Towards a Method for Automatic Identification of Trees in Aerial Images

Bing Wang ${ }^{1}$, Italo O. Matias ${ }^{2}$, and Luiz M. G. Gonçalves ${ }^{12}$
${ }^{1}$ Department of Computer Science University of Massachusetts (UMASS), Amherst MA 01003 USA
(bing, lmarcos) @cs.umass.edu
${ }^{2}$ Laboratório de Computação Gráfica - COPPE
Universidade Federal do Rio de Janeiro (UFRJ), CP 68511 Rio de Janeiro RJ 21945-970
(itom) @lcg.ufrj.br

Abstract

This work describes ongoing research towards finding a methodology to extract information about trees from aerial images. Examples of output are the approximate number of trees, the diameter and area of a tree, and the total green area. For regions with sparse trees, a method based on segmentation and border extraction is described. It works reasonable well segregating trees from the other components (buildings, etc). For dense tree areas, two feature based methods, one using simple template-matching and the other one using a Backpropagation neural-network classifier, are described. Both methods work reasonable well if a good sample of trees is provided.

Method for images with sparse trees

Aerial image with some sparse trees and houses.

Gray scale image obtained from edge detection.

Binary image after applying a "close" operation.

Band thresholding over the original image.

Resulting image by not using color information.
 formation.

Method for images with dense trees

Resulting image by using the color in-

Detected tree areas are marked with white squares.

Original "mosaic" image.
\downarrow
Beanaye
Samples of trees $(l=1, \ldots, 7)$.
\downarrow

$$
G^{(0)}=c e^{a r^{2}}
$$

$$
G^{(1)}=2 a c e^{a r^{2}}(x+y)
$$

$$
G^{(2)}=4 a c e^{a r^{2}}\left(a\left(r^{2}+x+y\right)+1\right) \rightarrow
$$

where $r^{2}=x^{2}+y^{2}, a=\frac{-1}{2 s^{2}}$,

$$
c=\frac{1}{s \sqrt{2 \pi}}, \text { and } s=1.7
$$

Gaussian masks for feature extraction.

$$
o_{j}=\left(1+e^{-\sum_{i=0}^{A} \omega_{i, j} x_{i}}\right)^{-1}
$$

$\Delta \omega_{i, j}(t+1)=\epsilon \delta_{j} o_{i}+\alpha \Delta \omega_{i, j}(t)$,
$\delta_{j}=\left\{\begin{array}{l}o_{j}\left(1-o_{j}\right)\left(y_{j}-o_{j}\right) \\ o_{j}\left(1-o_{j}\right) \sum_{k=1}^{B} \delta_{k} \omega_{j k}\end{array}\right.$
Backprop Neural-Network (BP).
\uparrow
$\mu_{l, i, j}^{(k)}=\frac{1}{M N} \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{G_{l, i+m, j+n}^{(k)}}{G^{(k)_{M a x}}}$
$\sigma_{l, i, j}^{(k)}{ }^{2}=$
$\frac{1}{M N} \sum_{m=1}^{M} \sum_{n=1}^{N}\left(\frac{G_{l, i+m, j+n}^{(k)}}{G^{(k)_{M a x}}}-\mu_{l, i, j}^{(k)}\right)^{2}$
Invariant moments from Gaussian.

Resulting images. Top uses $B P$ (140 trees found). Botton uses templatematching (130 trees found).

\uparrow $\operatorname{Min}_{l}\left\{\sum_{i=1}^{I} \sum_{j=1}^{J}\left(\mu_{i, j}^{(k)}-\mu_{l, i, j}^{(k)}\right)^{2}+\right.$ $\left.\sum_{i=1}^{I} \sum_{j=1}^{J}\left(\sigma_{i, j}^{(k)}-\sigma_{l, i, j}^{(k)}\right)^{2}\right\}<\epsilon$

Minimum template-matching.

