
Fast Algorithms to compute the elementary operators of Mathematical Morphology

JUNIOR BARRERA, ROBERTOHIRATA JR.

Instituto de Matem´atica e Estat´ıstica - USP, Rua do Mat˜ao, 1010 - 05389-970 S˜ao Paulo - SP - Brasil
email jb@ime.usp.br , hirata@ime.usp.br

Abstract. Mathematical Morphology (MM) studies the representation of image operators in terms of
some families of simple operators, called the elementary operators ofMM . A drawback of this approach is
that the representation of some operators is not efficient, since it uses a large number of elementary operators.
Fast algorithms are the solution found by some authors to implement image operators that have complex
representations. Two drawbacks of this solution are: i- they change the architecture of the software that
implement the operators by the morphological representation. ii- these implementations are very specific
and can not be used to implement other operators. Here, we study some of these fast algorithms and show
that they can be transformed into morphological representations with equivalent performance, if proper data
structures and algorithms are used to implement the elementary operators. Finally, some experimental results
that illustrate these ideas are given.

1 Introduction

Mathematical Morphology (MM) [5, 6, 3] is a very use-
ful tool for image processing. The central paradigm of
MM on images is the decomposition of image operators
in terms of a formal language, theMorphological Lan-
guage(ML), whose vocabulary are the elementary oper-
ators(dilations, erosions)and operations(negation, in-
fimum and supremum) of MM . This language iscom-
plete (i.e. it can represent any function operator) andex-
pressive(i.e. many useful operators can be represented
as phrases with relatively few words). A phrase of the
ML is called aMorphological Operator . An imple-
mentation of theML is called aMorphological Machine
(MMach) and a program of a MMach is an implementa-
tion of a morphological operator on this machine [3]. In
this paper, we will be restricted to MMachs implemented
on sequential machines.

Any image operator can be implemented in a
MMach [1], however, some of these procedures are in-
efficient, since their representation uses a large number
of elementary operators. The solution found by some au-
thors is to implement such procedures in separate by spe-
cial fast algorithms that are not programs of a MMach.
The main drawbacks of this solution is that it changes the
architecture of the software that implement the MMach,
and that those implementations are very specific and can
not be used to implement other operators.

In this paper, we study some of these fast algorithms
and show that they can be written as MMach programs
with equivalent performance, if proper data structures and
algorithms are used to perform the elementary operators
and operations.

This new solution does not affect MMach architec-
ture and is more modular, since the fast algorithms for

elementary operators and operations can be used in sev-
eral other morphological operators.

Following this introduction, in section 2, we review
some basic concepts ofMM theory. In section 3, we
show some fast algorithms for reconstruction. In section
4, we present equivalent representations for some clas-
sical morphological operators, including reconstruction.
In section 5, we give new fast algorithms for elementary
operators and operations that allow to built MMach pro-
grams as efficient as the dedicated algorithms of section
3. In section 6, we present the experimental results. Fi-
nally, in section 7, we give some conclusions and future
directions for this research.

2 Review of Mathematical Morphology

Let IE be an Abelian group with a binary operation+ and
an origino.

Let K = [0; k] be a closed interval in ZZ and let
K IE be the set of all functions from IE toK. A function
f 2 K IE represents a binary image ifk = 1 and a gray-
scale image ifk > 1.

Definition 2.1 Let f; g 2 K IE. The operations, for anyx
in IE,

(f ^ g)(x) = minff(x); g(x)g

and
(f _ g)(x) = maxff(x); g(x)g

are called, respectively,intersectionandunion of f and
g.

LetXt be thetransposeof a subsetX � IE, that is,
Xt = fx 2 IE : �x 2 Xg.

Let X � IE andh 2 IE. We denote byX + h, the
translation ofX byh, i.e.,X+h = fx 2 IE; x�h 2 Xg.

Definition 2.2 LetA;B � IE. The operation:

A�B = [fA+ b : b 2 Bg:

is called theMinkowski addition ofA andB

Definition 2.3 Let f 2 K IE andB � IE. The operators
given by, for anyx in IE,

�B(f)(x) = maxff(x+ y) : y 2 Bt + xg;

and

"B(f)(x) = minff(x+ y) : y 2 B + xg

are called, respectively,dilation anderosionof f byB.
The setB is usually called structuring element.

Definition 2.4 Let f 2 K IE, B � IE andn 2 ZZ+. The
operators

�nB(f) = (�B(f))
n = �B(f) � �B(f) � : : : � �B(f)| {z }

n operators

and

"
n
B(f) = ("B(f))

n = "B(f) � "B(f) � : : : � "B(f)| {z }
n operators

are, respectively, then-dilation and then-erosion of f
byB.

Definition 2.5 Let f 2 K IE, g 2 K IE andB � IE. The
operator

�B;g(f) = �B(f) ^ g

and
"B;g(f) = "B(f) _ g

are, respectively, thedilation and theerosionof f byB
conditioned to g.

Note that iff > g ando 2 B, the dilation off by
B conditioned tog will be trivially equal tog. The same
happens for the erosion conditioned tog if f < g.

The functionsf andg are usually calledmarker and
mask functions, respectively.

Definition 2.6 Let f 2 K IE, g 2 K IE, B � IE andn 2
ZZ+. The operators

�nB;g(f) = (�B;g)
n(f) = �B;g(f) � : : : � �B;g(f)| {z }

n operators

and

"
n
B;g(f) = ("B;g)

n(f) = "B;g(f) � : : : � "B;g(f)| {z }
n operators

are, respectively, then-dilation and then-erosionby B
conditioned to g.

Definition 2.7 Let f; g 2 K IE andf � g. The iteration
until stability of the dilation off byB conditioned tog,
is called the inf-reconstruction operator conditioned tog
and it is denoted
B;g(f), that is,

B;g(f) = �1B;g(f):

Similarly, for g � f , it is possible to define the sup-
reconstruction operator conditioned tog, denoted�B;g(f),
that is,

�B;g(f) = "
1

B;g(f):

Definition 2.8 The function,

b : IE ! P(IE);

whereP(IE) denotes the power-set ofIE, is called astruc-
turing function .

Two particular structuring functions areb(x) = Bt+

x andb(x) = B+x. The dilation and erosion by a struc-
turing functionb, denoted�b and�b, have similar defini-
tions to�B and�B just changing, respectively,Bt+x and
B + x by b(x).

Definition 2.9 LetB � IE andp 2 IE. The function

bp(x) =

�
B + x if x = p

fxg otherwise

is called apoint structuring function .

A dilation or an erosion by a point structuring func-
tion has the property of changing the image just in a point
p.

3 Fast Morphological Algorithms

In this section, we will recall some fast algorithms that
perform the reconstruction operators defined in last sec-
tion.

The dimension of the image domain is arbitrary, but
the corresponding neighborhood relations must be cho-
sen. The algorithms are written in C pseudo code. The
inputs will be a structuring element and an image. The
output will be an image, which can be written in the same
input image or in a copy of it.

These algorithms usesequential processing, queue
processingor a mixing of them. Asequential algorithm
has the following properties [4]:

� image pixels are processed in a predefined sequence
or order, generally raster or anti-raster;

� the value of the current pixel is written in the same
image so it can be used to calculate the value of the
next coming pixels.

A queue algorithm has the following properties [7]:

� pixels are stored in a FIFO data structure,

� the order of the pixels in the queue depends on the
image,

� the value of the current pixel is written in the same
image or in a copy of it.

Some basic operations on a queue W are:

� queueinit(W,n): allocates space for a queue withn
points.

� queueadd(W,p): puts the (pointer to) pixel p into
the queue W.

� queuefirst(W): returns the (pointer to) pixel which
is at the beginning of the queue W and removes it.

� queueempty(W): returns true if the queue W is empty
and false otherwise.

A graph of connectivityG is a pair (IE; D), where
the edges defined byD represent the neighborhood rela-
tions between the points of IE [5].

The notationNG(p) represents the set of all neigh-
bors of a pointp 2 IE under the graphG1. The nota-
tionsN+

G (p) andN�

G (p) represent all the neighbors of
the pointp 2 IE that are accessed, respectively, before
and afterp in a raster scan. Figures 1 and 2 show these
two sets in a grid with connectivity 8.

p

Figure 1:N+
G (p)

p

Figure 2:N�

G (p)

3.1 A queue reconstruction algorithm

This algorithm was proposed by Luc Vincent [7] and it
is a queue algorithm for binary reconstruction. The idea
under this algorithm is to construct a queue of border pix-
els of the marker and reconstruct the mask image only by
border expansions.

In the algorithm bellow,g is the mask image,f is the
marker image andf � g. The result of the reconstruction
is written directly in the array representingf .

1Note thatp is not a neighbor of itself.

� Input: mask image (binary)g 2 [0; 1]IE

marker image (binary)f 2 [0; 1]IE, f � g

� Output: resultf 2 [0; 1]IE

queueinit(W; jIEj);
Scan IE in raster order
(let p be the current pixel)

if((f(p) = 1) & (9q 2 NG(p), f(q) = 0)) then
queueadd(W; p);

while(queueempty(W) = false)
p queuefirst(W);
for everyq 2 NG(p)

if((f(q) = 0) & (g(q) = 1)) then
f(q) 1;
queueadd(W; q);

return(f);

3.2 A hybrid reconstruction algorithm

The algorithm we show bellow was proposed by Luc Vin-
cent [7] and is a hybrid algorithm for binary and gray-
scale images. It is the fastest algorithm we have found in
the literature for the implementation of gray-scale recon-
struction in conventional computers and is called hybrid
because it uses aspects of sequential algorithms and of
queue based algorithms. The hybrid structure was cho-
sen because both methods alone (pure sequential or pure
queue) have some drawbacks.

The idea under this algorithm is simple, it performs a
propagation of the marker pixels conditioned to the mask
pixels (dilation of the marker conditioned to the mask) by
a sequential processing, i.e., it performs first two scan-
nings (raster and anti-raster) and during the last scanning
(anti-raster) a queue is built. This queue will hold every
pixel whose current value can still be propagated. The
other part of the algorithm is a breadth first propagation
of the built queue.

In the algorithm bellow,g is the mask image,f is
the marker image (defined on the same domain ofg) and
f � g. The result of the reconstruction is written directly
in the array representingf .

� Input: mask imageg 2 K IE

marker imagef 2 K IE, f � g

� Output : resultf 2 K IE

Scan IE in raster order
(let p be the current pixel)
f(p) maxff(x) : x 2 N+

G
(p) [fpgg ^ g(p)g;

Scan IE in anti-raster order
(let p be the current pixel)
f(p) maxff(x) : x 2 N�

G
(p) [fpgg ^ g(p)g;

if(9q 2 N�

G
(p), (f(q) < f(p)) & (f(q) < g(q)))

then queueadd(W; p);
while(queueempty(W) = false)
p queuefirst(W);
for everyq 2 NG(p)

if((f(q) < f(p)) & (f(q) 6= g(q))) then
f(q) minff(p); g(q)g;
queueadd(W; q);

return(f);

4 Equivalent Representations

Inspired in the algorithms presented in the last section, we
propose here new equivalent definitions for the elemen-
tary operators ofMM and show how they can be used for
the representation of the inf-reconstruction.

Let first give some basic definitions. Let IB denote
the subsetNG(o) + fog.

Definition 4.1 Let f 2 K IE andB � IB. The frontier of
f relatively toB is the subset@f , given by,

@f = fx 2 IE : 9p 2 B + x; f(p) < f(x)g

4.1 Representation of queue algorithms

The algorithms based on queues can be described for-
mally by new representations that apply the usual ele-
mentary operators ofMM only to the points of the fron-
tier of the images.

4.1.1 Dilation

To compute the dilation as defined in section 2, we have
to compute the value associated to all points of IE. How-
ever, this computation usually will change the value of
just a few points. This is better seen in figure 3, where
it is shown a gray-scale image and its dilation by a struc-
turing element IB, considering a grid with connectivity 4.

0 0 0 0 0 0 0

0 [1] [1] [1] [1] 0 0

0 [1] [2] 1 1 [1] 0

0 [1] 1 [2] 1 [1] 0

0 [1] 1 1 1 [1] 0

0 [1] [1] [1] [1] [1] 0

0 0 0 0 0 0 0

(a)

0 [1] 1 1 [1] 0 0

[1] 1 [2] 1 1 [1] 0

1 [2] 2 [2] 1 1 [1]

1 1 [2] 2 [2] 1 1

1 1 1 [2] 1 1 1

[1] 1 1 1 1 1 [1]

0 [1] 1 1 1 [1] 0

(b)

1 1 [2] 1 1 [1] 0

1 [2] 2 [2] 1 1 [1]

[2] 2 2 2 [2] 1 1

1 [2] 2 2 2 [2] 1

1 1 [2] 2 [2] 1 1

1 1 1 [2] 1 1 1

1 1 1 1 1 1 1

(c)

Figure 3: Gray-scale image (a), its first (b) and second
(c) dilation by the structuring element IB on a square grid
with connectivity 4

The points that have been changed by the dilation
are the neighbors of the points marked with brackets (i.e.,
the frontier points). Therefore, a new equivalent defini-
tion for dilation could depend only on the frontier points
@f and their neighbors.

Definition 4.2 Let f 2 K IE andB � IB. The dilation of
f byB is given by, for allx 2 IE,

�B(f)(x) =

8<
:

maxff(y); y 2 Bt + x \ @fg;

if x 2 @f �B

f(x) otherwise

Note that to compute a second dilation, we can eas-
ily compute a new frontier@f 0, wheref 0 = �B(f), from
@f andf 0. It is enough to take the pointsx 2 B + p,
p 2 @f , such that9q 2 B + x wheref 0(q) < f 0(x)

(see figures 3 b and 3 c). In other words:@f 0 = fx 2

@f �B : 9q 2 B + x; f 0(q) < f 0(x)g.
This idea can be used recursively to compute the

n-dilation of a functionf by a structuring elementB:

fi+1 = �B(fi)

@fi+1 = fx 2 @fi �B : 9p 2 B + x;

fi+1(p) < fi+1(x)g

where,f0 = f , @f0 = @f , and�nB(f) = fn.

A useful particularization of the infimum operation
is given by the following definition.

Definition 4.3 Let f; g 2 K IE such thatf � g. The
infimum of the functionsh = �B(f) andg is given by, for
anyx 2 IE,

(h ^ g)(x) =

�
minfh(x); g(x)g; if x 2 @f �B

h(x) otherwise

Of course, the conditional dilation (and, consequently,
the inf-reconstruction) can be built from the definitions
above.

Similar ideas can be used to create a new represen-
tation for erosion,n-erosion, supremum, conditional ero-
sion and sup-reconstruction.

4.2 Representation of Sequential Algorithms

As we have seen in section 3, sequential algorithms [4]
change the value of just one point at a time and the com-
putation of this value can use the values of the points
computed before it. This process can be described by
operators defined by point structuring functions. We will
show how they can be composed to perform the raster
or anti-raster pixel processing of the hybrid algorithms.
Finally, we will show how to write the sequential recon-
struction as a morphological operator.

Definition 4.4 Let B+ denote the subsetN+
G (o) [fog.

The raster structuring function for the pointp 2 IE is
given by, for anyx 2 IE,

b+p (x) =

�
B+ + x if x = p

fxg otherwise
:

Definition 4.5 LetB� denote the subsetN�

G (o) [fog.
The anti-raster structuring function for the pointp 2 IE
is given by, for anyx 2 IE,

b�p (x) =

�
B� + x if x = p

fxg otherwise
:

Definition 4.6 Let f; g 2 K IE; f � g andB � IB. The
operator	+

B;g on K IE, called raster reconstruction, is

given by	+
B;g(f) = fpjEj

,

fpi+1 = �b+pi
(fpi) ^ g; where

p1; p2; : : : ; pjEj is the sequence of points ofIE in the raster
order andfp1 = f .

The raster reconstruction operator is a phrase of the
ML that represents the raster processing in the fast recon-
struction algorithm.

Analogously, changing the structuring functionb+p
by the structuring functionb�p and taking the points of
IE in the anti-raster order, we define the anti-raster re-
construction operator	�

B;g that represents the anti-raster
processing in the fast reconstruction algorithm.

Next, we will present a useful specialization of the
infimum for sequential algorithms.

Definition 4.7 Let f; g 2 K IE such thatf � g, andp 2
IE. The infimum ofh = �bp(f) andg is given by, for any
x 2 IE,

(h ^ g)(x) =

�
minfh(x); g(x)g if x = p

h(x) otherwise

The definition for supremum is similar.

Definition 4.8 The sequential reconstruction operator is
the operator given by the following composition,

	B;g = 	�

B;g �	
+
B;g

The operator	B;g represents the sequence of a raster
and an anti-raster reconstruction algorithm.

The sequential reconstruction does a series of raster,
anti-raster processing until stability. Therefore, apply-
ing the operator	B;g until stability we get the inf-recon-
struction of the functionf conditioned tog.

4.3 Representation of Hybrid Algorithms

It is experimentally known that a hybrid reconstruction
(merge of the sequential reconstruction and of the queue
based reconstruction) is more efficient than any of them
alone. The equivalent representation of this operator is
formed by the composition of the sequential reconstruc-
tion operator with a queue based reconstruction operator.

Definition 4.9 Let f; g 2 K IE, f � g andn 2 ZZ2. The
hybrid reconstruction ofg from f is given by the follow-
ing composition,

�B;g(
n
B;g(f));

where�B;g is the queue based reconstruction and	B;g

is the sequential reconstruction.

Note that in the queue reconstruction we need to take
just the points of	B;g(f) such that,

	B+;g(f)(p) > 	B+;g(f)(q) and 	B+;g(f)(q) < g(q);

It is easy to see that the inclusion of the other points of
@	B;g would not change the final result.

5 Algorithms for the Equivalent Representations

The representations described in the previous section will
be used to built fast algorithms. They are presented in C
pseudo code.

In general,f will represent an input image,g an in-
put mask image,B a structuring element,@f and@f 0

queues to keep the border of, respectively, a functionf

and the result of its transformationf 0.

5.1 Queue based algorithms

In this class of algorithms, the images are represented by
an array of pixels and a queue of interesting pixels.
To compute the subset of the border that initializes the
hybrid reconstruction, we need the following algorithm.

Procedure hybborder(f; g;B; @f)
Scan IE in anti-raster order
(let p be the current pixel)

if (9 q 2 B + p; f(q) < f(p) andf(q) < g(q))
then queueadd(p);

The algorithm to find the complete border is similar, just
eliminating the second inequality.

5.1.1 Infimum

By definition 4.3 the infimum betweenh andg, where
h = �B(f) andf � g can be performed by the following
algorithm.

Procedure infqueue(h; g; B; @f)
while (queueempty(@f) = false);

p queuefirst(@f);
for everyq 2 B + p

if (h(q) > g(q)) thenh(q) g(q);

Note that the border ofh ^ g is a subset of the border of
h, sinceh ^ g � h. Hence, it can be used in a following
process.

The algorithm for the supremum is quite similar to
the one above.

5.1.2 Dilation

Using the definition 4.2, we can easily write an algorithm
for dilation of a functionf by a structuring elementB.

Procedure dilqueue(f; B; @f; @f 0)
while (queueempty(@f) = false)

p queuefirst(@f);
for everyq 2 B + p

if (f(q) < f(p)) thenf(q) f(p);
if (9r 2 B + q; f(r) < f(q))

then queueadd(@f 0; q);

5.1.3 Queue Reconstruction

This algorithm for reconstruction is similar to its repre-
sentation given by definition 2.7.

Procedure queuerec(f; g; B; @f)
while (queueempty(@f) = false)

dilqueue(f; B; @f; @f 0);
infqueue(f; g; B; @f 0);
@f @f 0;
@f 0 null;

5.2 Algorithms based on sequential processes

In this class of algorithms, images are represented by an
array of pixels and a particular pixel. The implementa-
tion of most of these algorithms are very easy and their
complexity are constant. The sequential algorithms for
infimum, supremum, erosion and dilation are straight-
forward so we will not show them here. The sequen-
tial infimum and dilation have the following prototypes:
inf seq(f; g; p) and dil seq(f;B; p).

5.2.1 Sequential Reconstruction

This algorithm will implement the operator defined in
section 4.2. It is very similar to the first part of the algo-
rithm described in section 3.2. A sequence of scannings
is done and in the final of each scanning it is verified if
the image was modified or not. The algorithm finishes
when the image was not modified after a scanning.

Procedure recseq(f; g;B)
repeat until stability

Scan IE in raster order
(let p be the current pixel)

dil seq(f;B+; p);
inf seq(f; g; p);

Scan IE in anti-raster order
(let p be the current pixel)
dil seq(f;B�; p);
inf seq(f; g; p);

5.3 Hybrid Algorithms

Here we will show an equivalent algorithm for the fast
hybrid reconstruction presented in section 3.

5.3.1 Hybrid Reconstruction

This algorithm implement the operator described in sec-
tion 4.3.

Procedure rechyb(f; g;B)
Scan IE in raster order

(let p be the current pixel)
dil seq(f;B+; p);
inf seq(f; g; p);

Scan IE in anti-raster order
(let p be the current pixel)

dil seq(f;B�; p);
inf seq(f; g; p);

hybborder(f; g; B�; @f)
while (queueempty(@f) = false)

dilqueue(f; B; @f; @f 0);
infqueue(f; g;B; @f);
@f @f 0;
@f 0 null;

6 Experimental Results

In this section we will show some comparative measures
of the efficiency of these algorithms.

The algorithms presented in the last section have
been implemented inANSI C and integrated toKhoros
to be tested. The tests have been made in a PC Pentium
90MHz with 40Mb of RAM memory.

Each experiment has been repeated 10 times and the
graphics show the mean time of the measures. All the in-
put images are over 250.000 points. The image used in
the experiments with binary images is composed of 108
small discs and ellipses. The image used in the experi-
ments with gray-scale images is shown in fig. 4.

Figure 4: Gray-scale image

6.1 Results for Dilation

In each experiment of this section we have applied from
1 to 100 dilations in the input image. We have compared
the following algorithms:

� MMACH-BIT - this is the dilation algorithm imple-
mented in MMach to process binary images in bit

compacted format (i.e. each point of the image are
represented by 1 bit) [2].

� MMACH - this is the dilation algorithm in MMach
for images whose formats are byte or short [2].

� QUEUE - this is the dilation algorithm implemented
by queues.

6.1.1 Binary Dilation

In this experiment we have used a512� 512 binary im-
age as input and we varied the number of dilations. The
graphic on fig. 5 shows the result of one of these experi-
ments for a3� 3 structuring element.

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

S
ec

on
ds

Number of Dilations

MMACH BIT
MMACH
QUEUE

Figure 5: Total time for binary dilations

The MMACH-BIT algorithm is highly optimized and
it is machine dependent, so it is very difficult to beat
it. The QUEUE algorithm has a very good performance
considering that it is easily implemented and is not ma-
chine dependent. The MMACH algorithm is optimized
for grayscale images but its performance is not good for
binary images.

6.1.2 Grayscale Dilation

In this experiment we have used a511 � 400 grayscale
image as input (see fig. 4) and we varied the number of
dilations. The graphic of fig. 6 shows the result of one
of these experiments for the3 � 3 cross (i.e., the cross
included in the3� 3 structuring element.)

The MMACH algorithm has a slightly better perfor-
mance than the QUEUE one until the 18th dilation. Then
its performance is very better than the MMACH mainly
for a large number of dilations.

6.2 Results for Conditional Dilation

In the experiments of this section we have applied from
1 to 50 conditional dilations in the input image. We have
compared the following algorithms:

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100

S
ec

on
ds

Number of Dilations

MMACH
QUEUE

Figure 6: Total time for grayscale dilations

� MMACH - this is the conditional dilation algorithm
in MMach for images whose formats are byte or
short [2].

� QUEUE - this is the conditional dilation algorithm
implemented by queues. It is modular like MMACH
algorithm, i.e., it performs a dilations and then an
infimum in the input images.

� BETTER QUEUE - this is a non modular condi-
tional dilation algorithm implemented by queues, i.e.,
it performs a dilation followed by an infimum for
each point of the image.

We will show only one of our results for grayscale
conditional dilation.

6.2.1 Grayscale Conditional Dilation

In this experiment we have used aN -erosion of the mask
image as the marker image. We have performed
N -conditional dilations on this image. The graphic on
fig. 7 shows the result of one of these experiments for the
3� 3 cross structuring element.

0

1

2

3

4

5

6

0 10 20 30 40 50

S
ec

on
ds

Number of Conditional Dilations

MMACH
QUEUE

BETTER QUEUE

Figure 7: Total time for conditional dilation

The MMACH algorithm has a slightly better perfor-
mance for one dilation but QUEUE’s performance is for
more than one dilation.

6.3 Results for Reconstruction

This experiment is similar to the one of conditional dila-
tion, but it is necessary to compare the performance of our
algorithms to the fast reconstruction algorithms which
motivated them. We have compared four algorithms:

� MMACH-CLAS - this is an algorithm implemented
according to the original definition, i.e., iteration of
conditional dilations until stability.

� MMACH - this is the fast reconstruction algorithm
(section 3.2) implemented in MMach for images
whose formats are byte or short [2].

� QUEUE - this is the algorithm of section 5.3.1 im-
plemented according to the definition, but using con-
ditional dilation implemented by queues.

� BQUEUE - this algorithm is similar to QUEUE, but
using the BETTER QUEUE conditional dilations.

6.3.1 Grayscale Reconstruction

The graphic on fig. 8 shows the result of the inf-
reconstruction using as structuring element the3�3 cross.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

S
ec

on
ds

Number of Erosions to built the Marker Image

MMACH-CLAS
MMACH
QUEUE

BQUEUE

Figure 8: Total time for reconstruction

The MMACH algorithm has the best performance of
all, as expected. The new morphological operators (their
curves are overwritten) have a similar but worse perfor-
mance. However, their performance is much better than
the MMACH-CLAS algorithm.

7 Conclusions

We have studied fast algorithms for image processing and
shown how to represent them as morphological opera-
tors. For this representation, we have introduced some
new elementary operators and given adequate data struc-
tures and algorithms for their implementation.

Experimental results have shown that the proposed
morphological operators have performance equivalent to
the fast algorithms studied. We should remark that both
types of algorithms depend on the input image. They per-
form better for images that have smaller amount of bor-
ders. As erosions and dilations diminishes the number
of borders, these algorithms are particularly adequate to
high resolution images that impose the use of large se-
quences of erosions and dilations.

This approach conserves the hierarchical architec-
ture of the MMachs and permits the efficient representa-
tion of other morphological operators, since they are built
by compositions of elementary operators.

The idea of implementing fast algorithms as mor-
phological operators could be applied to other known fast
algorithms, increasing their modularity and therefore in-
creasing their utility.

8 Acknowledgments

This project was supported by ProTeM-CC/CNPq through
the AnIMoMat project, contract 680067/94-9. The au-
thors also have a partial support from Olivetti do Brasil.

References

[1] G. J. F. Banon and J. Barrera. Decomposition of
mappings between complete lattices by mathemati-
cal morphology: Part I. general lattices.Signal Pro-
cessing, 30:299–327, 1993.

[2] J. Barrera, G. F. Banon, R. A. Lotufo, and R. Hi-
rata Jr. MMach: a Mathematical Morphology Tool-
box for the KHOROS System.Submited to Jornal of
Eletronic Image, 1997.

[3] J. Barrera, F. S. C da Silva, and G. J. F. Banon. Au-
tomatic programming of binary morphological ma-
chines. InImage Algebra and Morphological Image
Processing V, volume 2300, pages 229–240. SPIE,
San Diego, 1994.

[4] A. Rosenfeld and J. L. Pfaltz. Sequential Operations
in Picture Processing.Journal of the Association for
Computing Machinery, pages 471–494, 1966.

[5] J. Serra.Image Analysis and Mathematical Morphol-
ogy. Academic Press, London, 1982.

[6] J. Serra, editor.Image Analysis and Mathematical
Morphology. II: Theoretical Advances. Academic
Press, London, 1988.

[7] L. Vincent. Morphological grayscale reconstruction
in image analysis: Applications and efficient algo-
rithms. IEEE Trans. on Image Processing, 2(2):176–
201, April 1993.

