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Abstract. This paper proposes an architecture for motion capture based animation systems, which works
with several data formats and uses the building block paradigm for motion processing operations. Also, a
user interface is proposed to perform an intuitive visualization of the animation main elements. A prototype
system has been implemented, based on the presented concepts, and its operation is discussed.
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1 Introduction

Recently, the crescent demand for powerful and intuitive
animation systems has led to the development of new
techniques, giving the animator more versatility to build
complex animations.

The Motion Capture technique provides tools for
real-time animation, with extremely realistic results. The
widespread use of motion capture techniques is in part
due to the low cost of modern capturing systems and also
to the demand of different application areas such as spe-
cial effects and home entertainment.

Although it has been studied since the beginning of
the 80’s [1] [2], the present utilization of motion capture
is restricted to a direct mapping of animation parameters.
In other words, the movements captured from live sub-
jects are mapped directly on a virtual actor, and then the
animation is displayed. In spite of its value, this use is
very limited and do not exploit all the potential of the
motion capture process.

Lately, however, tools for analysis, manipulation
and reuse of captured data have been proposed. This
makes motion libraries more valuable for a wide class of
animators.

The application of these techniques are unlimited,
from the development of computer games [4] to the pro-
duction of computer-generated choreographies.

In this work1, we propose an architecture for motion
capture based animation systems. Our goal is to embody

1Additional info available at
http://www.visgraf.impa.br/Projects/mcapture

a set of tools for analysis, manipulation and reuse of mo-
tion captured data, overcoming some limitations inherent
to the process.

The architecture was designed to serve as a test bed
for new techniques, and also work as a robust converter
between the most popular motion capture data formats.

Section 2 of this paper discusses some technologi-
cal aspects of motion capture systems, pointing out some
limitations of the process. In Section 3, we present a
method for 3D Euler angle extraction, that is used to gen-
erate relative angles. Section 4 discusses a classification
for motion operations. In Section 5, we present the archi-
tecture, together with the description of a user interface
for the system. Section 6 presents a prototype implemen-
tation, developed under the methodology of our architec-
ture. Finally, conclusions and future work are given in
Section 7.

2 Background

There is a large diversity of motion capture hardware
available nowadays, from simple mechanic devices to so-
phisticated optical systems.

Mechanical systems [5] are composed of poten-
tiometers (or sliders) that measure the position or orienta-
tion of joints in an object. Its similarity with conventional
stop-motion techniques, that are widely used in movie
production, allows a natural migration of traditional ani-
mators, thus increasing the popularity of this technique.
However, the realism of mechanically captured motions
still depends, in great part, on the ability and patience of



the animator.
Systems based on magnetic technology are probably

the most popular ones. Both positional and angular data
of the joints of a real subject are captured, using a set of
sensors that measure the magnetic field generated by a
source. Their main advantage is the possibility of real-
time animation of virtual characters, thus offering to the
TV industry new possibilities in the field of virtual sets
[6].

Some drawbacks of this technology are the sensi-
tivity to metals in the capturing area - which introduces
some noise into the final data; the high level of encum-
brance - due to the great number of cables attached to
the actor; and the sampling rate - too low for fast sport
motions.

Optical systems are based on high contrast video
imaging of retro-reflective markers, that are placed on
objects whose motion is being recorded. This technique
provides high sampling rates, but the recorded motion
data must be post-processed using computer vision track-
ing techniques [7].

In the tracking process, the centroids of markers are
matched in images from pairs of cameras, using a triangu-
lation to compute the positional data of these markers in
3D space. This process introduces artifacts (offsets) into
the final data. Some disadvantages of the optical process
are the occlusion of one or more markers during the cap-
turing session, the lack of angular data, and the sensitivity
to background light and reflective objects.

Hybrid systems [8], that combine both magnetic and
optical technologies are being developed, but are not yet
commercially available. An interesting comparison be-
tween motion capture systems can be found in [9] and
[10].

Finally, a problem that arises from the great diver-
sity of motion capture hardware and technologies is the
great number of motion data formats, which reduces sig-
nificantly the compatibility of animation systems.

3 A Method for 3D Euler Angle Extraction

As cited before, one of the main disadvantages of opti-
cal systems is that they capture only positional data of
joints. Angular data is extremely important because it
can be mapped onto a “position-independent” skeleton
hierarchy, giving more freedom to the animator.

In an animation system with motion capture facili-
ties, each joint may have basically two types of angular
data: absolute angles and relative angles. The first type
is useful to execute a direct visualization of the captured
motion, but positional data is still necessary for placing
the joints in space, at each frame of the animation.

Relative angles are useful to create complex anima-
tions, allowing an easier modification of motion parame-
ters. The positional information of the first frame is used

to place the joints in the correct position in space (and
also to estimate the length of the limbs), and then the an-
imation is driven only by the joint angles. For example,
a rotation applied to the shoulder joint will propagate to
all joints of its sub-tree, i.e., the elbow and the wrist. The
entire skeleton structure can be moved in space using the
positional information of the hips, for example. Besides,
techniques like keyframing and inverse kinematics can
also be incorporated as new features, since they can be
adapted to work in a motion capture environment.

To calculate these angles, we developed an algo-
rithm based on geometry. Traversing the topological
structure of the skeleton, our algorithm calculates both
absolute and relative angles, for each joint of the struc-
ture.

Absolute angles are obtained by projecting the links
over the coordinate planes lying on the proximal2 joint.
For each plane, the projected vector is then normalized
and its angle with respect to the current axis is calculated
(see Figure 1).

Figure 1: absolute angle calculation

Relative angles are also retrieved by projecting the
linked structure over the coordinate planes (Figure 2). For
each link we calculate a unit vector formed by the proxi-
mal and distal joints. To avoid ambiguity, we established
that links are related in a clockwise manner. Using this
rule, the projected linked structure in Figure 3 will have
the appropriate angles, as shown in Figure 4.

Using the previously calculated vectors of the links,
grouped in pairs, we can calculate the angle between
them using� = cos�1(

������!
AiAi�1N �

������!
AiAi+1N ) (see Fig-

ure 4).
However, in some cases, the desired angle is not�,

but � = 360� � � (in Figure 3, angle number 3). This
case is expected and occurs when the link angle is greater
than180�. To solve this problem, we use a simple and
fast criteria to know whether a point is on the left side of
an oriented segment or not. If a pointc is on the left of the

2The termsproximalanddistal will be used to describe positions as
“near” and “distant” from the point of origin.



Figure 2: linked branch projection over the coordinate
planes

1
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3

Figure 3: rule to avoid ambiguity in relative angle calcu-
lation
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Figure 4: grouped vectors disposition and angle extrac-
tion

segment determined by(a; b), the triple(a; b; c) forms a
counterclockwise circuit (Figure 5). Then an area based
algorithm [11] returns the signed area determined bya; b

andc, i.e., positive if counterclockwise, and negative if
clockwise.

Using this “leftness” criteria we are able to calcu-
late the correct angles of the linked structure: if the
triple (Ai�1; Ai; Ai+1) has a negative area, then we take
� = 360� � �, and the process continues, for each triple

a

b

c

Figure 5: pointc is on the left of the segmentab if (a; b; c)
forms a counterclockwise circuit

until reaching the end-effector3 of the linked branch.
Finally, the dimensions of actor’s limbs are also esti-

mated, measuring the 3D distance between the proximal
and distal joints of each link.

This procedure is used as a pre-process for motion
captured data from optical systems.

4 A Classification for Motion Operations

We can make an analogy between our system and a CSG
modeling system, where basic primitives (in our case, the
motions) are combined through operations like union, in-
tersection and difference. In our paradigm, however, the
(motion) operations are filtering, blending and concatena-
tion. They can be classified in three types: unary, binary
and n-ary.

Unary operations have one motion as operand, and
are useful to modify special parameters of the motion
(e.g., a filtering operation over selected joints) or even to
modify the entire motion (e.g., warping the motion curves
[17]).

Binary operations have two operands, and its main
purpose is to join or group different motions, creating a
longer one. Examples of binary operations are concatena-
tion, cyclification [18] and transition. Note that although
concatenation may be applied to several motions in se-
quence, it can be carried out locally as an operation be-
tween two motions.

Binary operations have many interesting applica-
tions, from computer fight games to virtual reality coop-
erative environments [19].

The last type of motion operations, n-ary, deals with
two or more operands. Motions can be totally or partially
blended, generating new interesting types of movements.
In the case of partial blending of two motions, one can
choose to apply a walk motion to the legs and hips of a
skeleton, while letting the torso and arms execute a dance

3The termend-effectoris often used in robotics, referring to the last
joint of an articulated chain.



motion.
We can also group the existing motion operations in

three types, according to the method of modification and /
or combination they perform in their operands. They are:

� Filtering

Filtering operations can be applied to the joint
curves of a motion to reduce noise, producing smooth-
er results.

In [12], Williams use a multiresolution filtering
method to decompose the motion into frequency bands.
He showed that high-frequencies contain the details of
the motion, whereas low-frequencies contain general,
gross motion patterns. In a practical example a walk mo-
tion was processed, extracting a basic “walking” factor
and a “qualitative” factor, like brisk.

It seems that most digital filtering techniques are
suitable to use with captured motion data.

� Concatenation

Concatenation operations can be used to create
longer animations. Smooth changes between different
motions are achieved through interpolation of end of the
first motion with the beginning of the second motion.

Direct concatenation can be used as well, but for
non-cyclic4 motions it will generate a discontinuity at the
transition.

Transitions between motions are made interpolating
the joint curves parameters over an interpolation inter-
val. In [18], an approach using spacetime constraints and
inverse kinematics was used, generating seamless and
dynamically plausible transitions between motion seg-
ments.

� Blending

Blending operations are normally used to combine
special characteristics of different motions. For example,
two kinds of walk motion may be combined to produce a
new one, blending the joint curves of both motions. Us-
ing this approach, it is possible to create a whole family of
different motions, just varying the blend factor between
the curves.

In blending operations, there must be special at-
tention to motion synchronization and reparametrization.
Synchronization between motions can be achieved using
time-markers, which act as kinematic constraints, match-
ing important events in both motions that will be com-
bined and performing reparametrizations when needed.
Without these tools, motion blending is useless.

Note that concatenation can be interpreted as a par-
ticular case of blending where little or no overlapping oc-
curs.

4Perfect cyclic motions are almost impossible in captured motions,
due to measurement errors and normal human variation in the capture
process.

5 The Proposed Architecture

The motivation of the proposed architecture includes
three main objectives:

� to provide a set of tools for motion manipulation and
analysis.

� to allow the production of high-quality complex an-
imations, using reusable motion libraries.

� to compensate technological limitations of motion
capture hardware.

The framework is composed of basic modules:in-
put, processingand output, each one responsible for a
specific set of tasks (Figure 6). These modules are sup-
ported by a graphical user interface.

User Interface

Input

Module

Processing

Module

Output

Module

Data
Structures

Figure 6: framework of the architecture

The data structures of the architecture represents two
entities: an actor and motions.

The actor is treated as a skeleton. Its topology is
represented by a graph formed by joints and links. Its ge-
ometry is represented by series of connected limbs. This
description is adequate to be used in a motion capture an-
imation system, since it reflects the structure of an articu-
lated figure. For data acquisition, markers are attached at
the joints of a live performer (the real actor).

At the programming level, the actor is represented
using a modified version of Zeltzer’s APJ (Axis Position
Joint) structure [13], adapted to work with motion cap-
tured data.

Motions are best represented as curves in time. Nor-
mally, the captured data consists of marker’s positional
and / or angular variation, sampled by the capture hard-
ware during the number of frames required to complete
the actor’s performance. This description is used for each
degree of freedom (DOF) of the actor.

5.1 Input Module

This module focuses on problems concerning the inter-
pretation and pre-processing of motion data.



The first step before loading a motion file is to spec-
ify the skeleton where the motion will be mapped. Be-
cause there are several file formats available, there must
be a way to define different skeletons, each one appropri-
ated to receive the data from a specific motion capture file
format.

To maintain compatibility, we created skeleton defi-
nition files (SDF), that relates different file formats with
the internal default skeleton definition. In other words,
the default skeleton description provided in the architec-
ture change its state, according to the incoming motion
data format.

Sometimes, the input data will have missing infor-
mation. This usually happens in optical systems, when
the cameras cannot track one or more markers due to
occlusion. In this case, linear interpolation can “fill the
hole”, but the best approach is to use prediction filters5,
with biomechanical constraints, to compute the joint be-
havior in the “hole” region.

Motion

Definition

Skeleton

Description

Internal Format

Conversor

Positional Data
Only?

Angle
Calculation

Map to 

3D Model

yes

Drop in Motion ScratchPad

no

Figure 7: input module framework

5.2 Processing Module

This module comprises the set of tools for motion analy-
sis, manipulation and reuse. These tools were described
in Section 4.

The goal is to provide efficient ways to modify the
original captured data, generating new classes of motions
that inherit the aliveness and complexity typical to the
capture process. Moreover, this module was designed

5Personal communication, Lance Williams, Apple Computer, 1996.

to allow the integration of new motion processing tech-
niques, therefore being extensible, as shown in Figure 8.

Motion

ScratchPad

user selection

Motion Operations

Filtering

Concatenation

Blending

composition

Output

Figure 8: processing module framework

5.3 Output Module

As outlined before, motion captured data portability is
important to improve the flexibility of animation produc-
tion.

Most data formats can be converted without great ef-
fort, since they use the same technology. However, there
are data formats with different markers arrangement or
number. In this case, skeleton conversions are plausible,
yet not always possible.

One alternative is to specify a universal data format
that accepts most existing features of professional sys-
tems. In that way, motion libraries are easier to be main-
tained. They can be improved with new different mo-
tions, coming from various sources.

It is also necessary that the processed animation
could be rendered frame by frame using the system, or
even piped to professional rendering systems, like Ren-
derMan [21] and PovRay [14].

5.4 Interface Module

One major problem on most animation systems is that
they do not provide a concise description of basic enti-
ties, operations and concepts. The functionality of our
architecture would be limited by a conventional user in-
terface.

To complete the architecture description, we intro-
duce an interface that represents the basic structure pre-
sented in the previous sub-sections. This interface is part
of the prototype system, that will be described in Section
6.

We decided to adopt an interface paradigm used in
post-production video workstations [15]. Motions are
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Figure 9: output module framework

represented by a horizontal bar, using a frame ruler as-
sociated with it. This visual description gives a precise
spatial and temporal perception of the movement.

The user interface is composed of various graphical
objects that are organized in panels and represent higher
level operations. For a more detailed description of the
interface paradigm used in the prototype system, please
refer to [3].

6 The Prototype System

In this section we present a prototype system, imple-
mented according to the proposed architecture.

This system works with motion captured data, using
the processing module to create new motions, expanding
the existing library.

Special attention was given to the system’s GUI,
which uses a dynamic approach, with several windows
sharing information at different levels. The program is
controlled by a loop that change the interface contents
according to user interaction.

In this system, work with motions is straightfor-
ward: the user can select several motions from a exist-
ing library, and put them in a scratchpad. With a few
commands, the user is able to apply different motion op-
erations, with all necessary information available within
his visual field.

Initially, the set of operations consists of filtering,
concatenation, blending and transition. One of the main
objectives of the system is to continuously integrate new
motion tools, expanding the animator’s possibilities and
creating new motions with the existing tools. In that way,
motion selection, cropping, cut and other higher level op-
erations can be added to the initial set.

Figure 10 shows a snapshot of a typical system us-
age. Note the interface objects that represent the motion
curves as a sampled signal (1 ), and the skeleton graph

description (2 ).

Window 3 shows the Motion ScratchPad, a graph-
ical object created to help user interaction with the sys-
tem. Acting as a motion organizer, the ScratchPad pro-
vides useful information and a global perception of the
motions placed on it.

Motion operations also have their own graphical ob-
jects. For example, window4 shows a concatenation
operation between several motions.

The playback of animations is executed in window
5 . A control panel is integrated with it, providing con-

trols for interactive playback as used in video recorders.

6.1 Implementation Issues

The architecture and prototype system presented in this
work were implemented in the programming language C,
using a SGI Indigo 2 graphic workstation as the base plat-
form. We employed OpenGL for rendering and XForms
[20] for the basic GUI generation. The advanced GUI
objects were designed and implemented separately, and
then added to the Forms library.

Due to OpenGL’s rendering facilities and to the dy-
namic interface control used in the system, a real-time
frame rate is achieved during the playback of animations
(about 15 frames/sec in a SGI Indigo 2). The prototype
system was also tested in the Linux and RISC 6000 plat-
forms, also with good frame rates.

7 Conclusions and Future Work

This paper presented an architecture for motion cap-
ture based animation systems. Using the building block
paradigm, motions can be combined or modified to create
new motions and longer animations.

The architecture deals with some technological
problems inherent to the capture process, providing vari-
ous animation tools. Also, a GUI was proposed to offer
a conceptually correct visualization of the animation ele-
ments.

A prototype system was built, based on the proposed
architecture and interface, with promising results that en-
courage us to improve it.

7.1 Future Work

We plan to expand the flexibility or our system. Future
work include:

� insertion of keyframing and inverse kinematics
modules, improving system’s flexibility.

� combine motion capture with procedural animation
[24] and behavioral animation [25] [27]. In the first
case, captured motions could act as a guide for pro-
cedural objects. In the second case, the behavioral



Figure 10: Snapshot of the prototype system.

functions could control the processing module, com-
bining and modifying captured motions to improve
the visual quality of the animation.

� combine motion capture with sound. In this case,
the time-markers could be useful to synchronize the
key moments in the motion with the temporal de-
scription of the sound.

� implementation of other advanced motion opera-
tions ([12], [18], [17]), comparing their results and
extracting conclusions and suggestions for improve-
ments and / or new techniques.
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