head and mo-
tion range for each motor in number of counts. Dotted lines
are software restrictions to avoid hard limit collisions.

input into output to satisfy a control strategy (policy). In
general, the input is information regarding the current per-
ceptual state like sensory information and robot pose. The
transformation may be a physical action, such as a move-
ment generated by the robot actuators, or other operations
not involving physical movements, such as computations.
The output is in the form of a report, updating the robot
positioning or the perceptual state. Once a controller finds
an equilibrium condition satisfying the control strategy it
sets flags, asserting a predicate state. Those flags define
a state vector which is shared between various controllers.
Depending on the values of this state vector and on the pol-
icy adopted (task being performed) a controller will run,
changing the predicate state again. In this way, a policy or
behavioral program is established with a set of controllers
and a set of flags representing the predicate state.

In a complex Markovian decision process (MDP), a
policy for a given task consists of a sequential activation of
one or more controllers in a loop, in general following re-
strictions, to try to reach the task goal. Each time one or
more currently running controllers converge, another group
is defined (by that policy), until the task is completed. A
control-loop is established on top of a finite state machine
defining the MDP, in general using reinforcement learning
[11] or other approach. In this work, since we have a prob-
lem with a simple solution, we adopt a simple strategy car-
rying out the behavioral program shown in Figure 3. Each
controller runs automatically when the previous controller
converges.
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Figure 3: Behavioral program developed for attention and
categorization. The arrows indicate transitions between
states where a controller has not yet reached its convergence
criteria. Circles represents reference states due to conver-
gence events in the activated controllers.

5 A Multi-log-retina Representation (Visual Buffer)

A multi-logarithmrepresentation is used in this work to en-
code the visual input data. A log-image is necessary to ac-
complish data reduction sufficient to obtain real-time pro-
cessing and a multi-image is necessary for multiple feature
extraction. These features will be used for both identifi-
cation and attentional behaviors. A biologically inspired
approach for generation of a multi-scale image could use
Gaussian derivative filters with different scales (different
standard deviation�) computing the derivatives directly from
the original images. Then, sampling the resulting images at
different resolutions only inside the area of scope of each
level. Alternatively, a filter with a constant standard de-
viation could be used in a cascade process computing the
next level from the previous one (as in [15]). It is shown in
[16] that a Gaussian filter with a standard deviation of�p

2
is ideal to generate the pyramid. We argue that the same
result obtained by using the above approaches and with the
same computational complexity is achieved by using the
approach adopted in this work, described in the follow-
ing. The data-reduction allows the host computer to per-
form other operations necessary to complement the image
processing in real-time. In the experiments realized in this
work, the Datacube Image Processing device can generate
the 8 multi-scale images at a rate of 15 frames per second.
This achieves a reasonable performance for real-time pro-
cessing necessary in an active vision system.

The resulting representation for the multi-log-retina
can be seen in Figure 4. Each one of the 8 images has 4
levels of resolution sampled by a factor2. Six of these are

modified Gaussian partial derivatives (3 derivatives tuned in
two directions each) and the remaining 2 are the first partial
derivatives of frame differences in 2 directions, represent-
ing motion. So, we have 8 image derivatives overall, being
2 of order 0, two of order 1, and 2 of order 2 for intensity
images, plus 2 of order 1 for the motion images. This data
transformation is done in two phases for both Gaussian and
motion parts. The first phase is a multi-scale image (like a
pyramid) generation and the second phase is the derivatives
computation.

Figure 4: Multi-logarithm feature vector generated for
identification and attentional behaviors.

5.1 Multi-scale Image Generation

The size of the original images captured by the two stereo
cameras (further simply denominated eyes) is512 � 480
pixels. For the Gaussian part of the retina, the original im-
ages are directly used as input for the multi-scale image
generation. For the motion part, the difference images of
two consecutive frames (one previously stored and the one
being acquired) are computed first. Each level is generated
(for both motion and Gaussian parts) by applying a mean
filter in the neighborhood ofeach pixel of those images and
sampling it by a certain resolution factor, which is a func-
tion of the current level being generated. The diameter of
that neighborhood as well as the region of scope of the input
images which will be affected by the filtering also depend
on the current level. For the initial level (coarse resolution
level) the filter diameter is 8, it is applied in the whole im-
age and sampled on every 8 pixels interval. For the last
level (fine resolution), the filter diameter is 1 and the region
of the image which it is to be applied is the region com-
posed by the central64 � 60 pixels. So, for the last level,
a simple surface transfer is performed without any filtering,
with a sampling resolution equals to 1. At this point, each
level has a size of64 � 60 pixels, resulting in two multi-
scale images for each eye: one is an intensity-image and
the other one is a difference-image.



5.2 Computing the Derivatives

As a second phase, partial derivatives are computed at each
level of the multi-scale images to establish the desired fea-
tures. For the Gaussian part, the multi-scale intensity im-
age generated in the previous phase is convoluted with an
adapted Gaussian (partial derivative) kernels in two direc-
tions each. The kernel masks are computed by means of
Equations 1, 2, and 3. Also, a reduction to16 � 15 (sam-
pling at every 4) pixels is performed in this phase reducing
even more the volume of data. The Motion part is also com-
puted in the same way. The first derivatives in two direc-
tions are computed generating the final motion multi-scale
images (2 for each eye). Equation 4 is used to create the
kernel mask. Note that the same Gaussian derivative is ap-
plied to the motion images. This helps reducing the amount
of noise. An ideal approach could use those derivatives of
difference images (our representation of motion) to actu-
ally compute the motion field for the whole images, using
relaxation or other iterative approaches. The motion field
computation is not necessary for attentional purposes, and
for identification purposes such an approach is expensive.
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5.3 Computing Stereo Disparity

Stereo disparity is computed in the host computer memory,
after the multi-scale Gaussian image generation. A simple
approach is used to compute stereo, by maximizing cor-
relation measures using the second order Gaussian deriva-
tive images. One alternative approach could use the spatial
frequency information to compute stereo directly from the
input images inside the Datacube architecture. Such an ap-
proach using a phase shift model is presented in [15], using
a simulation platform. Figure 5 shows the schema used for
the stereo computation. Since the images are in a multi-
scale representation, the results from one level (scale) are

used to predict the disparity on the next level. For the ini-
tial level, as the vergence movement has some constraints
(see section 6.3), the disparity is inside a threshold. This
cascade process gives a substantial reduction in the amount
of computation necessary to find the best match for a point.
Note that another constraint that can be used is given by the
relative symmetry of the images with respect to the cyclo-
pean axes. The cyclopean axis is the line defined by the
central point in between the eyes and the horopter (point in
which eye axes cross). Also, another detail to observe is
that disparity is computed only for thex direction because
we have a controlled geometry system (noy disparity).
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Figure 5: Stereo computation process in cascade. Each
level predicts disparities for the next level.

6 Attentional Behavior Control

Basically, the attentional behavior expected for the system
is to choose the most salient region in the world and to put
its focus of attention in that region. This involves com-
puting a salience map which is stimuli biased plus map-
potentiation biased. Then, taking the winner position of this
salience map and generating a saccadic movement (verge
and eventually pan and/or tilt) to get the region in the cen-
ter of the fovea. This salience map is computed by using
the abstracted data provided by the Datacube (perceptual
cues or stimuli biased) and also by looking for information
contained in a world map currently being constructed (map-
potentiation biased). Note that one could consider only the
perceptual cues inside the field of view to define the next
region of interest. But, in this case, there is no guarantee
that the system will attend to all locations in the world. So,
attended locations have to be potentiated in an internal map
telling the system that they have been previously visited.
This map also encodes other type of previous information,
once a fast check is necessary to detect changes eventually
occurred in the environment.

6.1 Defining a Target (Pre-attention)

The generation of the stimuli plus map biased salience map
is done in a pre-attentional phase. This map also has a pyra-
midal representation like the images of the the multi-log-
retina. Starting from the coarse level, an activation value
is calculated for each position based on some normalized
weight function of the perceptual cues plus the correspond-
ing normalized activation in the world map. That function



is task dependent and can be learned using a neural network
(see [13]) or reinforcement learning (see [3]) approach. The
world map activation, initially high for all regions, is set to
zero for a region if that region has received attention. Then,
every time the pre-attentional procedure runs, that world
map activation value increases slowly until it becomes high
again. This simple behavior makes the system change its
attention window from one region to another, covering the
whole world and eventually returning to a region which
has been visited previously, detecting possible changes that
might occur in the environment. The result is an inspection
task, where the robot has to keep a current representation
of the world consistent with the reality. Note that the sys-
tem will not visit the same region twice in sequence. Also,
note that one region might be visited more than once, before
the system completes all regions, depending on the function
used to potentiate the world map activation values.
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Features considered for attention are stereo disparity
(Dij), and the intensities of motion and of the Gaussian
derivatives given by Equations 5, 6, 7, and 8, respectively.
After the attentional features have been computed, Equa-
tion 9 is used for computing the salience map using those
features. That equation is a simple summation of the above
activation values, since the weightswM , wG(0) , wG(1) , and
wG(2) have been previously applied in the intensities com-
putation. The factorPij is defined as proximity, another ac-
tivation value which is proportional to the distance between
the position in the salience map and the fovea. Regions
close to the fovea have a higher activation.

6.2 Shifting Attention (Coarse Saccade Generation)

Shifting attention involves taking the most active region
over all levels in the pre-attentional (salience) maps and ef-
fectively moving the eyes to the corresponding location. A
coarse saccade movement is computed for both eyes to shift
attention to the winner region. Since we have one salience
map for each eye, we apply here the concept of dominant
eye as the one whose salience map contains the most active
region. For the dominant eye, the target position is sim-
ply determined by the displacement from the current po-
sition to the winner one. The target for the non dominant

eye is computed from the dominant eye target by adding
the stereo disparity. Since the targets are defined for each
eye, a model of the goal is acquired for the dominant eye to
eventually help performing fine saccadic corrections. Fea-
tures from a windowed region around the dominant target
are taken for all levels of resolution. To complete the coarse
saccadic generation, the displacements to be applied to the
degrees of freedom of the Stereo Head are computed from
the displacement determined for the eyes. Note that the
displacement is in eye centered coordinates (a multi-scale
image coordinate frame) and must be transformed into pan,
tilt, and verges to be sent to the servo controllers. Some
constraints are put in those degrees of freedom. The cy-
clopean angle must not be greater than a threshold. Actu-
ally, we experimented empirically that inside a range of 15
degrees the features provided by both eyes still give good
results for object categorization. When the opposite hap-
pens (cyclopean angle greater than 15 degrees), a pan (like
a neck movement) is necessary to get the target inside that
range. Also, another constraint is imposed such that the
verge axes must not be very opened (no more than parallel)
and not very closed (less than 45 degrees) in relation to each
other. A correction for that is applied to the non dominant
eye. The tilt is directly computed from the dominant eye
vertical displacement. As the Stereo Head has a controlled
geometry, both eyes have the same tilt. Since the new po-
sition is determined for all degrees of freedom, the servo-
effector operates, effectively moving the hardware platform
to attend the new location.

6.3 Adjusting Attention

Due to errors, after a coarse saccade the eyes may not be
at the specified target location (in general very close to it).
Therefore, fine saccades are generated in an iterative ap-
proach to maximize correlation between the acquired target
model and the dominant eye image center. This iterative
process goes from the coarse level to the fine level. It will
converge when the level which has determined the shift of
attention reaches the maximum correlation value in a posi-
tion at a threshold distance from the image center. At the
same time that each fine saccade is generated, the vergence
mechanism runs for the non dominant eye. Displacements
are calculated for the non dominant verge axis to bring it
to a position in which the image centers have the maximum
correlation value. A threshold is used to avoid situations
in which there is no match inside the field of view. In this
way, the eyes verge at the same time or shortly after the fine
saccade process convergence.

7 Identification

Since both image centers (or one in case of occlusions) are
focused on a region of interest an efficient object catego-



rization can take place. Identification isdone by using an
associative memory implemented using a Back-propagation
neural network (BP), shown in Figure 6. The associative
memory matches the abstracted features computed from the
Datacube output into an address of a long term memory
which has stored all kind of information that can be re-
trieved by those features. Notice that information from an
arbitrary resolution level can be used for the match. In a
general situation, the level of resolution from which infor-
mation is to be taken depends on the task (top-down and/or
bottom-up attention), on the time available, and on the im-
age characteristics. It is a function of the attentional mech-
anism to define what level shall be used.

  One
Output
for each
 Object

   112
  Input
Features

Figure 6: Backpropagation neural network used as associa-
tive memory. The output layer increases dynamically.

The BP network used has one input node foreach ab-
stracted feature. The number of nodes in the output layer
changes dynamically. A new node is created foreach new
representation detected in the world. A weight function of
the minimum and the maximum error given by the training
procedure is used as threshold to decide if a representation
is a new one. The hidden layer has number of nodes de-
termined empirically. Actually, making that number equal
to 1.5 times the number of nodes in the output layer gives
good results. Equation 10 gives the best match. Equation
11 is used for the training.
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Note that other classifier could be used here. For ex-
ample, the ones used in [7, 5, 14]. We argue that the BPNN
approach used here gives good results on identification and
also returns what the activation for a given index in the out-
put layer is (a normalized value in between 0 and 1). This
activation value will be used to determine if a representation

is a new one, or to guide attention (top-down attentional
tasks can use it to keep the attention in a given region).

7.1 Feature Extraction

Some experiments done using the multi-log-retina repre-
sentation directly as features for the associative memory
match gives good results. In those experiments, 8 feature
vectors (2G0 + 2G1 + 2G2 + 1Motion + 1Stereo) com-
posed of16 � 15 pixels are used, for each eye. A total of
3840 input features require a lot of computation. Therefore,
some abstraction must be used to reduce even more the in-
put data. There are several approaches that would result in
a good abstraction (see for example [9]). The approach cur-
rently used considers information extracted by sampling the
16�15 feature images in only 4 positions. For the Gaussian
features, both directions are considered and for motion, its
intensity previously computed in the pre-attentional phase
is used. For one level, currently considered, this gives a to-
tal of 112 input features, being4Stereo+4Motion+24�+
24� for each eye. This is reasonable for computational pur-
poses. Also, instead of the feature image values, a local
mean and a local variance applied to the neighborhood of
the Gaussian features are used (Equations 12, 13) for fea-
ture sampling. A normalization of contrast is included by
considering the normalized mean and variance. Also, as the
neighborhood is taken intoaccount, the responses spread
according to the amount of local energy present, represent-
ing more than a local characteristics. Moreover, the result-
ing feature representation carries some invariance with re-
spect to scale, rotation and shift. Rotations up to 30 degrees
are well supported in the experiments.
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7.2 Mapping Objects and Updating Memory

Once a representation is classified as identified or new, the
world maps are updated with the current information ex-
tracted from that region. The features used for attention
which are sufficient to detect any change are stored and the
world map activation is set to zero to allow a shift of atten-
tion towards other region. If the representation is a new one,
the associative memory is retrained. This involves evocat-
ing a supervised learning module which inserts the new set
of features in the long term memory, updates the associative
memory creating the necessary nodes in the intermediate
and output layers, and retrain the network.



Figure 7: Pairs of images showing only the new objects
detected in the environment. This figure also shows that
both eyes are verged in the same objects. Top row is for left
camera and bottom row is for right camera. From left to
right: a red cylinder, a white golf ball, a natural wood cube,
a red triangular prism, a blue cube, and a light green (dirty)
tennis ball

8 Experiments and Results

Several experiments were done on tasks involving attention
and identification behaviors. In the final tests both behav-
iors were integrated in a unique task. Basically, several in-
stances of several types of objects are posted on a table.
The robot, constrained to the region containing the table,
has to learn characteristics of all objects inserting a repre-
sentation for each one in the associative memory and up-
dating its internal map. Figure 7 shows images of both
multi-log-retinas (for the left and right cameras) recorded
during one of the experiments. Although we have posted
more than one instance for each object type and the robot
has visited all objects, that figure shows only the new types
of object detected in the environment. Also, it validates the
vergence mechanism as for each pair both eyes are verged
on the same objects.

In the expected attentional behavior, the stereo head
has to move from one object to another, covering all ob-
jects on the table. Three modalities of attentional tasks were
tested. In all three experiments, the robot visited all objects,
discovering new representations, identifying existent ones,
and mapping all objects. In the first experiment, we indicate
sequentially the objects to the robot, by touchingeach ob-
ject with a finger and coming to stand-still. This motion cue
produces a high activation in the attentional process making
the robot to put its fovea close to the object position. Then,
without the initial motion cue, the intensity based cues wins
in the attentional mechanism, putting the object completely
in the fovea. In the second experiment, there is no initial
motion cue, and the robot has to figure out for itself the re-
gions where it has to go. So, the intensity based cues and the
map interest value of each region are used for that. Figure 7
shows the different types of objects detected in the table for
one experiment of this second type. The attentional mecha-
nism works well putting all the objects in the fovea for this
task. On the third experiment, after all objects on the table
are detected and mapped, we either move an object from
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Figure 8: Total time required for attentional shifts, feature
matching, and saccade generation. Time includes the data
acquisition (with multi-log-image generation).

one position to another or else remove objects from the ta-
ble top. As expected, the robot ratifies the world map for
the changed regions. This is done using a conbination of
motion and intensity cues for movements that occur inside
the view field or by using the inspection behavior that the
system reaches after all regions in the restricted world are
visited (see subsection 6.1).

Some experiments towards defining other meaningful
results were also done. In those experiments we recorded
some data while the system was operating. Figure 8 shows
some of the experimental data obtained along several con-
trol cycles. The total times required for attentional shifts,
saccade generation, and feature matching are shown in that
figure. Table 1 shows separately the required time for each
one of the processes involved in attention and identification
tasks. In the second column are the minimum times to re-
alize the tasks or phases. In the third column the maximum
time. In the most right column are the average times over
several hundreds of control cycles foreach one of the re-
spective processes. As we can see, the times above shown
that a frame rate of up to four frames per second can be
achieved by the system. But, this can be improved, as ex-
plained in the following. The times involving computations
in the host computer can be considerably improved. The
computer used in the experiments reported here is a Sun
Sparc 10 (some 40 MHz processor). Currently, we have a
dedicated Sun Ultra Sparc board in the Datacube cage that
can operate closely to 300 MHz. Also, as the last board
shares the same bus as the Datacube boards, the time for



Phase or process Min(sec) Max(sec) �(sec)
Computing retina 0.145 0.189 0.166
Transfer to host 0.017 0.059 0.020
Total acquiring 0.162 0.255 0.186
Pre-attention 0.139 0.205 0.149
Salience map 0.067 0.134 0.075
Total attention 0.324 0.395 0.334
Total saccade 0.466 0.903 0.485

Features for match 0.135 0.158 0.150
Memory match 0.012 0.028 0.019
Total matching 0.323 0.353 0.333

Table 1: Time required for each sub-process or phase.
Computing the retina is done inside the Datacube. The pre-
attention phase is done in the host computer using data from
Datacube. Features for matching are computed also in the
host computer. Both pre-attention and features computa-
tions includes an image display in the host computer. The
saccade includes sending data to the PMAC interface and
waiting for its completion.

transferring data from the Datacube will speed up. A bus-
to-bus adaptor is necessary for reading data in the Sparc
10. Saccade is another component that can be improved by
dealing with the gains in the PD controllers of the stereo
head PMAC interface. An optimization can take place,
making saccade as fast as a human being. A problem that
might occur while increasing the gain, is that the head may
present some instability, shaking.

9 Conclusion and Discussion

Despite of using only visual information in this work, the
developed system is more general than that. Other sensory
maps (hapitc, auditive) can be easily incorporated to this
platform. In this way, one could carry out a better salience
map and a better discriminative set of features for the as-
sociative memory match. By using a “controller oriented”
approach with a supervisory loop controlling all resources,
other processes can be developed independently and incor-
porated to the architecture.

From the experiments, we argue that it is practically
impossible to deal with attention without dealing with ob-
ject categorization. Moreover, not only all the sensory sys-
tems must act as a unity, but all the brain functions must be
integrated together in order to start any development. In this
sense, we have developed the basic architecture integrating
a vision attentional mechanism and a neural network clas-
sifier (associative memory).

In this work we have used the same basic feature vec-
tor for both attention and identification purposes. By using
intensity of the gradient of image differences as one of the

cues for attention, static regions with high intensity values
subject to artificial lightening will eventually have different
motion values. As artificial lightening is a discrete variable
of time obeying to a cycle (sometimes equals to 60 Hz), in-
tensity on the surface of a static object may vary over time.
This is a good feature, since the system will shift attention
to regions of high intensity values which are intuitively at-
tractive. By also taking pondered local intensity features as
attentional cues, attention is focused on positions that lo-
cally represents a region, more than a patch. In the hypoth-
esis that this region is part of only one object, segregation
can be done by fitting the best local average intensity and
using that as a spread function for selecting a region that
could eventually be an object.

Finally, one could ask why attention and identification
are so important. Note that object categorization is neces-
sary in almost all tasks that one can imagine. The “what” is
the first important question involving any task. In its turn,
the ability to change the focus of attention is the basis for
cognition. Those two tasks are integrated to each other in
a such a way that a behaviorally active system needs both
sub-systems working to perform other tasks.

10 Future Works

Besides the simple and direct approach used in this work for
directing attention, we will further realize studies towards
finding a weight function that varies in time according to
the task. In a first phase, the system can use motion cues
to get a target and then use intensity cues (texture or con-
trast) to focus attention in the right place. Also, covert at-
tention shift (changing region of interest without any phys-
ical movement) will also be included, as this feature is very
useful for some tasks.

Focus can also be used together with the correlation
approach used in this work to “tune” the system into an
object and to help in the stereo vergence mechanism. In the
occurrence of occlusions, only focus might be used. In this
case, the dominant eye will give the approximate focus to
a function that computes the angle necessary for vergence.
Focus involves statistical measures in the image (changes
in the histogram will determine the best focus), what can
be done in the Datacube architecture.

Another future experiment that can be done is to con-
sider bottom-up attention only on the coarse level (at least
for motion). It seems that it happens in biological systems,
since the magna-cellular pathway plays the major role in
attention. In this case, an approaching object will receive
attention in a certain distance, allowing the stereo Head to
take any decision. Other levels will guide top-down atten-
tion. If an object needs specific attention in a certain re-
gion, the top-down mechanism will set the corresponding
region in the superior level which has resolution necessary



to cover the detail. The system can select the level which
completely involves the object by tuning its perceptual cues
to a model acquired on-line and also by looking for conti-
nuity in disparity, intensity and/or motion, defining the at-
tention window size. In case of an object covers more than
one attention window even for most lower level, attention
has to be shifted in the image and information has to be ac-
quired in a manner that old information is kept in memory
and new information completes the set of features available
for recognition and identification.

Finally, the use of reinforcement learning [11] can play
an important role towards finding a more reasonable weight
function for attention. Given a set of tasks that the system
is able to perform, the weights for the salience maps can
be determined by using such approach. The system gets
rewards if identification/detection of new objects and map-
ping occurs. The result would be a much more reasonable
function for directing attention, perhaps closer to a biologi-
cal model.
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