
Anais do IX SIBGRAPI (1996) 273-280

Behavioral Animation Modeling in the Windows™ Environment

MARCELO COHEN
1

CARLA M. D. S. FREITAS
1

FLAVIO R. WAGNER
1

1UFRGS - Universidade Federal do Rio Grande do Sul
CPGCC - Curso de Pós Graduação em Ciência da Computação

Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brasil
flash@music.pucrs.br

[carla,flavio]@inf.ufrgs.br

Abstract. This paper describes an interactive system for the production of modeled animation. It
implements the concept of behavioral animation, providing tools for the definition of actors, behaviors and
complete scenes. Actors, behaviors and scenes are modeled following an object-oriented approach.
Behaviors can be attached to classes of actors. A prototype was implemented in MS-Windows
environment, for validation purposes.

Keywords: Computer Graphics, Modeled Animation, Behavioral Animation.

1 Introduction

Animation-related questions have always been research
subject for many groups. The description of modeled
animation [Thalmann-Thalmann (1985)], specifically,
allows the use of various methods to simplify the
movement definition. Among those, stands out the
behavioral modeled animation.

In this context, there are techniques based on
sensor-effector networks [Braitenberg (1984), Wilhelms
(1990)], behavior rules [Reynolds (1987)], genetic
algorithms [Reynolds (1993), Yaeger (1993)], relations
[Green (1993)] and autonomous agents [Costa et al
(1995)], among others.

This work presents a new approach to behavioral
animation, where the main idea is to see the user as an
animation director instead of an animator. That is, the
user must have enough control to “direct” the actors, but
not be obliged to define each position, orientation, etc.,
individually.

As the prototype was developed, however, other
control levels were included in the system. It is possible
to use a simple definition or a very precise one, if
needed.

Three main elements are used in the definition of
an animation: actor classes, behaviors and scenes.
Each one contributes on its own to the animation
composition. Together, they allow the user to direct the
animation. An object-oriented approach was used,
allowing the definition of actor classes. Behaviors, after

defined, can be associated to classes. The next three
sections present the adopted approach to the definition
of actors, behaviors and scenes. The next three sections
present the adopted approach to the definition of actors,
behaviors and scenes. Section 5 and 6 present the
developed prototype and the obtained results,
respectively, while in section 7 conclusions are drawn,
comparing the work described herein with existing ones.

2 Actor classes

Since many actors share common features the idea of a
class is straightforward. Frequently, animations have
many similar characters - even groups of the same
character. The class is its visual representation
(geometry) and its features (attributes). Each actor in
the animation is an instance of an actor class.

The classes are hierarchically modeled, each
one being derived of another existing class, which helps
the creation process of new classes. This characterizes
an attribute inheritance process. To allow this kind of
modeling, we need a superclass, named in this work as
the Standard Class.

 2.1 Geometry

The geometry describes the object’s visual
representation. Like [Watt (1992)], we chose the
boundary surface representation (B-Rep), that is,
polygonal modeling (facets).

274 M. COHEN, C. M. D. S. FREITAS, F. R. WAGNER

Anais do IX SIBGRAPI, outubro de 1996

There are three reasons for this choice: it is the
usual representation in almost all 3D modeling systems,
it is easily handled, and it is a representation which
helps the collision detection, since it is possible to have
an exact idea of an object’s volume.

 2.2 Attributes

The attributes characterize different actor classes and
their contents can be changed in the middle of the
animation, and can be used for computations or in
control structures.

There are two kinds of attributes: simple, which
store scalar quantities (velocity, weight) and composed,
which store vector quantities (direction, force) or
quantities represented by 3 components (object position,
orientation and scale in 3D space). Both only store real
numbers (floating point numbers).

As examples of basic attributes, we have: position
(of an actor in 3D space), orientation (in relation to the
3 coordinate axes: X, Y and Z), scale (three scale
factors, one for each axis), direction (vector indicating
direction of the movement), velocity (combined with the
direction attribute gives the motion velocity vector),
color (stored as R, G, B).

3 Behavior

The behavior is by far the most important part of the
method, because each behavior description specifies
what action/movement an actor will perform.

Each behavior is created and associated to a
selected class, which means that only actors of this class
can have that behavior (and of course, actors of derived
classes, due to attribute inheritance).

A behavior is specified by 3 control structures:
command descriptions, constraint definition and
event handling. Each control structure adds an
additional element for the movement definition,
although not always all three must be used.

3.1 Command descriptions

Command descriptions are done using a simple
programming language. This language is inspired on
structured languages, such as Pascal, but it can only
handle numerical data (simple or composed, as
mentioned on section 2.2). There are the following types
of instructions:

• attributions: attribute change;

• iterators: repetition blocks (loops);

• conditionals: to perform decision-making
during the animation;

• jump to another behavior;

• primitive behaviors: basic actions, predefined
and parameterizable, which can be performed
by actors. Examples: uniform straight motion,
uniformly-varied straight motion, circular
motion, spiral motion, projectile launch motion
[Ramalho (1990)];

• behavior compositions: direct specification of
movement hierarchies, combining primitives
and attributions;

• communication with other actors: by message
exchange, where each actor can send data
(attributes or strings) to other actors;

• creation of a new actor: allows the dynamic
creation (during the animation) of a new actor,
from a selected class;

• actor elimination: allows the dynamic
elimination (during the animation) of the actor
from the scene only for visualization purposes.
That means the actor is never erased, but only
kept hidden.

The combination of the above commands allow the
detailed description of a basic behavior for a specified
actor class, that is, a behavior that can be linked to any
actor of that class. It is worth to note that all behaviors
are based exclusively on direct kinematics - velocity
producing motion.

As examples, the following pictures show the
resulting motion of two kinds of commands:

• a primitive command (projectile launch),
specifying: launch orientation (turn), the
projectile initial velocity (vel), angle of launch
in relation to the ground (ang) and gravitational
acceleration (g) (figure 1);

LAUNCH (Turn = 0, Vel = 20, Ang =
80, G = 3)

Figure 1 - Projectile launch.

• a behavior composition, generating a spiral
motion with decreasing radius, where the actor
is lifted (through his Y-coordinate) and,

BEHAVIORAL ANIMATION IN THE WINDOWS ENVIRONMENT 275

Anais do IX SIBGRAPI, outubro de 1996

simultaneously, spins around his Z-axis (figure
2).

Composition

SPIRAL (Dir = [0,1,0], Vel = 15,
Radius = 20, Final = 2, Step = -
.5)

Position.y = Position.y + 1

Orientation.z = Orientation.z + 8

End

Figure 2 - Behavior composition.

3.2 Constraints definition

A constraint is an additional control structure which can
be used in behavior definition. Constraints work as
indications of conditions which must be respected
during the motion. The idea is to generate the movement
defined by the command descriptions, respecting all
imposed constraints (conditions).

These constraints can be classified in seek,
approach and avoid approaching an actor class, that
means, any actor belonging to that class. Each constraint
has a priority , which indicates the constraint’s relative
importance to the others. Therefore, the greater the
priority, the greater the constraint relevance. This helps
to avoid conflicting situations.

Each kind of constraint imposes a condition: the
seek constraint, shown in figure 3, forces the actor to go
to the direction of all actors of the specified class.

 Class: Squares

 Constraints: Priority 100 - Seek Triangles

Figure 3 - Seek constraint.

The approach constraint (figure 4) adds an
additional element: the minimum distance that the actor
must keep from its targets.

 Class: Squares

 Constraints: Priority 100 - Approach Triangles
 until 30

Figure 4 - Approach constraint.

Finally, the avoid approaching constraint
performs the opposite effect: tries to make the actors
approach the least distance from their targets. It is
important to note that it is not about avoiding the
targets - because that implies a direction change - but
just get as far as possible.

In practice, the constraints evaluation generates a
resulting vector, computed from a weighted vector sum
of all constraints. This weighted sum uses each
constraint priority as a weight. The goal is to obtain a
new movement direction, in order to comply with all
constraints. But it was observed that this is seldom
obtained, because constraints tend to generate
conflicting situations like, for example, simultaneously
approaching and avoid approaching different classes.

3.3 Events

Many behaviors create situations that demand
immediate response from the actors. This means that the
behavior evaluation must be prepared to handle events.

Events are special situations which can happen
during the animation, requiring the actor’s attention.

There are four kinds of events: proximity of
another actor, collision with another actor, presence of
a new actor (by the create command) and message
receiving. When any event happens, some action will
have to be performed, in order to respond to the event.
Such response is defined as command among the
following: attribution , behavior jump, sending of a
new message, creation of a new actor and
elimination of the actor. Like the constraints, events
also have an associated priority, which means that
events with a higher priority will be processed earlier.

276 M. COHEN, C. M. D. S. FREITAS, F. R. WAGNER

Anais do IX SIBGRAPI, outubro de 1996

The proximity of another actor event requires the
specification of the minimum distance from that the
event will be generated. This has the objective of
avoiding comparisons between actors that are too far
from each other. Likewise, the collision with another
actor event must know which actor class to test a
collision with. The creation of a new actor is detected
by the presence of an actor event. Finally, the message
receiving event needs the expected message definition.
Each message is either a string list and/or an attribute
list. In all events it is possible to specify the ANY
special class, pointing that any actor in the system must
be considered, independently of its class.

4 Scenes

A scene specifies the actors’ initial parameters and their
behaviors. Also it is needed the position (in 3D space)
from where they will be observed. So, the scene is,
effectively, a set of actors and visualization parameters,
the last being used by the image synthesis procedure.

4.1 Actors

As mentioned earlier, each created actor is an actor
class instance, having all of its defined attributes. Each
attribute can be initialized by the user with the desired
values.

An actor will be represented in the visualization as
the three-dimensional object described by its class
geometry. This cannot be changed, but parameters such
as orientation, scale and color can contribute to
differentiate the actor from other actors of the same
class.

For an actor to effectively take part of the
animation, some behavior must be associated to it. In
this sense, any behavior defined for its class (or for the
classes where its class was derived from) can be used.

4.2 Scene visualization

Each scene to be visualized must provide the observer’s
position and orientation to the system. In the prototype,
the visualization is done by a synthetic camera package.
Therefore, it is also needed the zoom (focal angle)
parameter.

Every active actor (those who were not canceled by
the Eliminate actor command) is drawn, represented by
its class geometry, at the coordinates stored in its
Position attribute, at the scale defined by its Scale
attribute and with the orientation defined by its
Orientation attribute. The drawing color is anything that
is stored in the Color attribute.

4.3 Behavior evaluation

From the elements which make a scene, that is, actors
and their respective behaviors, it is now possible to
describe how the behavior evaluation is effectively
done.

First, we must imagine each actor as an
independent processing unit, executing a single
process (its current behavior). The scene’s behavior
evaluation is, theoretically speaking, a simulation of
many processes being executed simultaneously, that is,
a multiprogramming system, where each processing
element executes its own process, independently of the
others.

At each simulation step, that is, for each animation
frame to be generated, we have to evaluate each actor’s
behavior in order to create its movement (position,
orientation, etc.) In practice, as the system was
developed on a single processor environment (80486
CPU), we had to use a multitasking control, where
many processes are concurrently executed.

The evaluation follows the steps described below,
for each actor:

• Execution of the current command in the
behavior’s command list;

• Constraint evaluation;

• Event handling.

5 Prototype

To validate the method’s functionality, a prototype was
developed, with the following main goals:

• use of a graphical user interface for all tasks;

• facilities to actor creation, behaviors and scene
edition;

• facilities to watch the full animation (or part),
without a sophisticated rendering process;

• possibility of the recording of the animation
frame-by-frame, to ease the communication
with other animation or rendering systems;

The prototype was developed in the MS-
Windows™ environment, using the Borland Delphi
programming language [Borland (1995)], which helped
make its utilization more intuitive, since that
environment is well known to a large number of users.

The event handling is not accomplished through a
rigorous formalism, because this was not considered
relevant to the prototype functionality.

The prototype operation is done in three main work
areas, split by “tabs”: actor class edition, behavior and
scene.

BEHAVIORAL ANIMATION IN THE WINDOWS ENVIRONMENT 277

Anais do IX SIBGRAPI, outubro de 1996

5.1 Actor class edition

The screen for actor class edition (Figure 5) is divided
in work areas:

• class and geometry handling (1);

• attribute editing/deleting (2);

• three-dimensional geometry view (3);

• visualization controls (4);

1

2

3

4

Figure 5 - Actor class editing screen.

5.2 Behavior edition

In this screen (Figure 6) all kinds of behaviors can be
edited, including constraints and events. It has seven
main work areas:

• behavior creation/selection/deletion (1);

• command selection (2);

• control commands selection (3);

• primitive movement selection (4);

• behavior description edition (5);

• constraint edition/visualization (6);

• event edition/visualization (7).

1

2

3

5

4

7

6

Figure 6 - Behavior edition screen.

5.3 Scene edition

Finally, the scene edition is performed at the following
screen (Figure 7). The most important work areas are:

• actor creation, selection and deletion (1);

• attribute edition (2);

• three-dimensional scene visualization (3);

• visualization controls (4);

• animation control and recording (5). Allows the
individual recording of the frames that can be
exported as POVRay (ray-tracing package) data
files;

• preview generation and exhibition (6). This
function allows a quick view of the final
sequence, storing each frame in memory and
displaying them as fast as possible.

1

2

3

45 6

Figure 7 - Scene edition.

6 Results

The results shown here relate only the actors/behaviors
description method and the resulting animation. In
short, the description method’s expressiveness. There
are no results with realistic scenes from the esthetic
point of view, since this was not the work’s objective.
Neither the fidelity of the motion’s physics has gone
beyond kinematics, as mentioned. One analysis of the
interface complexity on easiness of use is also beyond
the scope of the present work.

As an example, we’ll consider a behavior described
in the following way:

• Actors: “Cubes”, ”Cylinders” and ”Cones”, all
derived from the standard class, with no additional
attributes;

• Behaviors: two behaviors were defined, one for the
“Cylinder” class and another for the “Cones” class.

278 M. COHEN, C. M. D. S. FREITAS, F. R. WAGNER

Anais do IX SIBGRAPI, outubro de 1996

The first just produces a spinning motion around the
Y-axis, which has the goal to keep the cylinders
forever spinning. The second behavior makes the
“Cones” actor try to approach the “Cubes”, avoiding
excessive approach to the “Cylinders”.

Behavior SpinCylinder

Class Cylinders

Description:

While 1:

Orientation.y = Orientation.y + 15

End while

Behavior MoveCone

Class Cones

Description:

While 1:

Position = Position

End while

Constraints:

Seek Cubes (priority 30)

Avoid Cylinders until 40 (priority 20)

This scene was created by positioning cylinders
between the cone and the cube. Since the goal is to take
the cone to the cube position, the first must avoid the
obstacles (cylinders), while following his path. The
following pictures show three moments (frames) of the
animation: the beginning (Figure 8), frame 45 (Figure 9)
and frame 60 (Figure 10), where the resulting motion
can be observed.

 Figure 8 - Beginning of animation (frame 0).

Figure 9 - Middle of animation (frame 45).

Figure 10 - End of animation (frame 60).

7 Conclusions

The present work presented a new approach for
modeling behavioral animation. This approach,
implemented and validated by the prototype, did show
some drawbacks, due to its experimental nature.

Despite of these drawbacks, the system is easily
extensible, including new functions, new recording
methods, new behavior evaluation methods, etc.

Some ideas are proposed for future work:

• substitution of the collision detection algorithm
by a more precise one (the current algorithm
just checks collisions between the actors’
bounding boxes) [Moore-Wilhelms (1988)];

• constraint evaluation reformulation, trying to
avoid conflicting situations or, at least, provide
an alternative solution;

BEHAVIORAL ANIMATION IN THE WINDOWS ENVIRONMENT 279

Anais do IX SIBGRAPI, outubro de 1996

• event handling reformulation, using a more
rigorous and formal treatment [Kalra-Barr
(1992)];

• possibility of camera motion (create a special
class for cameras, for example).

References

V. Braitenberg, Vehicles: Experiments in Synthetic
Psychology, MIT Press, 1984.

M. Costa, B. Feijó, D. Schwabe, Reactive Agents in
Behavioral Animation, Anais SIBGRAPI’95, 1995, pp.
159-165.

Borland International, Delphi User’s Guide, 1995.

M. Green, S. Hanqiu, The Use of Relations for Motion
Control in na Environment with Multiple Moving
Objects, Proc GRAPHICS INTERFACE’93, 1993.

D. Kalra, A. H. Barr, Modeling with Time and Events in
Computer Animation, Proc EUROGRAPHICS’92, 13.,
Academic Press, 1992.

M. Moore, J. Wilhelms, Collision Detection and
Response for Computer Animation, Proc.
SIGGRAPH’88, 22(4), ACM Press, 1988, pp. 289-298.

F. Ramalho Júnior, Os Fundamentos da Física, 5a ed.
Ed. Moderna, 1990.

C. Reynolds, Flocks, Herds and Schools: a Distributed
Behavioral Model, Proc SIGGRAPH’87, Computer
Graphics, 21(4), 1987, pp. 25-34.

C. Reynolds, An Evolved, Vision-Based Model of
Obstacle Avoidance Behavior, Proc ARTIFICIAL
LIFE’93, 3., 1993.

N. Magnenat-Thalmann, D. Thalmann, Computer
Animation: Theory and Practice, Springer-Verlag,
1985.

J. Wilhelms, R. Skinner, A “Notion” for Interactive
Behavioral Animation Control, IEEE Computer
Graphics and Applications, 1990, pp. 14-22.

A. Watt, M. Watt, Advanced Animation and Rendering
Techniques: Theory and Practice. ACM Press, 1992.

L. Yaeger, Petworld and other subjects in artificial life,
personal communication by electronic mail, Oct. 1993
(larryy@apple.com).

