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Abstract. Recent research topicsdeal with the problem how to reconstruct real-world objectsfrom a set of
multiple range images showing only portions of the object. Here we present an approach how to generate
and adapt a geometrical deformable model (GDM) to a set of aready registered range images in order to
reconstruct the complete object. Fromtherangeimageswe deriveasigned distancefunctionwhichimplicitly
defines the surface of the object. Then, an intermediate volumeis carved out and a sparse triangle mesh is
generated. The proposed GDM scheme refines the initial roughly approximated mesh by deformation and
adaptive subtriangul ation. Dueto the adaptiveimprovement of themesh up to the desired degree of accuracy,
our method describes an efficient way how to reconstruct the object in user-definabl e accuracy.
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1 Introduction

The reconstruction of complete object geometries with a

3D scanner deviceisgenerally not possiblewithinone scan.

Instead, the object has to be scanned from several direc-
tionsin order to capture its complete geometry. The re-
sulting range images must be registered and can subse-
quently be integrated into amodel of the object surface.
Dueto some amount of noisein the original dataand

dueto partially incompl ete captured surface portions, there

isaneed for interpolating the object surface at falsified or
undefined gaps. A uniformapproach solvingthisproblem
is the geometrical deformable model (GDM). The GDM
was first described by Miller et d. [3] for the segmenta
tion of volumetric data sets. Basically, a GDM isatrian-
gle mesh that dynamically deforms by moving each mesh
vertex in the direction of steepest descent aong the sur-
face of a cost function. The cost function integrates al
constraints on the shape and position of the mesh into a
consistent mathematical model. By minimizing the total
costs the best solutionis achieved.

However, acrucia drawback of thisapproach isthe
smoothing of fine details of the surface even in regions
whereit isdefined properly, e.g., sharp edges. Itiscaused
by improper weighting of internal cost terms which are
intended to preserve the mesh smoothness and topol ogy.
We propose adeformation scheme that moves thevertices
under constraint to minimize the external cost term ex-
clusively. The presented optimization procedureachieves
high quality of the mesh by moving the verticesaong two
typesof forces, aspringforceand an expansionforce. The
spring force maintains the mesh regularly whereas the ex-
pansion force drives the mesh towards the surface.

Figurel1: (a) plaster bust of composer Richard Wagner (b)
3D model reconstructed from 27 scanned range images

The remainder of this paper is organized asfollows.
Section 2 gives an overview of the processing steps. Sec-
tion 3 discusses the definition of theimplicit surface from
multipleregistered rangeimages. Section 4 dealswiththe
generation of thetemplate mesh. Section 5 discussestopo-
logica improvements of the mesh applied during the de-
formation process. Section 6 presents two approaches to
improve the vertex positionsof a given mesh: afast one
and the proposed GDM approach. In section 7 resultsare
shown and discussed.

2 Overview

The processing stepsand i ntermedi ate representationsthat
yield an accurate, sparsetriangul ated surface starting from
a set of range images is shown in Fig. 2. The first step
is the registration of range images [5] and results in the
model cluster. The cluster holds the information needed
to define an implicit surface, i.e., the range images and
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Figure 2: Pipeline for adapting the GDM

their attached transformation matrices. For the calcula
tion of Euclidean distances to the surface and for higher
performance it aso contains a distance transformed vol-
ume that assigns every voxd its distance to the nearest
surface point. In a subsequent step, a binary volume is
scul ptured. By using an octreerepresentation during scul p-
turing we are able to generate a volume of arbitrary res-
olution. By application of the marching cube agorithm
a template triangle mesh is generated from the volume.
This template is then adapted to the surface by deforma-
tion and subtriangulation.

3 Déefinition of the Implicit Surface
3.1 Distance Function

Initially, the surface of the object to be reconstructed is
given by anumber of rangeimagesthat are already regis-
tered. The parameter grid of the range images is defined
by the coordinate system of the scanner, e.g., acylindri-
cal or aperspective system. By interpol ating between the
grid pointsthe surface can be continuously completed.

Now, we convert the range images to a signed dis-
tance function. For the definition of the distance we de-
fine for each range image afunction ¢; () that measures
the signed projection distance between a point in space
and the interpolated surface in the range image. The cor-
responding point in the range image is found by project-
ing the point « onto the parameter grid of the range im-
age. Thus, apositivedistance indicatesthat the point lies
between the scanner and the surface and conseguently is
visiblewhereas anegativedistanceindicatesthat the point
lies below the surface and isinvisible.

The synthesis of multiple range images is achieved
by combining the functions ¢, (=) as shownineqg. (1).

flaymax  { gife) )

The implicitly defined surface is given by the zero
crossings of f(a). It isnow possibleto calculate thein-
tersection between an arbitrary ray and the surface of the
object.

1)
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3.2 Distance Transformation

The distance function discussed in the previous subsec-
tion cal cul ates the proj ection distance, which hasthe same
zero crossingsastheEuclidean distance. Thefunctioncon-
sequently is suitablefor the definition of theimplicit sur-
face and for thedefinition of thevisibility of apoint. How-
ever, in order to approximatethe Euclidean distance from
apointtothenearest surface point, we propagate distances
into space by calculating a distance transformed volume.
This hasthe positiveside effect that it a so reduces the f -
fort of calculating the distance, which otherwise depends
linearly on the number of range images. In order to pre-
vent loss of informationthe projection distancewithin the
voxels that contain portions of the surface can be calcu-
lated additionally.

The distance transformed volume is generated by a
floating point number based chamfering distancetransfor-
mation. Thedistanceisat first defined only for voxel sthat
contain parts of the object surface. For initiaization of
these voxel s the projection distance to the center of grav-
ity of the voxel is calculated and stored to the voxd. By
application of atwo passtransformation algorithm[1] the
distances are propagated successively into the neighbor-
hood. After the distance transformation is compl eted, the
invisible voxed s are defined as to be negative.

4 Generating the Template Mesh

In order to achieve afirst approximation of the object sur-
face and to derive the topology of the object up to the de-
sired level of detail, we useascul pturingapproachtobuild
an intermediate volumetric model. For each voxel = of
the volume the distance function f () can be evaluated
and we thus obtain the binary decision whether the point
does belong to the object. In some cases, there remain
some volumetric regions that do not belong to the object
because the associated voxes eg., lie on the back-face
of the object, far below one of the range images defining
the front side. However, after generating the intermedi-
ate volumetric model, the marching cube agorithm with
a look-up table that resolves ambiguous cases [4] can be
applied to generate a polygonal representation. In order
to delete wrong volumetric regionsall connected meshes
are detected and al but the largest mesh are deleted. The
accuracy of this polygona mesh isimproved by moving
theverticesof themesh ontothe surface implicitly defined
by the registered range images [5].

5 Improving the Mesh Topology

To be able to approximate fine details of the surface our
scheme refines the grid at surface portionswith high cur-
vature and removes triangleswhere the reconstructed sur-
faceisnearly flat. Thisbenefitsfor acompact representa-
tion and accel erates operations performed on the mesh.
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By merging those pointsconnected by very short edges

and deleting the corresponding triangles, the number of
triangles can be reduced very easily. In addition, standard
mesh simplification and optimization a gorithms such as
edge swapping [6, 7] are applied.

5.1 Subdivision

Trianglesare splittedinto anumber of facesif thedistance
of one of the centers of gravity of the three edges or of
the center of gravity of thetriangle is larger than a spec-
ified threshold value. The new vertices are found as the
intersection of the mesh normal withtheimplicit surface.
After determination of the point locations one of the sub-
triangulation schemes of Fig. 3 ischosen and the splitted
triangle is replaced by the new triangles.

VY
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Figure 3: Subdivision configurations

6 Improving Vertex Positions
6.1 A Fast Approach: Smooth and Reproject

The initia triangulation can be improved by shifting the
vertices of the mesh onto the center of gravity of the sur-
rounding polygon (smoothing). We then define aray that
runs through the shifted vertex and parallel to the mean
norma of the neighboring triangles. The vertex is now
re-projected onto the surface by finding the nearest sur-
face intersection. Hence we derive triangles of approxi-
mately equa size and inner angles. The visudization of
the object appearsto begreatly improved assmall noisein
the vertex coordinates only slightly influences the surface
normal of thetriangle. On the other hand, vertices may be
delocalized apart from small step edges of the surface.

6.2 GDM
6.2.1 Force Definition

The deformation of the GDM from theinitial templateis
driven by the simulation of two forces. On one hand the
edgesact likesprings. According to equation (2) thespring
forces are normalized in order to yield equilatera trian-

gles.
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On the other hand a pressure force defined along the
surface normal s causes asmooth deformation of the GDM
asit isdonefor reprojection.

6.2.2 Optimization Procedure

The deformation of the GDM s performed iteratively by
moving each vertex along the direction of each force. The
step size for thisis chosen individually for both forces at
each vertex. Two strategies are sensible.

1) As afirst step, move the vertex along the spring
force. The step size has to be smaller than the distance
value of the starting point and shorter than the distance to
the center of gravity of the surrounding polygon. If ade-
fined distance value calculated for al adjacent triangles
increases, thisstepisnot performed. Inasecond step, move
the vertex dong the positive normal direction. The step
size hasto besmaller than or equal to thedistance val ue of
the starting point. If the distance value of the adjacent tri-
angles increases, the negative normal direction istested.

2) Since the second step of the above procedure as-
sures for minimizingthe distance of the adjacent triangles
to the surface, the constraint for the movements along the
spring force can be relaxed. This is done by a stochas-
tic approach. We adapt an acceptance criteriafrom simu-
lated annealing [2] which isshown in equation (3). If the
probability P;; is larger than an equally distributed ran-
dom number intheinterval of [0 .. .1) thenew stateisac-
cepted, otherwiserejected.

For the results shown in the next section the latter
method hasbeen used. Inequation (3) 7" indicatesthetem-
perature of the system and A(.) indicates the Euclidean
distance to the surface as mentioned in section 3.2.
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Figure 4: Approximation error for both vertex optimiza-
tion methods
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Figure5: Three stages of the GDM-adaption process with (a) 1300 (b) 7500 (c) 16000 triangles

In order to cal culate the distance of an arbitrary point
to the surface, the distance transformed volume is sam-
pled at each vertex point and additionally at the center of
gravity of each triangle. From these sampl e pointstheroot
mean sguare distance is calculated. As can be seen later
the minimization of thisaverage va ueresultsin high qual-
ity surface approximation. The procedure terminates if
the average vertex movement is below a given threshold
value. The adaption algorithm is summarized asfollows:

Adapt Mesh (T)
loop {

loop {
remove short edges (T);

remove redundant points (T);
swap edges (T);
} until no more vertices are removed;
improve vertex positions(T);
subdivision (T);
swap edges (T);
improve vertex positions(T);
} until therequired accuracy isreached;

7 Results

Results are presented for abust of the composer Richard
Wagner. The bust was reconstructed from 27 range im-
ages. The topology of the bust and afirst approximation
of its shape was sculptured in avolume of 23 x 25 x 16
voxels. Fig. 5(a) shows the triangulation generated with
the marching cube algorithm. Small edges have aready
been eliminated. Afterwards our GDM adaption proce-
dure was applied to the data set as it is presented in Fig.
5(b) and (c).

Simultaneoudly the root mean square approximation
error has been cal culated asdistance value of each triangle
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center of gravity resp. vertex point during each subdivi-
sion step. Ascan be seen from Fig. 4 the GDM approach
leadsto far lower approximation errors than thefaster ap-
proach of smooth and reproject. Dependent on the object,
approximately 4 times the number of trianglesare needed
for the smooth and reproject approach in order to achieve
the same quality for the reconstructed object. However,
the GDM approach requires far more computation time.
Whereas the smooth-and-reproject approach takes in to-
tal only a few minutes for the mesh optimization and re-
finement, the GDM approach isapprox. 100timess ower.
Thus, we have a strong tradeoff between run time and ac-

curacy.
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