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Abstract. Mathematical MorphologyNIM ) studies the representation of image operators in terms of
some families of simple operators, called the elementary operatt®afA drawback of this approach is
that the representation of some operators is not efficient, since it uses a large number of elementary operators.
Fast algorithms are the solution found by some authors to implement image operators that have complex
representations. Two drawbacks of this solution are: i- they change the architecture of the software that
implement the operators by the morphological representation. ii- these implementations are very specific
and can not be used to implement other operators. Here, we study some of these fast algorithms and show
that they can be transformed into morphological representations with equivalent performance, if proper data
structures and algorithms are used to implement the elementary operators. Finally, some experimental results
that illustrate these ideas are given.

1 Introduction elementary operators and operations can be used in sev-
] . eral other morphological operators.
Mathematical Morphology (MM ) [5, 6, 3] is a very use- Following this introduction, in section 2, we review

ful tool for imagg processing. Thg cent.ral paradigm ofome basic concepts &M theory. In section 3, we
MM on images is the decomposition of image operatotshow some fast algorithms for reconstruction. In section
in terms of a formal language, théorphological Lan- 4 \ve present equivalent representations for some clas-
guage(ML ), whose vocabulary are the elementary opefica| morphological operators, including reconstruction.
e}tors(dilations, erosions)and opergtionenegatiqn, in-|n section 5, we give new fast algorithms for elementary
fimum and supremum) of MM . This language iom-  gperators and operations that allow to built MMach pro-
plete (i.e. it can represent any function operator) @€  grams as efficient as the dedicated algorithms of section
pressive(i.e. many useful operators can be representegl | section 6, we present the experimental results. Fi-

as phrases with relatively few words). A phrase of the|ly, in section 7, we give some conclusions and future
ML is called aMorphological Operator. An imple-  jirections for this research.

mentation of thML is called avlorphological Machine
(_MMach) and a program of a MMach is an |mplementa—2 Review of Mathematical Morphology
tion of a morphological operator on this machine [3]. In
this paper, we will be restricted to MMachs implemented-€t E be an Abelian group with a binary operatierand
on sequential machines. an origino.

Any image operator can be implemented in a _ Let K = [0,k] be a closed interval inZZand let
MMach [1], however, some of these procedures are ifKE be the set of all functions from E t&. A function
efficient, since their representation uses a large numbére KF represents a binary imagekif= 1 and a gray-
of elementary operators. The solution found by some agcale image if > 1.
thors is to implement such procedures in separate by spe-_. .. .
cial fast algorithms that are not programs of a MMacrﬁgef'mtlon 2.1 Letf,g € K=. The operations, for any
The main drawbacks of this solution is that it changes the E,
architecture of the software that implement the MMach,
and that those implementations are very specific and cand
not be used to implement other operators. (fVg)(z) =max{f(x),g(x)}

In this paper, we study some of these fast algorithMge c4led, respectivelyntersection andunion of f and
and show that they can be written as MMach program
with equivalent performance, if proper data structures and
algorithms are used to perform the elementary operators Let X be thetransposeof a subsefX C E, that s,
and operations. Xt={zeE:—z€ X}

This new solution does not affect MMach architec- Let X C E andh € E. We denote byX + h, the
ture and is more modular, since the fast algorithms faranslation ofX by i, i.e., X +h = {z € E,x—h € X}.

(f Ag)(@) = min{f(z),g(x)}



Definition 2.2 Let A, B C E. The operation: are, respectively, the-dilation and then-erosionby B

conditionedto g.

A®B=U{A+b:be B}.

Definition 2.7 Let f,g € KE and f < g. The iteration
is called theMinkowski addition of A andB until stability of the dilation off by B conditioned toy,
is called the inf-reconstruction operator conditionedjto
and it is denotedg ,(f), thatis,

VB,9(f) = 05 4(f)-

Similarly, forg < f, it is possible to define the sup-
reconstruction operator conditioned godenoted g . (f),
that s,

Definition 2.3 Let f € KF and B C E. The operators
given by, for any in [E,

0p(f)(z) = max{f(z +y) :y € B +z},

and

ep(f)(z) =min{f(x +y):y € B+z}

are called, respectivelglilation anderosionof f by B. oB,o(f) =€F,4(f).

The setB is usually called structuring element. o )
Definition 2.8 The function,

Definition 2.4 Let f € K¥, B c Eandn € Z*. The
operators b:E— P(E),

55(1) = (0n(£))" = 8n(f) @ du(f)o...odn(f)  WhereP(E) denotesthe power-setitis called astruc-
< ¢ - turing function .

n operators

Two particular structuring functions abéx) = B'+
z andb(z) = B + z. The dilation and erosion by a struc-
ep(f) =(Es(f)" = §B(f) oep(f)o...oep(f) turing functionb, denoted, ande;, have similar defini-

and

~ d tions tod g ande g just changing, respectiveligt + x and
n operators B +z by b(l‘)

are, respectively, the-dilation and then-erosion of f L .
by B. Definition 2.9 Let B C E andp € E. The function
Definition 2.5 Let f € KF, g € KF andB C E. The by (z) = { Btz ifz =P
operator {z} otherwise

08,4(F) = 08(f) Ny is called apoint structuring function .
and

epy(f)=cp(f)Vyg A dilation or an erosion by a point structuring func-

. . ) tion has the property of changing the image just in a point

are, respectively, thdilation and theerosionof f by B p.

conditionedto g.

Note thatiff > g ando € B, the dilation off by 3 Fast Morphological Algorithms
B conditioned tgy will be trivially equal tog. The same |n this section, we will recall some fast algorithms that

happens for the erosion conditioneditd f < g. perform the reconstruction operators defined in last sec-
The functionsf andg are usually calletharker and  tjon.
mask functions, respectively. The dimension of the image domain is arbitrary, but

the corresponding neighborhood relations must be cho-
sen. The algorithms are written in C pseudo code. The
inputs will be a structuring element and an image. The
output will be an image, which can be written in the same
inputimage or in a copy of it.

n operators These algorithms usequential processingqueue
processingor a mixing of them. Asequential algorithm

has the following properties [4]:

Definition 2.6 Let f € KE, g € KE, B Cc Eandn €
Z*. The operators

53 () = 0.0)" () = 5,4(f) 0.0 015, (f)

e

and

5%,g(f) = (6B,g)n(f) = fB,g(f) 6...0 6B,g(f)J

~~

e image pixels are processed in a predefined sequence
n operators or order, generally raster or anti-raster;




¢ the value of the current pixel is written in the sames Input: mask image (binary) < [0, 1]E
image so it can be used to calculate the value of the marker image (binaryy € [0,1]E, f < g
next coming pixels. * Output:  resultf € [0, 1]

queueinit(W, |E|);

Scan E in raster order

(let p be the current pixel)

A queue algorithm has the following properties [7]:

e pixels are stored in a FIFO data structure, if((f(p) = 1) & (3¢ € Na(p), f(q) = 0)) then
. . queueadd(V, p);
e the order of the pixels in the queue depends on the  while(queueempty(V) = false)
image, p < queuefirst(V);
for everyqg € Ng(p)
e the value of the current pixel is written in the same if((f(q) = 0) & (g(q) = 1)) then
image or in a copy of it. fl@) < 1,

queueadd(V, q);

. i return(f);
Some basic operations on a queue W are:

e queueinit(W,n): allocates space for a queue with 3.2 A hybrid reconstruction algorithm

points. The algorithm we show bellow was proposed by Luc Vin-

o queueadd(W,p): puts the (pointer to) pixel p into cent [7] and is a hybrid algorithm for binary and gray-
the queue W. scale images. It is the fastest algorithm we have found in
i ] ] _ the literature for the implementation of gray-scale recon-
o queuefirst(W): returns the (pointer to) pixel which stryction in conventional computers and is called hybrid
is at the beginning of the queue W and removes it. pecause it uses aspects of sequential algorithms and of
ueue based algorithms. The hybrid structure was cho-
en because both methods alone (pure sequential or pure
queue) have some drawbacks.

e queueempty(W): returns true if the queue W is emp
and false otherwise.

A graph of connectivity G is a pair (E D), where The idea under this algorithm is simple, it performs a
the edges defined b represent the neighborhood rela-Propagation of the marker pixels conditioned to the mask
tions between the points of E [5]. pixels (dilation of the marker conditioned to the mask) by

The notationN(p) represents the set of all neigh-a sequential processing, i.e., it performs first two scan-
bors of a pointp € E under the grapli!. The nota- Nings (raster and anti-raster) and during the last scanning
tions N/ (p) and N (p) represent all the neighbors of (anti-raster) a queue is built. This queue will hold every
the pointp € E that are accessed, respectively, beforBixel whose current value can still be propagated. The
and after in a raster scan. Figures 1 and 2 show thesether part of the algorithm is a breadth first propagation

two sets in a grid with connectivity 8. of the built queue.
In the algorithm bellowg is the mask imagef is

the marker image (defined on the same domaig) @nd

/' p e f < g. The result of the reconstruction is written directly
./f\\. in the array representinf
p
e Input: mask imageg € KE

Figure 1:Ng(p) Figure 2: N (p) marker imagef € KE, f < g
e Output: resultf ¢ KE

Scan E in raster order

(let p be the current pixel)
3.1 A queue reconstruction algorithm f(p) + max{f(z) : x € N} (p) U {p}} Ag(p)}:

. . ) . Scan E in anti-raster order

This algorithm was proposed by Luc Vincent [7] and it (jet; be the current pixel)
is a queue algorithm for binary reconstruction. The idea f(p) + max{f(z) :x € N5 () U{p}} Ag(p)}
under this algorithm is to construct a queue of border pix- if(3g € Ng (p), (f(9) < f(p)) & (f(a) < 9(2)))
els of the marker and reconstruct the mask image only by~ then queusadd(v, p);

. while(queueempty (V') = false)
border expansions. D < queuefirst(W);

In the algorithm bellowy is the mask imagey; is the for everyg € N (p)
marker image andl < g. The result of the reconstruction if((f(q) < f(P)) &(f(q) # 9(¢))) then
is written directly in the array representirfg f(g) < min{f(p),g()}:

queueadd(V, q);
I Note thatp is not a neighbor of itself. return(f);




4 Equivalent Representations Definition 4.2 Let f € KE and B c B. The dilation of

Inspired in the algorithms presented in the last section, wePY B is given by, for allz € E,

propose here new equivalent definitions for the elemen- max{f(y),y € Bt +xNaf},
tary operators oMM and show how they can be used for g5 (f)(z) = ifredf®B
the representation of the inf-reconstruction. f(z)  otherwise

Let first give some basic definitions. Let B denote o
the subseNg(0) + {o}. Note that to compute a second dilation, we can eas-

ily compute a new frontied /', wheref' = §g(f), from
Definition 4.1 Let f € K andB C B. The frontier of df and f’. It is enough to take the poinis € B + p,

f relatively toB is the subsed f, given by, p € 0f, such thadg € B + z wheref'(q) < f'(z)
(see figures 3 band 3c). In other wordsf’' = {z €
of ={r€E:3p € B+u,f(p) < f(z)} Of ®B:3g€ B+x, f'(q) < f'(z)}.
This idea can be used recursively to compute the

4.1 Representation of queue algorithms n-dilation of a functionf by a structuring elemeris:
The algorithms based on queues can be described for- firn = 08(f)
mally by new representations that apply the usual ele- ' _ S B-3pcB
mentary operators dfIM only to the points of the fron- Uiy = {wedfioB:IpeB+r,
tier of the images. fir1(p) < firr (@)}
4.1.1 Dilation where.fo = f, fo = Of, andd% (f) = fn.

To compute the dilation as defined in section 2, we have

to compute the value associated to all points of E. How- A useful particularization of the infimum operation
ever, this computation usually will change the value ofs given by the following definition.

just a few points. This is better seen in figure 3, where £

it is shown a gray-scale image and its dilation by a strud2€finition 4.3 Let f,g € K= such thatf < g. The
turing element B, considering a grid with connectivity 4.nfimum of the functions = d5(f) andg is given by, for

anyx € E,
min{h(z),g(x)}, ifz€df® B
h A = ’ ’ ;
00 0 0 0 0 o0 o0 [1] 1 1 [1] 0 o0 (h A g)(x) { h(z) otherwise
0 [1 [1] 1] ] o o (1] 1 [2 1 1 [1] 0 . -
0 [1] [2] 1 Mo 1 P2 2 [2 1 1 [ Of course, the conditional dilation (and, consequently,
0 H} Lo {H o 11l o] 2111 the inf-reconstruction) can be built from the definitions
o [1] 1] 1 o] iff o Q1 11 1 1 1 [ above.
¢ 0 0 0 0 00 0 [t 1 1 {10 Similar ideas can be used to create a new represen-
(a) (b) tation for erosionp-erosion, supremum, conditional ero-
sion and sup-reconstruction.
1 1 2] 1 1 [1] O
[3] [g] 5 [3] [3] } [1] 4.2 Representation of Sequential Algorithms
} [f] ; ; ; [f] } As we have seen in section 3, sequential algorithms [4]
11 [1] 2] [1] 11 change the value of just one point at a time and the com-
1 1 1 1 1 1 1

putation of this value can use the values of the points
(¢) computed before it. This process can be described by
operators defined by point structuring functions. We will

show how they can be composed to perform the raster

Figure 3: Gray-scale image (a), its first (b) and secon r anti-raster pixel processing of the hybrid algorithms.
' inally, we will show how to write the sequential recon-

c) dilation by the structuring element B on a square gri ) :
© y 9 q 9 struction as a morphological operator.

with connectivity 4
Definition 4.4 Let BT denote the subséY/; (o) U {o}.

The points that have been changed by the dilationhe raster structuring function for the poipt € E is
are the neighbors of the points marked with brackets (i.egiven by, for any: € E,

the frontier points). Therefore, a new equivalent defini- N )
tion for dilation could depend only on the frontier points b (z) = { BT +x ifzx= P
df and their neighbors. P {z} otherwise



Definition 4.5 Let B~ denote the subséY; (o) U {o}. Definition 4.9 Let f,g € K&, f < gandn € Z*. The
The anti-raster structuring function for the poipte E  hybrid reconstruction o§ from f is given by the follow-

is given by, for any € E, ing composition,
b (z)= B+ ifz=p pB,g(YE o(f)),
P {z} otherwise’

wherepp 4 is the queue based reconstruction aag ,

Definition 4.6 Let f,g € KE,f < gandB c B. The is the sequential reconstruction.
operatorlIfjg,g on KE, called raster reconstruction, is

given blefg,g(f) = oo Note that in the queue reconstruction we need to take

just the points off g ,( f) such that,

. =0 ) A\ g, where
Foies = 03 (Fp) N0 Upe o (F)B) > Upe (Fla) and Wi o(f)(a) < g(a),
p1,p2;-- -, P p| IS the sequence of pointslBfin the raster |t is easy to see that the inclusion of the other points of
order andf,, = f. 9% ,, would not change the final result.

The raster reconstruction operator is a phrase of the i i ,
ML that represents the raster processing in the fast recah- Algorithms for the Equivalent Representations
struction algorithm. The representations described in the previous section will
Analogously, changing the structuring functibh  be used to built fast algorithms. They are presented in C
by the structuring functio and taking the points of pseudo code.
E in the anti-raster order, we define the anti-raster re- In general,f will represent an input image,an in-
construction operataP ; , that represents the anti-rasterput mask imagep a structuring elemeng f and df'
processing in the fast reconstruction algorithm. queues to keep the border of, respectively, a funcfion
Next, we will present a useful specialization of theand the result of its transformatig.
infimum for sequential algorithms.

5.1 ueue based algorithms
Definition 4.7 Let f,g € KF such thatf < g, andp € Q g

E. The infimum of, = 6, (f) andg is given by, for any In this class of algorithms, the images are represented by

z€E, an array of pixels and a queue of interesting pixels.
To compute the subset of the border that initializes the
(h A g)(z) = { min{h(z),g(x)} ifz= p hybrid reconstruction, we need the following algorithm.
h(z) otherwise

Procedure hybbordef(g, B, 9f)
Scan E in anti-raster order
(let p be the current pixel)

- . . . if(3ge B+p, < d <
Definition 4.8 The sequential reconstruction operator is I (theqn queum%dfé)‘{) f(p) andfq) < g(a)

the operator given by the following composition,

The definition for supremum is similar.

The algorithm to find the complete border is similar, just
Upy="3,00%, eliminating the second inequality.

The operator¥ 5 , represents the sequence of a rastet , 4

. . . Infimum
and an anti-raster reconstruction algorithm.

By definition 4.3 the infimum betweel andg, where
The sequential reconstruction does a series of rastér= §z(f) andf < g can be performed by the following
anti-raster processing until stability. Therefore, applyalgorithm.
ing the operatoW g , until stability we get the inf-recon-

struction of the functiorf conditioned tay. Procedure infqueus( g, 5, 0)

while (Queueempty@ f) = false);
p < queuefirst(df);

4.3 Representation of Hybrid Algorithms foreveryg € B +p
. . . , if (h(q) > g(¢)) thenh(q) + g(q);
It is experimentally known that a hybrid reconstruction

(merge of the sequential reconstruction and of the quelote that the border di A g is a subset of the border of
based reconstruction) is more efficient than any of ther, sinceh A g < h. Hence, it can be used in a following
alone. The equivalent representation of this operator fgocess.

formed by the composition of the sequential reconstruc-  The algorithm for the supremum is quite similar to
tion operator with a queue based reconstruction operattine one above.



5.1.2 Dilation 5.3.1 Hybrid Reconstruction

Using the definition 4.2, we can easily write an algorithnT his algorithm implement the operator described in sec-
for dilation of a functionf by a structuring elemer. tion 4.3.

Procedure retyb(f, g, B)
Scan E in raster order
(let p be the current pixel)

Procedure dilqueug¢( B, 8f, 0f')
while (queueempty@ f) = false)

p < queuefirst(@f); i + )
for everyq ¢ B+p ﬁ\llfiig((’;’ 5 pi'p)7
if (f(q) < f(p)) thenf(q) < f(p); Scan E in ahtiiraéter order
if (3r € B+q, f(r) < f(q)) (let p be the current pixel)
then queueadd@ ', q); dil_seq(f, B, p);
inf_seq(f, g, p);
. hybborderf, g, B—, 8f)
5.1.3 Queue Reconstruction while (queueempty@ f) = false)

. . L . dilqueuef, B,df,df');
This algorithm for reconstruction is similar to its repre- e cuef. 9. B8 7):

sentation given by definition 2.7. af « af';
Of" < null;
Procedure queuerety(g, B, 9f)
while (queueempty@ f) = false)
dilqueue(, B,0f,0f");
infqueuef, g, B, 0f"); In this section we will show some comparative measures
g?:an{ni- of the efficiency of these algorithms.
’ The algorithms presented in the last section have
_ _ been implemented iIANSI C and integrated té&horos
5.2 Algorithms based on sequential processes to be tested. The tests have been made in a PC Pentium

In this class of algorithms, images are represented by &PMHz with 40Mb of RAM memory. _
array of pixels and a particular pixel. The implementa-  E@ch experiment has been repeated 10 times and the
tion of most of these algorithms are very easy and theffraphics show the mean time of the measures. All the in-

complexity are constant. The sequential algorithms fdpUt images are over 250.000 points. The image used in
infimum, supremum, erosion and dilation are straight® €xPeriments with binary images is composed of 108
forward so we will not show them here. The Sequensmall discs and ellipses. The image used in the experi-
tial infimum and dilation have the following prototypes: MeNts with gray-scale images is shown in fig. 4.

inf_seq(f, g, p) and diLseq(f, B, p).

6 Experimental Results

5.2.1 Sequential Reconstruction

This algorithm will implement the operator defined in
section 4.2. Itis very similar to the first part of the algo-
rithm described in section 3.2. A sequence of scannings
is done and in the final of each scanning it is verified if
the image was modified or not. The algorithm finishes
when the image was not modified after a scanning.

Procedure reseq(f, g, B)
repeat until stability
Scan E in raster order
(let p be the current pixel)

dil_seq(f, B*, p); Figure 4: Gray-scale image
inf_seq(f, g,p);
Scan E in anti-raster order
| h ixel _
éﬁfgez((ef}l;c,u z:;?m e 6.1 Results for Dilation
inf_seq(f, g, p); In each experiment of this section we have applied from
1 to 100 dilations in the input image. We have compared
5.3 Hybrid Algorithms the following algorithms:

Here we will show an equivalent algorithm for the fast ¢ MMACH-BIT - this is the dilation algorithm imple-
hybrid reconstruction presented in section 3. mented in MMach to process binary images in bit



compacted format (i.e. each point of the image are
represented by 1 bit) [2].

e MMACH - this is the dilation algorithm in MMach
for images whose formats are byte or short [2].

Seconds

e QUEUE - this is the dilation algorithm implemented
by queues.

O P, N W b~ U1 O N O ©
AN

6.1.1 Binary Dilation
0 20 40 60 80 100

In this experiment we have used#2 x 512 binary im- Number of Dilations
age as input and we varied the number of dilations. The Figure 6: Total time for grayscale dilations
graphic on fig. 5 shows the result of one of these experi-

ments for & x 3 structuring element.

e MMACH - this is the conditional dilation algorithm

18 ' ' ' . in MMach for images whose formats are byte or
16 AT ] short [2]
14 ~ QUEQE ,,,,, -
P 12 1 e QUEUE - this is the conditional dilation algorithm
s 7 i implemented by queues. It is modular like MMACH
& 8r ’ i algorithm, i.e., it performs a dilations and then an
or i infimum in the input images.
4+ ) E
2 ' ~~~~~~~ TR e BETTER QUEUE - this is a non modular condi-
° T o 60 80 100 tional dilation algorithm implemented by queues, i.e.,
Number of Dilations it performs a dilation followed by an infimum for

Figure 5: Total time for binary dilations each point of the image.

The MMACH-BIT algorithm is highly optimizedand ~ We will show only one of our results for grayscale
it is machine dependent, so it is very difficult to bearconditional dilation.
it. The QUEUE algorithm has a very good performance
considering that it is easily implemented and is not m
chine dependent. The MMACH algorithm is optimized

for grayscale images but its performance is not good fdf this experiment we have used\aerosion of the mask
binary images. image as the marker image. We have performed

N-conditional dilations on this image. The graphic on
o fig. 7 shows the result of one of these experiments for the
6.1.2 Grayscale Dilation 3 x 3 cross structuring element.

In this experiment we have usedal x 400 grayscale
image as input (see fig. 4) and we varied the number of
dilations. The graphic of fig. 6 shows the result of one
of these experiments for thex 3 cross (i.e., the cross
included in the3 x 3 structuring element.)

The MMACH algorithm has a slightly better perfor-
mance than the QUEUE one until the alilation. Then
its performance is very better than the MMACH mainly
for a large number of dilations.

2.1 Grayscale Conditional Dilation

Seconds

6.2 Results for Conditional Dilation 0o 10 20 30 40 50

. . . . Number of Conditional Dilations
In the experiments of this section we have applied from

1 to 50 conditional dilations in the input image. We have Figure 7: Total time for conditional dilation
compared the following algorithms:



The MMACH algorithm has a slightly better perfor- Experimental results have shown that the proposed
mance for one dilation but QUEUE’s performance is fomorphological operators have performance equivalent to

more than one dilation. the fast algorithms studied. We should remark that both
types of algorithms depend on the input image. They per-
6.3 Results for Reconstruction form better for images that have smaller amount of bor-

ders. As erosions and dilations diminishes the number

This experiment is similar to the one of conditional dlla-Of borders, these algorithms are particularly adequate to

tion, butitis necessary to compare the performance OfOHfgh resolution images that impose the use of large se-
algorithms to the fast reconstruction algorithms Whic'buences of erosions and dilations

motivated them. We have compared four algorithms: This approach conserves the hierarchical architec-

e MMACH-CLAS - this is an algorithm implemented ture of the MMachs and permits the efficient representa-
according to the original definition, i.e., iteration oftion of other morphological operators, since they are built
conditional dilations until stability. by compositions of elementary operators.

The idea of implementing fast algorithms as mor-

¢ MMACH - this is the fast reconstruction algorithm phological operators could be applied to other known fast
(section 3.2) implemented in MMach for imagesalgorithms, increasing their modularity and therefore in-
whose formats are byte or short [2]. creasing their utility.

e QUEUE - this is the algorithm of section 5.3.1 im-
plemented according to the definition, but using con8 Acknowledgments
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