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Abstract.

The segmentation is considered by many researchers as the key technology for a reliable optical

character recognition (OCR) system. To accomplish a sound segmentation, many alternative techniques have been
recently proposed. This paper presents a new technique to recognize characters without an explicit segmentation.
It is based on the automatic construction of windowed operator by relaxed nearest neighbor learning. It has been
implemented, tested and yielded excellent recognition accuracy and computational performance.
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1 Introduction

Commercial machine-printed OCR systems are now being
widely used as a reasonably reliable technology. Never-
theless, they are still far from reading as well as a human.
Thus, the effort to increase their accuracy is still going on.
Roughly, an OCR system can be divided into two main
stages: segmentation and classification. The segmentation
consists on splitting a scanned bitmap image of a document
into individual characters and the classification, also called
recognition, consists on categorizing each segmented char-
acter bitmap into a character class.

Among these two main constituents, the segmentation
is considered by most OCR researchers as weaker compo-
nent of a page reader, responsible for committing most er-
rors. Note that the segmentation of real-world document
images can not be performed on the basis of vertical white
spaces only, for they are usually noisy, distorted by the
scanning process and contain many touching characters.
Thus, the segmentation has been subject of many investiga-
tions and many alternative techniques have been proposed
to perform a reliable segmentation. Classic and unconven-
tional segmentation techniques are surveyed in several pa-
pers [Casey and Lecolinet, 1996; Fujisawa et al., 1992;
Nadler, 1984; Elliman and Lancaster, 1990]. One now
widely used technique is the resegmentation of improperly-
segmented characters detected during some posterior stage.
In classic OCR systems, the result of the segmentation is
passed on to the classifier and there is no feedback loop that
permits the segmenter to make use of the knowledge gained
at classification. In newer approaches, the improperly-
segmented characters detected during classification is sent
back to the segmenter and required to be resegmented.
However, even this strategy can confound, for example,
‘m” with ‘m” and ‘cl” with ‘d’. Thus, many recent OCR

systems use also a language-specific contextual analysis to
detect errors in both classification and segmentation, and
these informations is feedbacked to earlier stages to correct
errors. Another ‘unconventional’ technique is the segmen-
tation and recognition of whole words instead of individual
characters, specially practical for handwritten texts.

The segmentation-free character recognition, also
called recognition-based segmentation, is one more alter-
native segmentation technique [Casey and Lecolinet, 1996].
It consists on simply bypassing the segmentation stage or,
more precisely, segmenting the characters implicitly as a
consequence of their recognition. The principal advantage
of this approach is that the segmentation, the weakest com-
ponent of an OCR system, becomes dispensable. Eliminat-
ing the segmentation, the feedback loop linking the classifi-
cation back to the segmentation is also eliminated, and this
may yield more elegant OCR programs.

Probably, the simplest segmentation-free technique is
the template matching [Duda and Hart, 1973], also referred
as peephole method [Mori et al., 1992], n-tuple feature [Ull-
mann, 1969; Jung et al., 1996] or hit-or-miss operator [Gon-
zalez and Woods, 1992]. It consists on choosing appropri-
ate pixels for both black and white regions so that, looking
through the selected peepholes or window, a given character
is decided to belong to a class if it exactly matches the tem-
plate. Some papers, as [Ullmann, 1969; Jung et al., 1996],
have applied template matching in previously segmented
characters to recognize their class, but this approach is not
of our interest since it is not a segmentation-free technique.
The template matching can also be applied in a completely
unsegmented raw document bitmap. This operation can be
conceived as if the template is copied on a transparency,
then this transparency is superimposed onto bitmap to be
recognized, and it is shifted to every possible positions of



the bitmap, looking for locations where each pixel of tem-
plate has the same color as in bitmap. In the exactly match-
ing positions, a target character is supposed to be found.
The main drawback of this approach is its fragility to rec-
ognize degraded and noisy characters from the real-world,
for a single wrong pixel can lead to misclassification.

To face this problem, many template matchings should
be joined by boolean operations ‘or’ in order to construct
an intricate windowed operator that matches any ideal or
degraded characters from one class and simultaneously re-
jects all shifted and corrupted characters from any other
classes. By windowed operator (also called windowed filter
or mask operation, and denoted in this paper as W-operator
for short) we mean an image transformation that assigns
to an output pixel a value that is function of the input im-
age values at peepholes. As W-operator becomes more and
more elaborate and complex, two other drawbacks of the
template matchings joined by ‘or’ arise: the downfall of
the computational performance and the difficulty to design
manually such a complex W-operator. We are of the opin-
ion that, in practice, this approach will never reach a good
recognition accuracy, due to almost limitless quantity of in-
formations necessary and consequent requirement of huge
memory and processing time.

From the above discussion, two points become clear.
First, that some kind of tool is necessary to help the user
to project the W-operator. Second, that the W-operator pro-
duced by this tool has to be efficient, in terms of memory
and processing time. Many different tools have been pro-
posed in literature to aid the design of W-operator, for ex-
ample, the use of the artificial intelligence [Schmitt, 1989]
and fuzzy expert system [Kim et al., 1997]. Though these
and analogous techniques can somehow help the user, they
still are not a fully automated system and are not focused
on obtaining an efficient W-operator.

As a different strategy, some works employ the train-
ing input-output sample images to project automatically a
W-operator by a learning algorithm. [Harvey and Marshall,
1996] propose the use of genetic algorithm to search for
the optimum gray-scale morphological filter that attenuate
noise, using sample images to evaluate the fitness function
of the projected filter. [Russo, 1996] proposes the use of
neuro-fuzzy operator to filter noisy images. This filter, that
combines the neural and fuzzy paradigms, is trained using
a genetic algorithm and the fitness function is again eval-
vated by calculating the difference between the processed
and noise-free images. [Barrera et al., 1997] present an al-
gorithm, named ISI, to automatically project binary mor-
phological operators using training sample images. In that
paper, the operator is designed to mimic the behavior ob-
served in the sample images. The patterns that are absent in
sample images are considered as statistically unimportant
and consequently labeled ‘don’t care’.

Undoubtedly, three characteristics ought to be taken
into account in the analysis of a technique that projects W-
operators by computational learning. The first is the extent
of the W-operator class that the technique can project. The
broader this class, the more flexible the technique is, for it
can be used in a wider range of image processing applica-
tions. From this point of view, techniques specially aimed
to a particular purpose (as [Harvey and Marshall, 1996;
Russo, 1996] that are directed to attenuate noise) are inade-
quate to character recognition, for the W-operator generated
by them will always belong to a subclass fit to their origi-
nal purposes but may not be suitable in OCR. The second
is the quality of the projected filter, that is, the expecta-
tion of similarity between the processed and ideal images.
This quality mainly lies on the capability of generalizing
the behavior of the W-operator to the patterns that were not
present in the training sample images. From this point of
view, the techniques that do not have an explicit generaliza-
tion policy, as [Barreraet al., 1997], seems to be inapt to our
purposes. And the third is the computational complexity of
the algorithm, that is, the velocity of technique to project a
W-operator and to apply it to an image. Analyzing the com-
putational complexity of the algorithms presented in works
[Harvey and Marshall, 1996; Russo, 1996; Barrera et al.,
1997], seemingly they are very slow in the operator design
stage and no substantial effort is made to speed up the op-
erator application stage.

The technique that seems to fulfill these three desired
characteristics, insofar as possible, is the relaxed nearest
neighbor (NN) learning applied in the design of the W-
operator [Kim, 97; Kim and Cipparrone, 1998]. First be-
cause, since it is not designed for any specific image pro-
cessing purpose, it can be used with no restrictions in the
character recognition. Though this technique can be used
in gray-scale or color images, it yields specially good re-
sults for binary images. Secondly, it has a sound gener-
alization strategy, namely the NN learning. To process a
pattern that has no identical example in sample images, the
most similar pattern is sought. Here, the distance between
two binary patterns is computed by counting the number of
non-matching pixels. The use of a generalization strategy
greatly reduces the quantity of samples necessary to reach
a good accuracy, managing to escape from the requirement
of classifying almost all possible patterns as either ‘tar-
get’ or ‘non-target’. The true NN searching is a compu-
tationally hard problem and apparently no fast solution is
known for high dimensions. The kd-tree and similar tree-
based data structures [Bentley, 1975; Friedman et al., 1977;
Preparata and Shamos, 1985; Pearl, 1984] that are widely
used to accelerate the searching problem, has their perfor-
mance severely degraded in high dimensions. Thus, to ful-
fill the third desired characteristic, the NN searching was
loosened, accepting that one of the near neighbors may be



sometimes found, instead of coercing to find the true NN.
This relaxed NN learning can be performed extremely fast,
up to millions of times faster than the true NN searching,
using a data structure that we have named cut-tree [Kim,
97].

We remark here that many OCR systems already use
some kind of learning to train the classifier. The main dif-
ference of our strategy is that a single training makes possi-
ble the segmentation as well as the classification. Besides,
the use of a fast data structure (cut-tree) makes viable the
application of the function constructed by the learning in
every possible positions of the image. This increases the re-
liability of segmentation and classification because the de-
cision is made on a statistical basis. If a character occupies,
say, 13x 13 pixels in the scanned image, roughly 169 tests is
made and the final decision is based on all these tests. This
amount of tests is only possible in a current-day computer
due to the use of cut-tree.

The relaxed NN learning has been implemented and
tested in OCR. The proposed technique takes only some
seconds in a present-day computer, not only in the recogni-
tion of characters in a page but also in the training. It has
achieved 99.7% of recognition accuracy, to recognize char-
acters of the same font and size as the training ones. Mean-
while, OmniPage 9.0, one of best selling OCR programs,
recorded 97.2% of accuracy using the same bitmaps.

2 Character-recognizing binary W-operator design

Character printing is a binary operation by nature. A printed
text has only two colors: the foreground (usually black)
and the background (usually white). As a consequence,
most OCR systems deal only with binary images. A dig-
ital binary image () may be defined as either a function
Q : Z? — {0,1} (0 is usually defined as a black pixel
and 1 as a white one) or as a subset ) C Z? (a pixel is
white iff it belongs to the subset). Since these two defini-
tions are strictly equivalent, we adopted the first one. The
support of a binary image () is a finite subset of Z? where
the image is actually defined, and will be denoted as S(@).
The size of support is the number of pixels of the image.
Out of its support, an image is considered to be filled with
a background color, usually white.
A binary image operator or binary image filter

V(22 {0,1}) — (22 = {0,1})

is a function that maps a binary image into another.
The word ‘filter’ is somewhat confusing term. Different
branches of image processing assigns different meanings to
the same word. In our case, a transformation that rejects
all but one class of characters can properly called filter, be-
cause a filter originally means a device for separating some
substances from others. Nevertheless, to prevent misunder-
standings, we will avoid to use this term, using rather the

word ‘operator’. The space of operators defined above is
excessively large even considering that an image is defined
only within its support, what obstructs the project and com-
putational codification of an operator. Thus, in most cases,
only those operators where the color of an output pixel is
determined by a corresponding small area of the input im-
age, called window or peepholes, are used. We will refer
to them as windowed operators (W-operators). Formally, a
We-operator ¥ is an operator that is defined via a sequence
of points called window

-

W= (Wi,..,Wy,), W; € 22

and a characteristic function
¥ {0, 1} — {0,1}
as follows:

¥(Q)(p) = Y(Q(W1 + p), .., Q(Wy + p))

where Q : Z2 — {0,1} and p € Z2.
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Figure 1: A portion of input sample (A*)

Figure 2: A portion of output sample (AY)



Let the binary images A*, AY, @* and @)¥ be respec-
tively input sample, output sample, image to be recognized
and ideal output image. We will suppose that there is only
one pair of training images (A* and AY), because if there
are many sample images they can be ‘glued’ together to
form a single pair. In our application, the input sample
image is formed by ‘pasting’ a set of scanned document
images and the output sample image is manually edited to
indicate with a black rectangle the positions where the tar-
get characters are located (Figs. 1 and 2). Our goal is to
project a W-operator W, using sample images A* and AY,
such that when ¥ processes an image to be recognized )*
(Fig. 3), a processed image QP = ¥(Q*) (Fig. 4) that indi-
cates positions of target characters is produced. If the learn-
ing process was effective, this image may be expected to be
‘similar’ to an usually unknown ideal output image )% that
perfectly indicates the positions of target characters.
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Figure 3: A portion of page to be recognized (Q*)
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Figure 4: Output of W-operator (QP)

Let m be the number of pixels of the sample images
A* and AY. The colors of pixels of A*, that belong to the
window W translated to a pixel p, define a point

a* = [AX(W1 + p), ..., A (Wy + p)]

in the space {0, 1}*. This point, whose coordinates are the
colors of pixels within the window W+ p, 18 called a sample
pattern or template. To each template «* so obtained, there
is an associated output color or value a¥ = AY (p) € {0, 1}.
The sample pattern and its output value together form an
example or sample. Let us denote the data obtained when
all pixels of A* and AY are scanned as

= (a1, ....am) = ((aF,a)), ..., (aX,,a¥,))
and call it sample sequence.
In the W-operator designing stage, a learning algo-
rithm

A o3 x {o,1h)™ | — ({0,13* — {0,1})

m>1

receives a sample sequence d and generates a characteristic
function ¢» = A(d@). The function ¢ and the window W
together represent the W-operator .

Let us suppose that an unknown joint probability dis-
tribution P in the space {0, 1} x {0, 1} had generated in-
dependently each element of the sequence @. If the res-
olution of the images are fine enough, the window size
is sufficiently large and the images are noiseless, it can
be expected that each input pattern is associated with an
unique output color, that is, P(a¥, 0) is either 0 or 1, and
P(a¥,1) = 1 — P(a¥,0). In practice, the suppositions
above do not hold perfectly and thus P(a¥, 0) may assume
values different from 0 and 1. This makes possible that
conflicting examples appear in a sample sequence. We say
two examples (a¥, a¥) and (a¥, aY) conflict if a¥ = a¥ but
al # a}'.

Let us suppose also that the same probability distri-
bution P generates independently each element of the se-
quence to be recognized

JZ (1117 7(JH) == ((QTaqi,)a ceey (qr)faqr}:))

that forms the image to be recognized (Q* and ideal output
image ¥ (n is the number of pixels of the images ()* and
Q)Y). In the W-operator application stage, the characteristic
function 4 is applied to each input query pattern ¢¥, gener-
ating n output processed colors or values ¢P = (¢¥). The
sequence of n processed colors forms the processed image
Q.

If A was a good learning algorithm, what value should
qF = ¥(q¥) = A(d)(¢¥) be? Intuitively, given a query pat-
tern ¢, we should search for a training sample (a¥, a;’") €d
whose sample template is the same as the query pattern
(a¥ = ¢F). Then the sample output color a}' should be
chosen as the processed value, that is, ¢ = (¢F) = aj’.
Now suppose that, for a given query pattern ¢*, there are
more than one matching template, say, N samples

(a;cl’a?l)’ o (a;cN’ a;’N)



where a¥, = ¢, 1 < k < N. As has been discussed
above, in an ideal environment P(a¥,0) is either 0 or 1,
and consequently N output colors will be the same, ei-
ther black or white and this color should be assigned to
$(¢¥). Butin view of the distortion in the scanning pro-
cess, human errors in editing the sample output image etc.,
there can be conflicting samples. If one or more of N out-
put colors are different from the others, we should assign
¥(gF) = mode(a? , ..., a7 ). Mode is the value that occurs
most frequently in a given sequence.

The strategy described above seems to be very natural
and intuitive. But it is useless in practice, for no policy has
been defined to attribute an output value to query patterns
that have no exactly matching sample template. Moreover,
in practice most of query patterns do not have an exactly
matching template. To verify this claim, consider first that
the window to be used in OCR can not be too small, be-
cause such a choice, despite speeding up the processing,
may produce many conflicting samples. Thus, in our ap-
plication we have used two windows with 35 and 37 peep-
holes and we deem that significantly smaller windows can
not be used to recognize characters from a real-world doc-
ument. Assuming w = 35, the size of the pattern space
is 235 and a characteristic function v : {0,1}%> — {0, 1}
has to be designed. To achieve this goal without a gener-
alization policy, a sample sequence of length at least 23°
would have been necessary, or 9000 pairs of 2000 x 2000
binary sample images! Evidently, such a demand for sam-
ple images is not possible to be fulfilled. To escape from
the exigency of classifying almost all possible patterns as
either ‘target’ or ‘non-target’, a heuristic generalization is
necessary. By heuristic generalization we mean a strategy
to extend the behavior of the W-operator to unprogrammed
patterns, based only on small number of catalogued proto-
type templates. Using the nearest neighbor (NN) as gen-
eralization strategy, a good recognition accuracy was ob-
tained using only one pair of 2424 x 818 sample images.

Supposing that each character class corresponds to a
set of continuous regions in the pattern space, the NN learn-
ing seems to be a reliable generalization scheme to be used
in W-operator learning [Kim and Cipparrone, 1998], be-
cause two similar patterns is likely to belong to a same
class. The NN strategy can be defined as follows: for a
given query pattern ¢¥, its processed color ¢¥ = ¢ (¢¥) =
A (d)(¢¥) is the mode among the output values of the NNs
of ¢¥ in the training sequence.

3 Nearest neighbor searching algorithms

Using the NN learning, a pattern that has a similar sample
template is correctly classified, even if there is no exactly
matching template. To use the NN learning in practice, a
good algorithm for the NN searching problem is required.

The NN searching problem can be stated as follows: “Given
m training points a¥, ..., aX and n query points ¢¥, ..., ¢*
(all points in the space {0, 1}*) find, for each query point
g¥, the nearest training point (or points).” Note that there
can be two or more equally distant nearest points. In OCR,
the points are binary patterns and the distance between two
patterns is the number of non-matching pixels.

The NN searching problem has a trivial and naive so-
lution. In this solution, the distances between each ¢ and
all m training points have to be evaluated and hence the
nearest training points are chosen. Henceforth we will re-
fer to this as brute-force algorithm. Since the distances be-
tween all m training points and all n query points have to be
computed, and as each distance evaluation demands O(w)
operations, the brute-force’s computational complexity is
O(wmn). This analysis proves that this algorithm is exces-
sively slow. A practical experiment shows that a present-
day computer would take around one year to execute the
application depicted in this paper (after one-day process-
ing, only 0.3% of a page had been processed)!

There are faster algorithms for the NN searching. One
such algorithm is the Voronoi diagram. Despite its appeal-
ing properties, the Voronoi diagram can be used in practice
only for two-dimensional problems, because the quantity of
vertices and edges of Voronoi diagram grows exponentially
as the dimension increases [Preparata and Shamos, 1985],
requiring a proportional quantity of memory.

Another widely used algorithm is the kd-tree. The kd-
tree is a generalization of the simple binary tree used for
sorting and searching and it provides an efficient search-
ing mechanism for examining only those points close to the
query point, thereby reducing the computational effort. The
root of kd-tree represents the set of all training points. Each
non-terminal node has two successor nodes that represent
two subsets defined by partitioning parent’s training points.
The terminal nodes represent mutually exclusive small sub-
sets of training points. The kd-tree data structure enables to
find quickly a terminal node that contains a set of training
points close to the query point ¢*. Then, only the distances
between the training points within this node and the query
point have to be evaluated to compute a candidate point to
the NN. A recursive backtracking process is necessary to
certify that the candidate is indeed the NN. For a thorough
exposition, the reader is referred to [Bentley, 1975; Fried-
man et al., 1977; Preparata and Shamos, 1985; Pearl, 1984].

The kd-tree has been implemented and tested in OCR
application. To use the kd-tree in the OCR, the output col-
ors a}' have to be stored in the terminal nodes, in addition
to the corresponding input patterns . In practice, to min-
imize the use of the memory, only the coordinates (line and
column numbers) of the pattern o in A* were stored in
the terminal nodes, instead of input patterns. Note that the
same coordinates indicate the location of output color a}'



in AY. These informations, together with the window W
and images A* and AY, allow to evaluate a¥ and aj’. A
kd-tree, constructed as above, can be viewed as a charac-
teristic function . Given a pattern ¢¥, a searching in the
kd-tree finds the most similar training patterns. The mode
of the nearest patterns’ output colors is then defined as the
processed output value ¢P.

According to [Preparata and Shamos, 1985], kd-tree
uses O(wm) storage, a fair quantity. The construction of
a kd-tree can be effected in time O(wm log m), that is, the
construction is extremely fast. Nevertheless, the n points
searching in a kd-tree takes O (nwm(1=1/*)), meaning that
the computational performance of the searching in the kd-
tree degrades quickly as the dimension of the window’s size
increases, soon becoming as bad as brute-force. In practice,
the kd-tree that recognizes a character could be constructed
in a few seconds. But kd-tree processed only 0.9% of a
page in one day, using a window of size 35. That is, the kd-
tree would take four months to process a whole page. This
is three times faster than the brute-force, but unfortunately
still is not helpful...
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Figure 5: Pattern space

4 Relaxed nearest neighbor learning

An alternative technique can be obtained by substituting the
requirement of finding the NNs for finding one near neigh-
bor. The kd-tree was modified for this relaxed searching
and the modified version was named cut-tree [Kim, 1997].
In essence, the cut-tree is obtained from the kd-tree by not
allowing the recursive backtracking process in the search-
ing algorithm. Besides increasing the speed, this alteration
also eliminates the necessity of storing input patterns a
in the terminal nodes. That is, the line and column num-
bers of o in A, as well as the images A* and AY them-
selves, are no more stored. Only the output color a}' is
stored, diminishing the memory use. This leads to a O(m)
storage that does no more depend on the window’s size w
(the analysis is shown in the final part of this section). The
cut-tree, at most times, may not find the true NN, but only
one ‘near neighbor’. On the other hand, this approximated
NN searching can be executed millions times faster than the
strict searching. To expose the construction of kd-tree, let
be given m sample template points with the corresponding
output colors:

° am) = ((a)lcv ai’), L (a:w a%)),

where a¥ € {0,1}" and «f € {0,1}. In the cut-tree
generating process, the pattern space {0, 1}% is split into
two halves, and all sample patterns with black color in the
splitting axis W, will belong to one half-space and those
with white color to another. The dimension of half-spaces
obtained is one less than that of original space, that is,
{0,1}*~1. To obtain an optimized tree, the splitting axis
s € [l..w] has to be chosen so that the resulting two
half-spaces contain as equal as possible number of sample
points. If the difference of points is always zero or one, a
perfectly balanced tree will be created. As the difference of
number of samples in two halves increases, more and more
degenerated tree will be constructed. For each one of two
half-spaces obtained, the splitting process continues recur-
sively, generating smaller and smaller spaces. This process
stops when each space contains only either samples with a
same output color or only samples with a same input pat-
tern but with two different output colors. In the first case, a
terminal node is created and the output color is stored in it.
In the second case, called conflict, the mode of the output
colors is evaluated and stored. Each splitting corresponds
to an internal node of the cut-tree and each final sub-space
corresponds to a terminal node.

For example, let w = 3 and consider the following
training sample sequence:

@=( [000,0], (000, 0], [000, 1], [001, 1],
[100, 1], [100, 1], [011, 1], [111,0] ).

a= (al, ..

The notation [011, 1] indicates an training example where
the input pattern is black in axis Wy, white in axes W5 and



W1 W2 W3

Figure 6: Partition of pattern space

W3, and the output color is white. As the pattern space is
three-dimensional, it can be represented as a cube (Fig. 5).
Let us denote the space {0,1}" as [XXX], since a point
in this space can vary its value in any of three axes. To
indicate that a sub-space has a fixed value in some axis, the
corresponding X may be substituted by O or 1.

If the space [XXX] is split at axis W5, the two resulting
half-spaces will contain 6 and 2 samples, while if the split-
ting occurs at axes Wy or W3, two half-spaces will contain
5 and 3 samples. So, either Wi or W3 may be chosen as
splitting axis, but not W5. Supposing that W, is chosen,
the two resulting half-spaces are [0XX] and [1XX]. This
and successive cleavages are illustrated in Fig. 6 and the
cut-tree produced in Fig. 7.

The half-space [0XX] contains 5 samples

(000, 0], [000, 0], [000, 1], [001, 1], [011, 1])
and the half-space [1XX] contains 3 samples
([100, 1], [100, 1], [111, 0]).

Splitting the half-space [0XX] at axis W5, the two result-
ing quarter-spaces will contain 4 and 1 samples, while
splitting at W5 two quarter-spaces with 3 and 2 samples
will be yielded. Thus, W3 must be chosen to split this

half-space, generating two quarter-spaces: [0X0] with sam-
ples ([000,0],[000,0],[000,1]) and [0X1] with samples
(1001, 1], [011, 1).

The quarter-space [0X0] is not split again since it con-
tains three examples with a same pattern. As the outputs of
three examples are not a unique value, there is a conflict.
To solve it, the mode is evaluated and hence 0 is chosen as
the output color. The quarter-space [0X1] also is not split
since its two samples have a same output color 1.

Figure 7: Cut-tree

The half-space [1XX] can be split at axis Wy or Ws.
No matter what axis is chosen, the resulting quarter-spaces
will contain 2 and 1 samples. Let us assume that the split-
ting has occurred at W,. Then the quarter-space [10X]
will contain samples ([100, 1],[100,1]) and the quarter-
space [11X] will contain the sample [111, 0]. These quarter-
spaces are not split again as in each there is only one output
color.

A cut-tree represents a characteristic function . The
value of the function ¢P = ¢ (¢¥) is evaluated by perform-
ing a searching in the cut-tree. For example, consider the
cut-tree of Fig. 7 and suppose that ¢ (¢¥) ought to be eval-
uated, where ¢ = [101]. In the root node, we are forced to
choose the right sub-tree, for the query point has value 1 in
axis W;. In the node labeled W5, we are conducted to the
left because the query point has value 0 in axis W5, reaching
the external node with value 1 and therefore ([101]) = 1.

The construction algorithms of the cut-tree and kd-tree
are quite similar. Therefore, a cut-tree can be built in aver-
age time O(wmlogm), like kd-tree. If a cut-tree is built
from m samples and if every terminal node contains only
one sample, it is easy to see that the height of the cut-tree
will be [log, m] + 1 (where [-] stands for round up). Thus,
if there can exist terminal nodes with more than one sample,
the height will be at most [log, m] + 1. Consequently, the
searching of n query points in a cut-tree can be performed
in time O(nlogm), for the searching processes in a cut-
tree and in a standard binary tree are identical. Note that



Figure 8: Filtering and thresholding

the searching complexity does not depend on the dimen-
sion w of the pattern space at all. Finally, if every termi-
nal node contains only one sample, the number of terminal
nodes will be m and the number of internal nodes will be
m — 1. As the quantity of informations stored in a terminal
or internal node does not depend on any parameter, the to-
tal storage is simply O (). In practice, the total number of
nodes is much smaller than 2/m — 1, as many terminal nodes
contain much more than one sample.

This analysis shows that both the construction and the
searching are extremely fast in the cut-tree and the memory
use is economical, even in high dimension. Experimental
results confirm our analysis. As has been previously men-
tioned, a same OCR task takes one year using brute-force,
four months using kd-tree and only 5 seconds using cut-
tree. Seemingly, the cut-tree is far faster than other tech-
niques found in the literature for the automatic filter de-
signing [Harvey and Marshall, 1996; Russo, 1996; Barrera
et al., 1997]. This claim can be argued by analyzing the
complexity of the algorithms presented in those works.

5 Experimental results and discussions

The exposed technique has been used to recognize char-
acters ‘a’, ..., ‘¢’ in 6 low-quality and in 4 high-quality
scanned pages.

The low-quality bitmaps were obtained from a poor-
printed pocket book. A hand-held scanner was used to scan
pages in 256 gray-scales at 600 dpi. A hand-held scanned
usually generates more pattern mutations than a desktop
model. The images were resampled at 200 dpi and thresh-
olded, resulting 1212 x 818 binary images. Two such pages
were ‘glued’ together and used as the input sample. Fig. 1
depicts a portion of this image. The output sample was
edited manually, imprinting target characters with a rectan-
gular mark (Fig. 2). A window with 35 peepholes scattered
in 13 x 13 grid was used to recognize characters ‘a’, ‘c’, ‘¢’
and another window with 37 peepholes scattered in 21 x 13
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Figure 10: Recognition of ‘a’, ..., ‘e

grid to recognize ‘b’ and ‘d’.

Processing Fig. 3 with W-operator designed to recog-
nize ‘a’, Fig. 4 is yielded. Filtering this image witha 13x 13
(or 21 x 13) linear filter and thresholding the result, Fig. 8
is obtained. The center of each connected component was
detected and dilated up to the size of the character and the
outcome was superimposed on the original image, resulting
Fig. 9. Fig. 10 shows this technique repeated to characters
‘a’, ..., ‘¢’. This technique has committed only 6 errors
in 1860 recognized characters (99.7% of accuracy, Tab. 1).
Meanwhile, OmniPage Pro 9.0, one of best selling com-
mercial OCR programs, made 53 mistakes using the same
images (97.2% of accuracy). Three out of six errors com-
mitted by our technique were in recognition of the charac-
ter ‘b’, since sample images contained only 54 examples of
characters ‘b’. The training took 56s and the application 5s
in a Pentium-300. The W-operators that recognize ‘a’, ‘b’,
‘c’, ‘d’ and ‘e’ occupied respectively 487, 317, 271, 431
and 560 Kbytes.

The high-quality bitmaps were obtained by scanning
deskjet-printed documents (Times New Roman 12pt, ‘A4’
paper) with a desktop scanner. The documents were ini-



tially scanned in 256 gray-scales at 600 dpi and then re-
sampled to 200 dpi and thresholded, resulting 2082 x 1424
binary images. In order to obtain a sample page with ap-
proximately equal number of occurrences of each charac-
ter, a document containing only lowercase characters ‘a’,
..., ‘z" and blank spaces was generated randomly, printed
and scanned like other documents. The same recognition
process used for low-quality documents was used here and
committed no error. OmniPage Pro 9.0 made one mistake
in recognition of the same images.

Relaxed NN OmniPage Pro 9.0

a—? 0 15
?7—>a 0 1
b—? 3 2
?7—b 0 1
c—? 1 2
?7>c¢ 0 4
d—? 1 3
?7—>d 0 8
e—? 1 16
?7—>e 0 1
Total 6 53
Accuracy 99.7% 97.2%

Table 1: Error rate for low-quality bitmaps

As a future work, an omni-font OCR based on the re-
laxed NN learning is expected to be brought into being us-
ing a feature vector similar to that described in [Bokser,
1992]. This feature vector consists primarily of a blurred
gray-scale reduction of the image, obtained by dividing the
input image into zones and assigning to each a value related
to the relative density of black pixels in that zone. Another
future improvement is to construct by relaxed NN learning
a cut-tree that recognizes all characters simultaneously, as-
signing to each character a different gray-scale.

6 Conclusions

This paper has presented a new segmentation-free OCR
technique. It is based on automatic design of windowed
operator. The use of nearest neighbor learning has been
considered first but it is computationally too hard problem.
Thus, an approximate solution offered by cut-tree has been
proposed to be used. This paper has also presented exper-
imental informations that confirms the effectiveness of the
proposed technique.
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