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Abstract. This paper explores the use of elements of Di�erential Geometry to control the

manipulation of the deformable model proposed by Terzopoulos et al. [8] for animating deformable

objects. Particularly, we are interested on the animation of deformable panels without stretching

(area invariant), such as clothes and papers. Based on our analysis we could generate with a little

e�ort several simulations compatible with our expectation.

1 Introduction

The deformable model proposed by Terzopoulos et

al. [8] is founded on the motion equation in La-

grangean form and adjust the elastic deformation by

parameters related to the metric and curvature ten-

sors of surfaces. Since it uni�es the description of

shape and motion, this model signi�cantly simpli�es

the approach of animating complex objects.

The 
exibility and the modeling power of this

model is recognized by the modeling community. Sev-

eral subsequent works [4, 2, 6] were made to im-

prove this approach. A major problem, which was

not enough discussed, is how to manipulate the pa-

rameters to get realistic dynamics behavior.

This work addresses this problem. Using con-

cepts from Di�erential Geometry, we take advantage

of the geometric potential of the model and deal more

intuitively with parameters in order to get realistic

simulation or physical movements through an intu-

itive interface.

A major challenge that we faced was the non-

independency between these parameters. This inter-

dependency, which is a consequence of the di�eren-

tial relation between the metric and the curvature

tensors, has not been considered up to now, and, as

we could see, non-compatible parameters can yield

non-realistic deformations.

In our analysis we deal more speci�cally with the

class of surfaces with a big resistance against stretch-

ing and little resistance against curvature. These

features would allow us to simulate the behavior of a

great variety of physical objects, like a piece of cloth

or a sheet of paper.

This article is organized as follows. In section 2

some basic concepts from Di�erential Geometry and

a brief description of the analyzed model are given.

We discuss in section 3 the geometric meaning of the

model parameters and their in
uence on the visual

e�ects. The adjustment of the elasticity parameters

is shown in section 4. Some simulation results are

given in section 5. Finally, in section 6 some con-

cluding remarks are drawn.

2 Deformable Model

To be self-contained a brief description of the ana-

lyzed deformable model is given.

2.1 Basic Concepts

For the vector position ~r(x; y; z) of a point P in a 3-

dimensional Euclidean space, we can associate its co-

ordinates to a unique set of coordinates (a1; : : : ; an):

x = x(a1; : : : ; an)

y = y(a1; : : : ; an)

z = z(a1; : : : ; an)

: (1)

The coordinates (a1; : : : ; an) are known as curvi-

linear coordinates of P . The value of n is related to

the dimension of the object in 3D space to which the

point belongs. For n = 1 the object is a curve, for

n = 2, a surface, and n = 3, a solid body.

Since we have

d~r =
@~r

@a1
da1 + : : :+

@~r

@an
dan; (2)

the squared length of an arc in curvilinear coor-

dinates can be expressed by



dl2 = d~r � d~r =

nX
i

nX
j

Gijdaidaj; (3)

where

Gij(~r(~a)) =
@~r

@ai
:
@~r

@aj
: (4)

Equation (3) is known as �rst fundamental form or

metric tensor and the elements Gij are called metric

coe�cients [1, 7, 3].

In this paper, we shall also use the notation Ab

to designate the partial derivative @A
@b
. That is, equa-

tion (4) can be rewritten as

Gij(~r(~a)) = ~rai :~raj : (5)

The curvature of a curve at a given point mea-

sures the amount of variation of the unitary tangent

vector to that point from its neighborhood (angle

variation). The normal curvature of a point P that

lays on a curve C of a surface S is given by:

kn = kcos�; (6)

where k is the curvature of C in P and � is the angle

between the principal normal to C and the normal

vector to S, in P [1, 7, 3].

It can be shown that

kn =

2X
i

2X
j

Bijdaidaj; (7)

where

Bij(~r(~a)) = ~n:
@2~r

@ai@aj
= ~n:~raiaj : (8)

Equation (7) is called second fundamental form or

curvature tensor and the elements Bij are said cur-

vature coe�cients.

Roughly speaking, the coe�cients Gij of the

�rst fundamental form are related to the length and

area measures or stretching of a surface (metric ten-

sor) whereas the second fundamental form Bij de-

scribes the bending or how non-planar is a surface

(curvature tensor).

The values of Bij can be obtained from Gij ac-

cording to the following relations:

B11 =








xa1a1 ya1a1 za1a1
xa1 ya1 za1
xa2 ya2 za2
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B12 = B21 =
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(9)

The metric and the curvature tensors are then

not independent, they must satisfy certain compati-

bility di�erential equations known as Gauss formula

and Mainardi-Codazzi equations from surface theory.

These equations are deduced from the relations

(~ra1a1)a2 � (~ra1a2)a1 = ~0

(~ra2a2)a1 � (~ra2a1)a2 = ~0

~Na1a2 � ~Na2a1 = ~0 (10)

On the other hand, two symmetric tensors Gij

and Bij , with G11 > 0, G22 > 0 and detG > 0,

satisfying those compatibility conditions determine

up to a rigid motion a unique surface which has Gij

and Bij for metric and curvature tensors [1, 7, 3].

2.2 A Deformable Model

Our deformable surfaces follow the implementation

of a physically-based model and their dynamics are

ruled by the equation of motion in its Lagrangean

formulation:

�
@2~r

@t2
+ 


@~r

@t
+

�"(~r)

�~r
= ~f(~r; t) : (11)

In equation (11), � is the mass density and 


is the dumping constant at a point ~r. The vector ~f

denotes the total contribution of external forces at

~r in an instant t. The term corresponding to the

internal energies accumulated due to elastical defor-

mation "(~r) is estimated from the following empirical

consideration [8]:

"(~r) =

Z



(kG�G0k2� + kB�B0k2�)da1da2; (12)

which takes, for the metric and curvature tensors,

a weighted norm of the di�erence between the de-

formed state and rest state values. That measure can

reasonably estimate the elastical energy of a surface,

attaching the amount of energy to the variations in

the surface's geometric shape. In other words, that

norm is a measure of the energy needed to displace

the surface's points, de�ned over a region 
, from

their rest state.

Applying the weighted norms of equation (12),

we obtain the following simpli�ed deformation en-

ergy:



"(~r) =

Z



X
i;j

(�ij(Gij�G
0
ij)

2+�ij(Bij�B
0
ij)

2)da1da2

(13)

The weights �ij and �ij are denominated elasticity

parameters.

From equation (12) we may have a good approx-

imation for the internal force �"(~r)=�~r due to defor-

mations on the object [6]:

~e(~r) =
X
i;j

�
@

@ai
:

�
�ij

@~r

@aj

�
+

@2

@ai@aj

�
�ij

@2~r

@ai@aj

�
;

(14)

where the variables �ij and �ij are de�ned as:

�ij(~a;~r) = �ij(~a)(Gij � G0
ij)

�ij(~a;~r) = �ij(~a)(Bij � B0
ij): (15)

Since the quantities Gij are related to surface

stretching, while the values for Bij are related to

curvature, our measures of deformation follow from

these quantities and the surface's behavior of resis-

tance to external forces will be as much e�ective as

greater are the values assigned to the elasticity pa-

rameters.

2.3 Discretization

We make a discretization of equation (14) with �nite

di�erence techniques, according to the suggestion of

Terzopoulos [8]. The discretization turns the partial

di�erential equation into a linear system of di�eren-

tial equations.

The continuous space 
 is then discretized into a

MxN-node mesh, where each node (m;n) represents

a discrete point (or a nodal variable) ~r(m;n) in 3D

space. To the set of nodal variables ~r(m;n) de�ned

for MxN nodes we call function mesh and each node

is re�ered to as ~r[m;n].

Denoting D+ the �rst-order forward �nite dif-

ference and D� the �rst-order backward �nite dif-

ference, equations (14) and (15) are respectively dis-

cretized into

eij [m;n] =

2X
i;j

�D�i (~p)[m;n] +D
(�)
ij (~q)[m;n] (16)

where

~p = �ij[m;n]D+
j (~r)[m;n]

~q = �ij [m;n]D
(+)
ij (~r)[m;n] (17)

and

�ij[m;n] = �ij[m;n](D+
i (~r)[m;n]:D+

j (~r)[m;n]�G0
ij)

(18)

�ij [m;n] = �ij[m;n](~n[m;n]:D
(+)
ij (~r)[m;n]� B0

ij):

(19)

One can observe that the values for the di�er-

ence operators are not determined for points laying

at the boundaries of domain 
. Nevertheless, a nat-

ural condition of boundary can be simulated by as-

signing a zero value to any di�erence operator of

equation (17) that refers to points ~r(m;n) not be-

longing to the set of MxN points of our mesh.

If the nodal variables in function meshes r[m;n]

and e[m;n] are grouped, respectively, into column

matrices R and E of dimension MxN, then equation

(16) can be written in matrix form

E = K(~r)R (20)

where K is known as strength matrix.

The discrete form of the equation of motion can

then be expressed by the following coupled system of

di�erential equations:

M
@2 ~R

@t2
+C

@ ~R

@t
+K(~r)R = F (21)

where

� M is the diagonal matrix formed by the mass

density of each element,

� C, the diagonal matrix formed by the dumping

density of each element, and

� F , the column matrix containing the external

force applied to each element, calculated from
~f(~r; t).

To simulate the dynamics of a non-rigid object,

the system of di�erential equations (21) must be in-

tegrated through time. Those equations will be inte-

grated using a step-by-step process, which now con-

verts a system of non-linear di�erential equations

into a sequence of linear systems.

The time interval from t=0 to t=T is subdi-

vided into smaller time intervals of same duration

�t and the integration process carries out the cal-

culations for the sequence of approximated solutions

for instants t, t+�t, t+2�t, ... , T. Computing E in

t+�t and F in t, and substituting the discrete-time

approximations

@2R

@t
= (Rt+�t � 2R+Rt��t)=�t2 (22)

@R

@t
= (Rt+�t �Rt��t)=2�t (23)

in equation (21), we obtain

AtRt+�t = G; (24)



where

At = K(~rt) +

�
1

�t2
M+

1

2�t
C

�
(25)

and

Gt = Ft+

�
1

�t2
M+

1

2�t
C

�
Rt+

�
1

�t
M�

1

2
C

�
Vt:

(26)

The column matrix of speed Vt is given by:

Vt = (Rt �Rt��t)=�t: (27)

3 Control

Observing equations (11) and (12) we will see that

the geometric shape of a deformable surface can be

controlled not only by �, 
 and external forces~f(~r; t),

but also by the elasticity parameters. Due to the

diversity of parameters involved, di�erent combina-

tions of those parameters could take us to the same

visual e�ect.

For example, to generate the animation of an

oscillating surface, we can apply sinusoidal forces to

each point of the surface, or we can assign distinct

values of 
 to each point, or, alternatively, assign

di�erent values to � in each point, or we can even

de�ne convenient values for the elasticity parameters.

That 
exibility increases the model's versatil-

ity, but, on the other hand, makes it di�cult to be

controlled, since these parameters are not orthogo-

nal and the in
uence of some parameter value can

be masked by another's.

The procedure we propose tries to overcome this

trade-o� by assigning to each parameter a dominant

independent rule in such a way that all possible value

combinations could generate the set of all desirable

visual e�ects. Besides that, according to the tools

required to analyze the in
uence of those parameters,

we make a distinction of two control levels:

Macro-control: By assigning adequate values for

�, 
 and ~f , we may have an inaccurate, but

intuitive control of the object's dynamics. All

points in the surface assume equal values of �

and 
, considering that the surface is homoge-

neous with respect to the environment in which

it is immersed.

Micro-control: The variations in the local geome-

try of each point are caused by the material's

resistance to variations in stretching and curv-

ing. That e�ect can be controlled by properly

setting the elasticity parameters �ij and �ij.

3.1 Macro Control

As equation (11) refers to each surface point at its

position ~r(a1; a2), we can analyze that equation's in-


uence by taking into account the similarities with a

mass-coil system at each of those points. In that way,

if the value assigned to 
 is too large in comparison

with the value assigned to �, each point will have

a over-damped behavior. Thus, the surface would

reach an equilibrium state more quickly. As we in-

crease the value assigned to �, the surface tends to

respond to perturbations in an oscillating manner

before equilibrium is reached, owe to the increased

inertia (damped oscillation). Finally, when 
 is null,

the surface keeps oscillating around an equilibrium

point.

In accordance to what has been already observed

by Thalmann et al. [2], in real situations the value

for 
 must be a function that takes into account the

dissipative e�ects coming from internal frictions in

the surface. They have proposed a model that cal-

culates the dumping contribution also as a function

of the metric and curvature tensors. Nevertheless,

for the class of objects we have been studying, we

have realized that some very realistic results can be

obtained considering 
 as a scalar and just adjusting

the values of � and ~f .

In addition to that, we have observed that the

triples (a�; b
; c~f), where a; b; c > 0, produce the

same visual e�ect, since substituting them into equa-

tion (11) we obtain a set of equivalent equations that

generate the same ~r at each iteration. This is an im-

portant observation from the numeric point of view,

in the sense that it is always possible to \scale" the

equations to a computationally more feasible range

of values.

By now, it should be emphasized that the idea

of increasing the values of physical parameters is not

merely a change in scale. Our procedure corresponds

to trying new combinations of macro-control parame-

ters, but the description assigned to the object's rest-

state size should be maintained. If the object's size

was increased likewise, we would incur in the same

values of nodal variables and no dynamic changes

would be noticed.

3.2 Micro Control

According to Terzopoulos [8], there are two ways of

adjusting the amount of deformability of a surface.

It can be done by setting parameters �ij and �ij or

by setting parameters �ij and �ij .

The parameters �ij and �ij are weights of quad-

ratic terms (equation (13)). When the variations in

the object's geometry, Gij and Bij , with respect to



its rest state shape, G0
ij and B0

ij, are very large or

very small, the observed results may be very criti-

cal, depending on the values assigned to �ij and �ij.

Under the numerical point of view, we are working

with non-linear systems, which are more susceptible

to run into instability.

If we take a careful look into the equations (14)

and (15), we may conclude that non-realistic behav-

iors are more likely to happen when we work directly

manipulating parameters �ij and �ij . That stems

from the fact that positive values assigned directly

to �ij and �ij always induce a residual initial elastic

energy. That situation would be equivalent to hav-

ing (Gij�G0
ij), as well as (Bij �B0

ij), non-zero even

when the external force ~f is absent and no change in

geometry is produced.

To avoid that inconsistency, we take the ap-

proach of using parameters �ij and �ij to control elas-

ticity in our simulations, as they act directly upon

the variations of the metric and curvature tensors.

It is worth to mention that the empirical choice

of values for �ij and �ij must be quite criterious. Ac-

cording to equations (15), when the values of �ij and

�ij are set too large, exaggerated contributions of the

restoring elastic force occur and these contributions

lead our dynamic system to a loss of equilibrium.

That comes from the fact that the internal energy

is calculated as a function of �ij and �ij (equation

(12)). Exaggerated values of �ij and �ij may pro-

duce large values of �ij and �ij even for slight tensor

variations.

To have a better understanding of the in
uence

of parameters �ij and �ij in the visual e�ects, it is

interesting to examine, from the geometric point of

view, the meaning of the variations in parameters

Gij and Bij, as well as the relations between these

variations. As it has been mentioned before, the vari-

ations in Gij are related to area variations while vari-

ations in Bij re
ect changes in mean curvature.

One can intuitively see that these tensor vari-

ations are attached to each other if we consider the

case of a plane surface with its border held �xed (Fig.

1). In this case, it would be impossible to stretch the

surface (i.e.: increase its area) without producing

curvature e�ects (Fig. 2 ). There must be coherence

between stretching and bending. This coherence is

stated by the equations (10). Based on these equa-

tions, we derived a compatibility test which com-

pares the involved vectors through the ratio of its

magnitudes and the cosine of its angles (both num-

bers must be near to one).

So, as �ij and �ij weight those variations, we can

predict that our model may be driven to instability

if we increase the value of �ij while maintaining �ij

Figure 1: A panel resistant to stretching.

Figure 2: Same panel of Fig. 1 with decreased

stretching resistance

relatively small. Depending on the con�guration of

external forces and boundary conditions, that is, the

restrictions we apply to our deformable surface, that

instability can be reached quite easily.

A relevant point which should be discussed now

is the accuracy of the surface discretization process,

as the numerical method used to solve our system

relies strongly on that. From equations (16), (18)

and (19) it is easy to verify that the calculated val-

ues for Gij and Bij may present errors generated

by the �nite di�erence technique. Those errors can

produce unexpected results. On the other hand, a

more re�ned discretization considerably increases the

number of points in the mesh, making the solution

a time-consuming process. Due to our interest in in-

teractive solutions, which would return to the user



non-ambiguous results as quickly as possible, we de-

cided for rather raw discretizations.

From equations (15) we may notice that param-

eters �ij and �ij may be used to mask some errors

produced by the discretization process. Although

the proposed model does not present any restriction

nor any direct control upon the coordinate system

(a1; a2) to be used, it is recommended to work with

orthogonal systems and perform some suitable sim-

pli�cations in the calculations. A reasonable sim-

pli�cation for the algorithm presented in section 2.3

consists of making, for each iteration, �12 = �21 =

�12 = �21 = 0 for all points in the surface, so that

there would be no contribution from these quantities

to the evaluation of deformation energy "(~r). This

can be achieved by letting �12 = �21 = �12 = �21 = 0

and we have adopted such procedure in all of our

simulations.

In addition to that, as we have been proposing

some way of modeling 
exible objects with no varia-

tions in area, we theoretically expect successful sim-

ulations using large values for �ij and small ones for

�ij. As it is stated in equation (12), the weighting

factors �ij would therefore have more in
uence on

the evaluation of internal energy than the weighting

factors �ij.

4 The Choice of Parameter Values

Examining the combinations of values assigned to the

most satisfactory results achieved up to now (some

of which are listed in section 5), we notice that the

values for �ij and �ij are much smaller than that of

the rest of the physical parameters involved. As we

are working with �nite precision, the useful range of

values for �ij and �ij may become so restricted that

practically no noticeable change in visual e�ects will

occur as in
uence of these parameters.

In general, due to equation (12), if the other

physical parameters are set to a range of values sim-

ilar to the one found in real world, then great values

assigned to �ij or �ij would result in instability and,

in contrast to this, smaller values may not produce

substantial changes in the surface's dynamic behav-

ior.

One way of overcoming this problem is to in-

crease the values of all physical parameters involved,

as mentioned in section 3.1. Doing this, we can in-

crease the upper bound (imposed by instability) for

�ij and �ij, allowing variations of these two param-

eters within a broader range. As a consequence of

that, we can obtain a richer set of realistic e�ects in

our simulations.

When increasing the values of our parameters

to reach an adequate range for performing computa-

tions, we may come to a situation where the values

have little intuitive meaning as they may be consid-

erably di�erent from the ones we �nd in real world.

So we have to �gure out some way of preserving the

intuitive character, which is an important feature of

physically-based modeling, for the sake of controlla-

bility.

A possible solution for maintaining the intuitive

aspect of our model would be to set, at �rst, the

values for our physical parameters based on the val-

ues we �nd in real world, according to the measuring

system we are used to (in our case, we choose the

International System, also known as MKS). From

that initial intuitive approximation we carry out our

transformations of multiplying them by constants to

make them more suitable for numerical calculations.

At last, we do the �ne adjustments related to the

dynamics of deformation with the elasticity param-

eters �ij and �ij. Using our terminology, those �ne

adjustments on stretching and curvature resistance

are what we called micro-controlling.

5 Simulation Examples

In this section, we present some simulation examples

to illustrate and comment a few aspects related to

the combinations of parameter values discussed so

far. In all of our simulations we used �11 = �22 = �

and �11 = �22 = �.

Our �rst example involves the simulation of an

opening curtain. The physical parameters �, 
 and
~f and the curtain dimensions are set to values based

on real world. By applying external forces to the

upper part of the curtain, perpendicular to the plane

de�ned by its rest state and restricting its movement

to the axis where it should slide, we achieve the e�ect

seen in Figs. 3 to 6.

The parameter � is set to zero and the value

assigned to � is reasonably high, in a way that the

surface seems to fold with no resistance, however,

su�ering little stretching due to the external forces

applied. It is important to say that, for such a com-

bination of values, di�erent values of � ranging from

0 to 10�3 would not a�ect the surface's dynamic be-

havior, while for � > 10�3 we are led to instability.

By increasing the values of physical parameters

�, 
 and~f we can experience more e�ective responses

from � and �, as illustrated in the next pictures. Fig.

5 shows our curtain with a similar combination of

elasticity parameters (� = 0 and � large), but using

higher values of �, 
 and ~f .

In Fig. 6 we used the same combination of pa-

rameters as the one from the previous example, ex-

cept that curvature resistance � is increased from 0

to 3:0 � 10�6. In this example we can observe the



Figure 3: Opening curtain.

Figure 4: Same curtain of Fig. 3 after some elapsed

time.

sensitivity achieved for � when the other parameter

values are properly set.

Another way of checking the little resistance to

curvature in contrast to the remarkable resistance to

stretching is examining the simulation of an oscillat-

ing 
ag. In this case to simulate a wind behavior

acting on a 
ag, we apply on one side of the 
ag a

coil force. This force is responsible for the waving

character of the resulted images presented in Figs. 7

and 8.

6 Conclusions

We have presented some results of an analysis of the

deformable model proposed in [8] with the use of

concepts from Di�erential Geometry. Di�ering from

Figure 5: \Scaled" parameters allow a simulation of

light, silky behavior of a curtain.

other approaches to physically-based modeling, this

model expresses the potential elastic energy in terms

of metric and curvature tensors. Our goal has been to

explore the geometric potential of this model and to

devise a more intuitive interface for physically-based

modeling.

We distinguished two control levels in the ana-

lyzed model: the level that simulates the motion of

the object (macro-control) and the level that governs

the shape deformation (micro-control). This leads

to two functionally independent sets of parameters:

f�, 
, ~fg and f�ij, �ijg.

Since our interest was on the geometric aspect,

we focused our discussion on the micro-control. We

showed that, although Gij and Bij are non-indepen-

dent, it is possible to include a compatibility test to

ensure realistic visual e�ects in the simulations. In

addition, we discussed how to choose �ij and �ij to

get di�erent variations on the shape deformation.

Although we have limited our study to the class

of deformable but non-stretching (invariant area) sur-

faces, we believe that the methodology we proposed

is suitable for any other case.

7 Acknowledgements

The pictures presented in this paper were rendered

using X-Geomview 1.5.

References

[1] Berger, M. and Gostiaux, B.. Di�erential Ge-

ometry: Manifolds, Curves, and Surfaces.

Springer-Verlag, New York, 1988.



Figure 6: Curvature resistance is increased to simu-

late paper behavior.

Figure 7: A waving 
ag.

[2] Carignan, M., Yang Y., Thalmann, N.

M., and Thalmann D.. Dressing Animated

Synthetic Actors with Complex Deformable

Clothes. Computer Graphics, 1992, Vol.26,

No.2, pp.99-104.

[3] Carmo, M.P.. Di�erential Geometry of

Curves and Surfaces. Prentice Hall Engle-

wood Cli�s, N.J., 1976.

[4] Celniker, G. and Grossard, D.. Deformable

Curve and Surface Finite-elements for Free-

form Shape Design. Computer Graphics,

25(4):257-266, July 1991.

[5] Feyman, C.R.. Modelling the Appearance of

Cloth. MSc Thesis, Department of Electri-

Figure 8: Same 
ag of Fig. 7 after some elapsed

time.

cal Engineering and Computer Science, MIT,

Cambridge, MA, 1986.

[6] Horta, A.A. and Wu, S.T.. Deforma�c~ao

de Superf��cies N~ao R��gidas Baseada em

Princ��pios F��sicos. Anais do VIII SIB-

GRAPI, 1995, pp.175-182.

[7] Struik, D.J.. Lectures on Classical Di�er-

ential Geometry. Addison-Wesley Publishing

Co., London, 1961.

[8] Terzopoulos, D., Platt J., Barr A., and

Fleischer K.. Elastically Deformable Models.

SIGGRAPH'87, Computer Graphics, 1987,

Vol.21, No.4, pp.205-214.

[9] Weil, J.. The synthesis of cloth objects. Com-

puter Graphics, 1986, Vol.20, No.4, pp.49-54.


