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Abstract. Multiple vanishing point detection provides the key to recovering the perspective pose of textured
planes. If vanishing points are to be detected from spectral information then there are two computational problems
that need to be solved. Firstly, the search of the extended image plane is unbounded, and hence the location
of vanishing points at or near infinity is difficult. Secondly, correspondences between local spectra need to be
established so that vanishing points can be triangulated. In this paper we offer a way of overcoming these two
difficulties. We overcome the problem of unbounded search by mapping the information provided by local spectral
moments onto the unit-sphere. According to our representation, the position and direction of each local spectrum
maps onto a great circle on the unit-sphere. The need for correspondences is overcome by accumulating the great
circle intercepts. Vanishing points occur at local accumulator maxima on the unit sphere. To improve the accuracy
of the recovered perspective pose parameters for highly slanted planes, we use an adaptive spectral window. This
selects the window so as to reduce spectral defocusing by minimising the determinant of the spectral covariance
matrix. We experiment with the new shape-from-texture technique on both synthetic and real world data. Here it
proves to be an accurate and robust means of estimating perspective pose.

keywords: Shape-from-texture, unit-sphere accumulation, adaptive spectral analysis, texture analysis, planar
surface recovery.

1 Introduction

The perspective foreshortening of surface patterns is an im-
portant cue for the recovery of surface orientation from 2D
images [1, 2]. Broadly speaking there are two routes to
recovering the parameters of perspective projection for tex-
ture patterns. The first of these is to estimate the texture gra-
dient [3, 4]. Geometrically, the texture gradient determines
the tilt direction of the plane in the line-of-sight of the ob-
server and its magnitude determines the slant angle of the
plane. A more direct and geometrically intuitive alternative
route to the local slant and tilt parameters of the surface is
to estimate the whereabouts of vanishing points [5, 6, 7].
Provided that two or more vanishing points are available,
then planar surface orientation can be directly determined.

Unfortunately the location of vanishing point from tex-
ture distribution is not itself a straightforward task. If di-
rect analysis is being attempted in the spatial domain, then
the tractability of the problem hinges on the regularity and
structure of the texture primitives [5, 6]. Moreover, multi-
ple vanishing point detection may be even more elusive. It
is for this reason that frequency domain analysis offers an
attractive alternative [8, 9, 10]. The main reason for this
is that the analysis of spectral moments can provide a con-
venient means of identifying the individual radial patterns
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associated with multiple vanishing points.
In this paper we make use of an interesting spectral

property which provides a direct route to vanishing point
location via the use of frequency domain information [11].
The observation is a simple one. At each point on the im-
age plane, the spectral angle points in the direction of a
vanishing point. Lines that radiate from a vanishing point
therefore connect points of uniform spectral angle.

The idea underpinning our method is to exploit the unit
sphere representation of the image plane [7] by relating the
uniform spectral angle property in the image plane to great
circles on the unit-sphere. This representation bounds the
search space for vanishing points, since parallel lines meet
at opposite poles of the unit-sphere. Additionally, it also
solves the problem of finding correspondences between the
spectral components related to each vanishing point.

Unfortunately, before reliable local spectra can be es-
timated, there needs to be an estimate of the local distortion
of the texture so that the size of the spectral window can be
set. However, this local distortion is, after all, the ultimate
goal of perspective pose recovery. The main problem stems
from the fact that if the window size is incorrectly set then
the local estimate of the texture spectrum becomes defo-
cussed. This defocusing in turn leads to poor estimation of
perspective pose parameters when texture planes are sub-
jected to severe perspective foreshortening. Distant texture



elements appear smaller while closer ones appear bigger.
In order to accurately quantify the information provided by
this texture gradient we must be able to locally adapt the
size of the spectral window.

Most the spectral shape-from-texture methods opt to
use a spectral window of fixed size. In other words, the ac-
curacy of their perspective pose estimates are likely to be
limited by defocusing. There are two exceptions. Garding
and Lindeberg [12] address the scale problem employing a
Gaussian scale-space decomposition locally over the struc-
tural primitives. Stone and Isard [13] have a method which
interleaves the adjustment of local filters for adaptive scale
edge detection and the estimation of planar orientation in
an iterative feedback loop.

We use a spectral version of the idea proposed by Le-
ung and Malik [14] for locating repeated elements in an
image by measuring their affine similarities. The idea has
also be exploited by Schaffalitzky and Zisserman [15]. Our
method uses the local spectral distortion in order to com-
pute the affine similarities and estimate the best local scale
for the spectral descriptor.

2 Perspective Modelling

We commence by reviewing the projective geometry for
the perspective transformation of points on a plane [8, 9].
Specifically, we are interested in the perspective transfor-
mation between the object-centred co-ordinates of the points
on the texture plane and the viewer-centred co-ordinates of
the corresponding points on the image plane. Suppose that
the texture plane is a distanceh from the camera which has
focal lengthf < 0. Consider two corresponding points that
have co-ordinatesXt = (xt; yt)

T on the texture plane and
Xi = (xi; yi)

T on the image plane. The perspective trans-
formation between the two co-ordinate systems is

Xi = TpXt (1)

We represent the orientation of the viewed surface plane
using the slant� and tilt � angles. This parametrisation
is a natural way to model local surface orientation. For a
given plane, the slant is the angle between viewer line of
sight and the normal vector of the plane. The tilt is the
angle of rotation of the normal vector around the line of
sight axis. The elements of the transformation matrixTp
can be computed using the slant angle� and tilt angle� in
the following manner

Tp =
f cos�

h� xt sin�

�
cos � � sin �

sin � cos �

� �
1 0

0
1

cos �

�
(2)

The perspective transformation in Equation 2 represents a
non-linear geometric distortion of a surface texture pattern
onto an image plane pattern. Unfortunately, the non-linear

nature of the transformation makes Fourier domain analysis
of the texture frequency distribution somewhat intractable.
In order to proceed we therefore derive a local linear ap-
proximation to the perspective transformation. However, it
should be stressed that the global quilting of the local ap-
proximations preserves the perspective effects required for
recovering shape-from-texture. With this linear model, the
perspective distortion can be represented byT �

p which is
the linear version of the perspective transformation given
by Equation 2. We linearizeTp using a first-order Taylor
formula. Let(xot; yot; h) be the origin or expansion point
of the local coordinate system for the resulting affine trans-
formation. This origin projects to the point(xoi; yoi; f) on
the image plane. We denote the corresponding local coordi-
nate system on the image plane byX0

i
= (x0i; y

0

i; f) where
xi = x0i + xoi andyi = y0i + yoi. The linearised version
of Tp in equation 2 is obtained through the JacobianJ(:) of
Xi where each partial derivative is calculated at the point
X

0

i
= 0. After the necessary algebra, the resulting linear

approximation is

T �

p =



hf cos�

"
xoi sin� + f cos � cos � �f sin �

yoi sin� + f sin � cos � f cos �

#
(3)

where
 = f cos� + sin� (xoi cos � + yoi sin �). Hence,
T �

p depends on the expansion point(xoi; yoi) which is a
constant. The transformationT �

p in Equation 3 operates
from the texture plane to the image plane. The model is
similar to the scaled orthographic projection [16].

The net effect of the global perspective transforma-
tion is to distort the viewer-centred texture pattern in the
direction of vanishing points on the image plane. In order
to recover the parameters of perspective pose, we need to
know the position of at least two different vanishing points
in the image plane. Suppose that the two points areV1 =
(xv1; yv1)

T andV2 = (xv2; yv2)
T . Let the normal-vector

to the texture plane beN = (p; q; 1). The resulting normal
vector componentsp andq are found by solving the system
of simultaneous linear equations�

xv1 yv1
xv2 yv2

� �
p

q

�
= �

�
f

f

�
(4)

The solution parameters,p andq arep = f yv1�yv2
xv1yv2�xv2yv1

andq = f xv2�xv1
xv1yv2�xv2yv1

. The slant and tilt angles are com-

puted using� = arccos

�
1p

p2+q2+1

�
and� = arctan

�
q
p

�
.

If more than two vanishing points are available, then the re-
covery of perspective pose parameters is over-constrained
and can be effected by least-squares estimation.

3 Projective Distortion of the Power Spectrum

The Fourier transform provides a representation of the spa-
tial frequency distribution of a signal. The novel contri-



bution in this section we show how local spectral distor-
tion resulting from our linear approximation of the perspec-
tive projection of a texture patch can be computed using
an affine transformation of the Fourier representation. We
will commence by using an affine transform property of the
Fourier domain [17]. This property relates the linear effect
of an affine transformationA in the spatial domain to the
frequency domain distribution. Suppose thatF (:) repre-
sents the Fourier transform of the image. Furthermore, let
X be a vector of spatial co-ordinates and letU be the cor-
responding vector of frequencies. According to Bracewell
et al [17], the distribution of image-plane frequenciesUt

resulting from the Fourier transform of the affine transfor-
mationXi = AXt +B is given by

F (Ui) =
1

jdet(A)je
2�jUt

TA�1BF [A�T
Ut] (5)

In our case, the affine transformation isT �

p as given in Equa-
tion 3 and there are no translation coefficients, i.e.,B = 0.
As a result Equation 5 simplifies to:

F (Ui) =
1

jdet(T �

p )j
F [T �

p
�T
Ut] (6)

In other words, the effect of the affine transformation of co-
ordinatesT �

p induces an affine transformationT �

p
�T on the

texture-plane frequency distribution. The spatial domain
transformation matrix and the frequency domain transfor-
mation matrix are the inverse transpose on one-another.

We will consider here only the affine distortion over
the frequency peaks, i.e., the energy amplitude will not be
considered in the analysis. For practical purposes we will
use the local power spectrum as the spectral representation
of the image. This describes the energy distribution of the
image as a function of its frequency content. In this way
we will ignore complications introduced by phase informa-
tion. Using the power spectrum, small changes in phase
due to translation will not affect the spectral information
and hence Equation 6 will hold. The power spectrum repre-
sentation of an imagef(Xt) may be defined as the Fourier
transform of the autocorrelation function of the image.

In order to obtain a smooth spectral response we use
the Blackman-Tukey power spectrum estimator. This is the
frequency response of the windowed autocorrelation func-
tion. We employ a triangular smoothing windoww (X)
[18] due to its stable spectral response. The spectral esti-
mator is then

P (Ui)
BT = Ffcxx (Xi)� w (Xi)g (7)

Wherecxx is the estimated autocorrelation function of the
image patch. Our overall goal is to consider the effect of
perspective transformation on the power-spectrum. In prac-
tice, however, we will be concerned with semi-periodic tex-
tures in which the power spectrum is strongly peaked. In

this case we can confine our attention to the way in which
the dominant frequency components transform. According
to our affine approximation and Equation 6, the way the
Fourier domain transforms locally is governed by

Ui = T �

p
�T
Ut (8)

This spectral property has also been exploited by Rosen-
holtz and Malik [10] in their work on local shape-from-
texture.

4 Local Spectral Frequency Under Unit-Sphere Map-
ping

In this section we follow Barnard [7] and model the image
plane in terms of spherical coordinates by projecting it onto
a unit-sphere centred at the optical centre. This projection
simplifies the representation of the perspectivity of the tex-
ture plane and the search for its vanishing points. The main
advantage is that unlike the image plane, the unit-sphere
is a closed space parametrised the two angles of azimuth
and zenith or elevation. Spherical projections of the image
plane have been exploited by several authors [19, 7]. How-
ever, they have employed structural representations of tex-
ture. Instead, we use the local spectral frequency to model
texture.

Figure 1 illustrates the projection geometry. The unit-
sphere is placed at the focal point and the image plane lies
at a distancef along the optical axis. For each point on the
image plane, the position(xi; yi) and the measured spec-
tral angle�i specify the equation of a line. The orienta-
tion � = �i and the normal distance is given byr� =p
x2i + y2i cos(�i��i) (where�i = arctan yi

xi
). Each such
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Figure 1: Projecting lines from the image plane onto the unit-
sphere.

line,L� projects onto a great circle on the unit-sphere. The
great circles are constructed by intersecting the sphere by
the plane that both contains the lineL� and the center of the
sphere. LetG� be a vector that points from the centre of the
unit-sphere to a point on the corresponding great circle. If



the point has azimuth' and elevation , then the vector is
given byG� = (sin' cos ; sin ; cos' cos ). Suppose
thatI� is the normal vector of the plane which contains the
great circle. Figure 1 shows in the geometry of the plane
normal vectorI� and the great circle generator vectorG�.
Since the two vectors are perpendicular to one-another they
satisfy the condition thatG�:I� = 0 The azimuth and ele-
vation angles of points on the great-circle are related to the
normal distance parameters of the straight-line in the fol-
lowing manner

f (sin �: tan + cos � sin') = r� cos' (9)

5 Accumulation on the unit-sphere

Having established the relationship between spectral angle
and vanishing point location, we are now in a position to
develop an accumulation algorithm on the unit-sphere. We
exploit the following two properties to map the search for
vanishing points on to the unit-sphere:

PROPERTY 1 (SPECTRAL FREQUENCY ANGLE CON-
STANCY). If L� is a line radiating from a vanishing point
on the image plane, then every local spectral distribution
taken at points belonging toL� will have a constant spectral
angle�. Conversely, each spectral angle� estimated from
a local frequency distribution on the image plane specifies
the equation of a lineL� which radiates from a correspond-
ing vanishing point [11].

We now exploit Property 1 to directly relate the local
spectral angle to great circles on the unit-sphere. Using the
equality between the angles� and� and using the expres-
sion for a great circle in Equation 9, we find

 = � arctan
f cos� sin'� r� cos'

f sin�
(10)

PROPERTY 2 (FROM SPECTRAL FREQUENCY ANGLES

TO GREAT CIRCLES ). Each spectral angle� estimated
from the local frequency distribution centred at a point on
the image plane maps to a great circle on the unit-sphere.
When several great circles intercept on the unit-sphere, then
the corresponding image-plane spectra will have originated
from a common vanishing point.

To compute the spectral angle distribution, we require
a way of sampling the local power spectrum. In particu-
lar we need a sampling procedure which provides a means
of recovering the angular orientation information residing
in the peaks of the power-spectrum. We accomplish this
by simply searching for local maxima over a filtered repre-
sentation of the local power spectrum. Since we are inter-
ested in the angular information rather than the frequency
contents of the power spectrum, we ignore the very low

frequency components of the power-spectrum since these
mainly describe micro-texture patterns or very slow energy
variations. Providing that we have at least two representa-
tive spectral peaks we can directly generate line directions
according to the angular constancy property. We can use
as many distinct spectral components as we can estimate.
However, a two component decomposition is sufficient for
our purposes. We extract angular decompositions for the
local power spectra at several locations on the image plane.
Using Equation 10 we accumulate evidence for the inter-
sections of great circles on the unit-sphere. To do this we
quantise the unit-sphere into accumulator cells of approx-
imately equal area. Each great circle is traced across the
unit-sphere and the vote count is incremented each time it
crosses a new accumulator cell. Vanishing points are lo-
cated in cells which have accumulated local voting max-
ima. Once two or more intersection points are located, then
the perspective pose of the plane can then be determined as
described in Section 2.

6 Adapting the Scale of the Local Spectral Descriptor

As pointed out earlier, the selection of the physical scale
for local spectral descriptors is critical to accurate shape
from texture. To illustrate this point, Figure 2 shows a dou-
bly sinusoidal texture viewed under perspective projection.
The perspective distortion of the texture is controlled by the
slant-angle of the texture-plane, which in this case is in the
horizontal direction. The main feature to note is that the
spatial frequency of the texture increases in the slant direc-
tion. To accurately estimate the frequency content using
local spectral descriptors, it is important that the local sam-
pling window is adapted to avoid distortion of the measure-
ments. If the size of the window is fixed, then the computed
descriptors will not accurately reflect the local spectral con-
tent at the relevant point on the image plane. Moreover, if
the window is too large then the texture spectra will be de-
focussed. The top row shows the spectra estimated with a
fixed window, while the lower row shows the spectra ob-
tained if an optimally sized sampling window is used. The
main feature to note is that the spectra estimated with the
fixed size window are blurred. The spectra estimated with
the optimally sized window, on the other hand, are crisp. In
order to adapt the size of the spectral window and hence
improve the quality of the local spectral information we
use a spectral version of the idea proposed by Leung and
Malik [14]. The process is based on the assumption that
the distortion between two patches in the image plane can
be approximated by an affine transformation [8, 10]. This
affine transformation can be also computed in the spectral
domain by using the Bracewell theorem [17] which relates
the spectral distortion of local patches under affine transfor-
mation. The idea is basically to track the spectral pattern at



Figure 2: Projected artificial texture with squares showing the
window sizes employed by the spectral estimator together with
the power spectrum response using a fixed data window and our
adaptive window.

different locations over the image plane allowing the scale
to adapt by minimising the affine error between the two lo-
cal spectra. The process consists of the following steps: (1)
given an initial spectrum, find the affine transformation be-
tween two local spectra for several scales up to a maximum
scale allowed; (2) estimate the backprojection affine error
for each scale; (3) find the scale that gives the minimum
error between the spectra after backprojection.

The local spectra are assumed to be related by a 2x2
affine transformation matrix�. The transformation govern-
ing the affine projection of the spectral componentU1 is

U
0

1 = �U1 (11)

Our aim is to track the spectra across the image plane so
as to minimise the degree of defocusing. SupposeU1 is
a crisply estimated spectra and thatU2(s) is a neighbour-
ing but defocussed spectrum estimated with a window size
s. Our tracking process consists of interleaved iterations.
First, we find the least squares affine parameter matrix�1;2
between the two spectra which satisfies the condition

�12 = argmin
�

(U2(s)��U1)
T (U2(s)��U1)

(12)

The solution to this overdetermined problem is

� =
�
U

T
1U1

��1
U

T
1U2(s) (13)

Once the estimates of the affine parameters are to hand,
then we can adjust the size of the spectral windows, so
that the Euclidean distance between the estimated spectra
U2(s) and projected spectra�12U1 is minimised. The opti-
mal scale satisfies the condition

s = argmin
s
jjU2(s)��1;2U1jj (14)

The affine projection and scale re-estimation steps are
interleaved and iterated to convergence. It is important to

point out that we need at least two different spectral com-
ponents to allow the transformation matrix be estimated.
This is not a difficult requirement to be achieved in most of
nearly regular textures. This assumption is only not valid
for pure directional line textures or very random texture
where the detection of spectral peaks is very difficult to
be achieved. Moreover, we consider here only the affine
distortion over the most energetic frequency peaks. The en-
ergy amplitude of the peaks is considered in the analysis as
a guide to provide the correspondence between them.

7 Experiments

In this section we provide some results which illustrate the
accuracy of the planar pose estimation achievable with our
shape-from-texture algorithm. This evaluation is divided
into two parts. We commence by considering textures with
known ground-truth slant and tilt. This part of the study is
based on projected Brodatz textures [20]. The second part
of our experimental study focuses on real texture planes
where the ground truth is unknown.

7.1 Synthetic texture planes

In Figure 3, we have taken three different texture images
from the Brodatz album and have projected them onto plan-
es of known slant and tilt. The textures are regular real
textures of almost uniform element distribution. Superim-
posed on the projected textures are the estimated lines ra-
diating from the corresponding vanishing points as given
by our algorithm. Figure 4 shows the back-projection of
the images onto the recovered texture plane. In most cases
there is little residual perspective distortion. The main fea-
ture to note is that the method performs well even when the
texture plane is highly inclined.

7.2 Real World Examples

This part of the experimental work focuses on real world
textures with unknown ground-truth. The textures used in
this study are two views of a brick-wall, a York pantile roof
and the lattice casing enclosing a PC monitor. The images
were collected using a Kodak DC210 digital camera and are
shown in Figure 5. There is some geometric distortion of
the images due to camera optics. This can be seen by plac-
ing a ruler or straight-edge on the brick-wall images and
observing the deviations along the lines of mortar between
the bricks.

Superimposed on the images are the lines radiating
from the vanishing points. In the case of the brick-wall im-
ages these closely follow the mortar lines. In Figure 6 we
show the back-projection of the textures onto the fronto-
parallel plane using the estimated orientation angles. In the
case of the brick-wall, any residual skew is due to error in



(a) (b) (c) (d)

(e) (f)

Figure 3:Brodatz textures. (a)-(b) D101; (b)-(c) D1; (d)-(e) D20.

the estimation of the slant and tilt parameters. It is clear that
the slant and estimates are accurate but that there is some
residual skew due to poor tilt estimation.

The final set of real world experiments focusses on re-
covering the vanishing points for large man-made planar
objects. The images are provided by indoor views of our
lab and views of skyscrapers collected from the Internet.
These images contain both texture information and bound-
ing rectangles that can be used to confirm by visual inspec-
tion the direction of the vanishing point. These lines are
not used in the analysis. For instance in the indoor scenes
there are rectangular beams and gantries which converge to
the vanishing point. In the skyscraper images, the sides of
the planar faces can be used to confirm the accuracy of the
vanishing point.

In Figure 7 we show the reconstructed perspective plan-
es superimposed on the original images. There are several
examples of both the indoor scenes and the skyscraper im-
ages. The textures used in the analysis are quite varied.
For instance, in the indoor scenes there are rectangular ven-
tilation ducts on the roofing and webbing on the gantry.
The skyscraper textures are largely composed of rectangu-
lar window patterns. The planes are visualised by drawing
radial lines from the vanishing point. In all cases the re-
constructed radial lines from the vanishing point match the
bounding rectangles. In other words, the reconstructions
are good.

8 Conclusions

We have described an algorithm for estimating the perspec-
tive pose of textured planes by projecting spectral informa-
tion onto the unit-sphere. We exploit the fact that the local

(a) (b) (c) (d)

(e) (f)

Figure 4: Back-projected Brodatz textures. (a)-(b) D101;
(b)-(c) D1; (d)-(e) D20.

spectral components are oriented in the direction of vanish-
ing points. As a result each estimated spectral component
can be mapped onto a great circle of the unit-sphere. Van-
ishing points are characterised by locations at which sev-
eral great circles intercept. Based on this observation, we
pose the problem of estimating perspective pose as that of
searching for accumulator cells of maximum contents on
the unit-sphere.

To overcome the problem of defocusing, we also in-
troduce a technique for adaptively setting the size of the
local spectral window for estimating perspective pose from
frequency information.

The method is illustrated to operate effectively on both
synthetic imagery with known ground truth and on a wide
variety of real-world textured planes. One advantage of the
method is that it does not rely on potentially unreliable es-
timates of texture gradient to constrain the tilt angle.

Our future plans revolve around using the method to
estimate shape from the texture distribution of curved ob-
jects. Suffice to say that studies aimed at addressing this
topic are in hand and will be reported in due course.
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