Approximate Arc Length Parametrization

MARCELO WALTER! ,2 AND ALAIN FOURNIER!
{mar cel ow| f our ni er }@s. ubc. ca

! Department of Computer Science

The University of British Columbia

2366 Main Mdll - Vancouver, B.C.
CANADA - V6T 174

ZUNISINOS - Centro de Ciéncias Exatas
Av. Unisinos 950 - S2o Leopoldo, RS
BRAZIL - 93022

Abstract. Current approachesto computethearc length of aparametric curve rely on tablelookup schemes.
We present an approximate closed-form solution to the problem of computing an arc length parametrization
for any given parametric curve. Our solution outputsaoneor two-span Bézier curve which relatesthelength
of the curve to the parametric variable. The main advantage of our approach isthat we obtain a simple con-
tinuous function relating the length of the curve and the parametric variable. This allows the length to be
easily computed given the parametric values. Tests with our algorithm on severa thousand curves show that
the maximum error in our approximation is 8.7% and that the average of maximum errorsis 1.9%. Our al-
gorithmis fast enough to compute the closed-form solution in a fraction of a second. After that a user can
interactively get an approximation of the arc length for an arbitrary parameter value.

Keywords. arc-length parametrization, approximation, curve design, Bézier parametric curves.

1 Introduction

For a generd parametric curve C'(¢), an arc length pa-
rametrization C'(s) issuch that the length / between two
points on the curve C'(sg) and C'(s1) ISl = s1 — sq.
In practice any linear relationship between [and s will
be called an arc-length parametrization sincein this case
the curve is easily re-parameterized. For most formula-
tions used in curve design, the length of the curve is not
linearly related to the values of the parameter. In many
applications of parametric curvesit is useful or essentia
to be ableto relate easily the parametric values to the arc
length, and reciprocally. A typical exampleisin computer
assisted animation systems where the animator defines a
flexible object (such as a shoe-lace, arope, etc..) whose
length isto be kept constant. Arc length parametrization
is a so needed to compute the speed along curves, such as
motion paths used in animation. In thiscase aswell afast
approximate solution isavery useful one.

It isimportant to note that in most cases we do not
necessarily need an arc-length parametrization, but just
an easy way to relate parameters and length. We can ex-
press how the length of a given curve changes with the
parametric variablewithagraph likethe onesin Figure 1.
In (a) thecurve being considered i s parameterized accord-
ing to arc-length since the length is proportiona to ¢, the
parametric variable. In (b) the curveisnot parameterized

according to arc length. The graphsin Figure 1 also give
us the clue on how to determine arc-length or to establish
an arc-length parametrization for any given curve.

t t

(a) Arc length parametriza-
tion.

(b) Non-arc length pa-
rametrization.

Figure 1: Types of parametrization. s isthe curve length
and ¢ isthe parametric variable.

If we are ableto construct the curve which describes
how thelength varieswith the parametric variable, we can
determine from that curve an arc length parametrization,
or from any pair of values of ¢ deduce the length between
the corresponding points. Our goal when devel oping this
work isrelated to themore general problem of keeping the
length of a curve constant whileit is being manipulated.
Having a fast way to relate the length to the parametric

Anaisdo IX S BGRAPI (1996) 143-150

144

variableisafirst step towardsthat goal.

In this paper we present an approach where we ex-
press the length of a given parametric curve as afunction
of the parametric variable using a cubic polynomial ex-
pressed as a one- or two-span Bézier curve. Arclengthis
a strictly monotonically increasing function of ¢ for any
regular parametrization, that is, when ds/dt # 0, there-
fore we can assume that a one or two-span Bézier curve
has enough flexibility to represent a large range of pos-
sihilities for “length versus t” curves with small or null
errors. Our tests approximating cubic parametric curves
will indicate that this assumption is true. Besides, our
testswill aso show that the average and maximum errors
are small enough for our method to be useful in alarge
range of applications.

Comparing to previous approaches ours has a so the
advantage of |ess computation sincewe only need to eval -
uate the curve length at a fixed number of points (at most
7, when the arc length is computed for cubic paramet-
ric curves). Once we have these values we compute the
control vertices which define the “length versust” Bézier
curve. The approximation is interpolatory in the sense
that we force it to agree with the function being approxi-
mated at particular pointsand from these pointswe derive
the Bézier approximation. Ultimately, we developed a
closed-form solution to approximatethe arc length of any
parametric curve, which is presented in Section 3 of the
paper. Once we have the variation of the length against
the parametric variable expressed as a continuous curve,
it makes subsequent arc length cal culations only a matter
of computing one point of aBézier curve, aconstant time
operation.

Sinceweassume that we can always approximatethe
curve“length versust” asaone or two-span Bézier curve,
we have an intrinsic associated error. We show in Sec-
tion 5 that the error magnitude is small enough for many
practica applications. Section 5 aso presents the results
we achieved when running the algorithm on 3 different
sets of two-dimensional cubic parametric curves. Thelast
section presents some comments on possible extensions
of thiswork and on how to achieve smaller errors.

2 PreviousWork

The general problem can be stated as follows. From dif-
ferential geometry, we know that thearc length for apara-
metric curvein i3 is given by [fari90]:

s(t) = / VIOE O A0 At ()

where the dots denote derivatives with respect to¢. This
formula when evaluated gives us the length as a func-
tion of ¢. The direct problem computes s(¢) for a given
t. Analytic solutionsfor these kind of integralsonly exist

Anais do I X SS BGRAPI, outubro de 1996

M. WALTER, A. FOURNIER

for very simple functions of low degree (at most 2). Nu-
merically, thisintegral can be computed using Romberg-
integration technique [rals65, pres92], but the cost of
thisnumerical procedure israther high (remember that in
cases of practical interest (), y(¢) and z(¢) are cubic
polynomialsint). In[grav95] an approximation for s(¢)
iscomputed by adaptive subdivisionof thecurve. Theap-
proximated lengthisan average of the polygonlength (the
sum of the sides of the control polygon as defined by the
control vertices) and cord length of the curve. This solu-
tionislimitedto Bézier curvesand cannot be used to solve
the inverse problem.

Aninterestingrelated but different problemisto find
aparametric curve which satisfies an arc length constraint,
that is, has aspecific arc length. Roulier [roul 93] presents
asolution for this problem where a Bézier curve of spec-
ified arc length is computed, given the two end points,
two corresponding unit vectors and a positive number
for the desired length. The problem is reduced to solv-
ing numerically a single non-linear equation in one vari-
able. On the same problem Jou and Han [jou92] build a
minimal-energy spline subject to a desired arc length and
some other end constraints. Their energy function is re-
lated to the curvature of the curve. Fiume [fium95] de-
veloped a new class of blending functions called isomet-
ric polynomial which allow the manipulation of paramet-
ric curves with an arc length constraint. To meet thisgoa
at nearly interactive speeds, he approximates equation (1)
by a quadrature-like scheme where the square root is ap-
proximated by a power series of an arbitrary low degree
polynomial in s.

The inverse problem, determining ¢ for a given
length S, can be solved by finding the root of an equation
of thetype:

st)—S=0 (2

This can be solved by Newton-Raphson technique, as for
instancein [shar82].

Another class of solutions to the inverse problem
uses table lookup schemes. Theideaisto create atable
whereeach entry isapair (¢;, s;) wheres; isthearc length
at parameter valuet;. Oncethistableis built subsequent
arc length determinations use the tableto find theinterval
inwhich isthedesired arc length. That means thetableis
searched for values s; = s(;) and s;4+1 = s(t;41) such
that s; < S < s;41. Thedesired ¢ lies between ¢; and
t;+1. The approaches then differ on how these values are
used.

In [gira87] for example, the desired ¢ is computed
by linearly interpolating ¢; and ¢;+1. A more refined so-
lution is presented in [guen90] where the table entries
are adaptively computed according to a desired accuracy.
Newton-Raphson is then used to find the root of equa
tion (2) and the table values are used to narrow down the
root search.

APPROXIMATE ARC LENGTH PARAMETRIZATION

Tablelookup approaches heavily depend ontheorig-
inal number of table entries and for a given accuracy
it is not clear how many entries are needed. Besides,
the desired solution is achieved after evaluating a fairly
large number of curve lengths, which is expensive since
it means computing equation (1) whereas in our solution
afixed number of evaluationsis needed. The exact num-
ber of evaluationsin our al gorithm depends on the degree
of the parametric curve for which we are computing the
approximation. For a cubic curve we only need to com-
pute s(t) for 7 specific values of ¢.

Our solutionispresented for the direct problem, that
is, givent find s(¢). However, an approximate solutionto
the inverse problem could a so be computed by reversing
the roles of ¢ and s(¢) in the proposed a gorithm.

3 TheAlgorithm

Let Qm(t) = (x(t), y(t), z(t)) be aparametric curve of
degree m in N3 with0 < ¢+ < 1 C . Wewant to com-
pute alength curve, that is, a 2D parametric curve which
express how the length s(t) of Q. (¢) varieswith¢. We
will call thiscurve L(t) = (t,s(t)), where s(t) isgiven
as[farioO]:

(1) = / 1O ()]]dt

and

1Qm (]l = V&) + () + (1)

For simplicity we will use anormalized version s(¢)
of s(¢) such that §(t) = 1 for s(1). The corresponding
length curveisthen L(t) = (t, 5(t)). For now wewill as-
sumethat L (t) can be adequately approximated by acubic
polynomial represented asaone-span Bézier curve. Later
on we review thisassumption and expand the solutionfor
cases where we need more than one span. The problem of
finding an approximation for L (¢) can now be formulated
asfollows:

Given a parametric curve Q. (¢), find the 4 control
vertices V;,7 = 0,1,2,3 which define a Bézier curve
Lp(t) of degree 3 such that this curve fits as an approxi-
mation for L(t).

Figure 2 illustrates our problem.

From the way we formulated the problem, we have
two control verticesaready defined ¥, = (0,0) and V3 =
(1, 1), sinceit isreasonable to impose! that 5(0) = 0 and
§(1) = 1. Our problem reduces therefore to the prob-
lem of computing V; and V. Expressing L (t) in matrix
form we have:

Lg(t)=TBV 3

1Because of thisimposition the approximation might not be optimal
in aminimax sense.

145

EQ Vs

T —— Control Polygon of /I:B(t)
| A

/ — Lo

T

4
Vo £

ot

Figure 2: Length against ¢ curve: rea (dotted line) and
approximation (solid thinner line).

-1 3 =3 1
3 -6 3 0
— [+3 42 _ _
whereT = [t°t*t 1], B = 3 3 00 V=
1 0 0 O
0
“;1 . Lp(t) isatwo-dimensional curve. Let x; (t)
2
1

andy; _ (t) bethex and y componentsof Lp(t). Wehave
to compute now V; = (Vi, Viy) and Va = (Vag, Vay).

3.1 Computing V1, and V5,

Recdl that Lp(t) is an approximation for L(t) =
(t,5(t)), therefore the x-component of Lg(t) should
equa ¢, that is, =; (t) = t. This requirement char-
acterizes Lp(t) as a functiona curve [fari90] and from
thelinear precision property of Bézier curvesfollowsthat
Vie = % and Vow = %

3.2 Computing Vi, and V5,

Now we can compute V1, and V-, In order to do that we
need the 2 values of the curve length aong the curve for
Vi and Vs, just computed. We will assume now that we
know the valuesfor $(1/3) and 5(2/3). Later on we ex-
plain how we cal cul ate thesetwo values. From equation 3
follows:

185(1/3) — 95(2/3) + 2
6

Vig = 4

—95(1/3) +185(2/3) =5)
6

In summary, inorder to compute the approximationto the
real length versust curve, we need to compute the actual
curve length at 3 points along the curve, respectively at
t=1/3,t=2/3andt = 1,i.e, s(1/3),s(2/3) and s(1).
Having these 3 values we can compute 5(1/3) = s%?)
and 5(2/3) = <220,

Vay =

Anais do I X SS BGRAPI, outubro de 1996

146

There are different quadrature methods to compute
these lengths at specific ¢ values. A quadrature formula
gives us an approximation to the definite integral of a
function f(¢) asalinear combination of values of f(t):

b n
[rma=Yu fwyve @
a]:1

where [/ isthe absolute error in the approximation which
includes the derivatives terms of f(t) and H; are spe-
cific weights. When equation (6) is computed with the
a; given as zeros of the Legendre polynomial of degree
n we call the quadrature a Legendre-Gauss quadrature
formula or smply Gaussian quadrature. These abscissas
and weights are tabulated in many numerical books such
as[rals65].

We know from numerical literature [rals65] that if
we are not limited, by the way the problem isformulated,
to equally spaced pointswhen computing theintegral, we
may benefit from Gaussian quadratureswhich can giveus
higher accuracy than that of Newman-Cotes quadratures®
if the integrand is smooth in the sense of being well ap-
proximated by a polynomial [pres92] whichisthecasein
our problem.

At the same time since we have in mind applications
where L 3 () must be computed in real-time, it isimpor-
tant to compute it in the fastest and most accurate way
possible. Thus, Gaussian quadratures are natural can-
didates in our case since they have dightly more favor-
ableerror termsthan Newton-Cotesformulasfor the same
small number of points[rals65].

The number » of pointsused to compute the quadra-
tureisdirectly related to the accuracy of the solution. For
n points the highest degree polynomia for which £ can
be madenull is2n — 1. For n = 3, for example, we have
the following closed-form solution for computing s(¢) at
a specific b value:

b5, - 1.774597b 8 - b
0~ 220 (K 14 S10n (3)1

5, 0.225403b
+ 2. (L2210} Q

and

1Qm (Ol = VE(? + (1) + 2()?
We show in Section 5 the effect of » on the accuracy of
our approximation.

3.3 Approximating L (t) with more than one span

We assumed earlier that a one-span Bézier curve was
enough to adequately approximate L (¢). Thisassumption

2A quadrature formula in which the abscissas (i.e., the points at
which the integrand is evaluated) are constrained to be equally spaced
is called a Newton-Cotes quadrature formula[rals65].

Anais do I X SS BGRAPI, outubro de 1996

M. WALTER, A. FOURNIER

islimited by thefact that aone-span Bézier curve can have
at most oneinflexion point and in general s(¢) will have
more than one inflexion point. In order to addressthisis-
suewe havetorestrict ourselvesto some cases of practical
interest, for instance, when the curves for which we need
the arc length approximation are cubic. In this case we
can assess qualitatively the behaviour of s(¢) and use an
adaptive scheme to compute an approximation. The crite-
rion used to assess s(t) isthe number of inflexion pointsit
has. The number of inflexion pointsof afunctiongivesus
someinformationabout thegeneral behaviour of thefunc-
tion and it istherefore agood candidate to drive an adap-
tive solution such as ours. For a cubic parametric curve,
s(t) will have at most 3 inflexion points since its second
derivativeisof degree 3, asdemonstrated below. Thefirst
and second derivativesof s(t) (equation 1) with respect to
t are

3(0) = (2(0) + 9(0) + 2(0))!1?

§(0) = L2EDED + 2(0i(0) +2:(0(0)
2 (&) +g()? + ()2

The numerator of equation (8) isacubic equationin
t with at most 3real rootswhich are theinflexion pointsof
s(t). Our adaptive solution uses the number of inflexion
pointsas input informationto decide on how many Bézier
spans we need to adequately approximate s(t). Thevalid
inflexion pointsin our case arethered rootsintheinterval
(0, 1). Our solution will either use one or two spans. For
curveswhere s(t) has zero or oneinflexion point we com-
pute the approximation as a one span cubic Bézier fol-
lowing the a gorithm described in subsections 3.1 and 3.2.
For curveswhere s(t) has 2 or 3inflexion pointswe com-
pute the approximation L (t) as atwo-span cubic Bézier
curve. In order to decide whereto “break” the two spans,
we use the values of ¢ which define the inflexion points
of s(t). When it hastwo inflexion pointsat ¢; and ¢, the
first span approximates $(¢) for 0 < ¢ < (¢t +11)/2 and
the second span for (¢t + ¢1)/2 < ¢ < 1. When s(?)
has 3 inflexion points a ¢4, -, and ¢3 the first span ap-
proximates 5(¢) for 0 < ¢ < ¢, and the second span for
to <t < 1. Since s(t) isacontinuous function we have
a positional congtraint at thet value where the two spans
meet. One important observation is that the approxima-
tion is only used to control the original curve and in par-
ticular aderivativediscontinuityin L 5 (¢) doesnot mean a
discontinuity in the original curve(s). The computational
cost of using two spansis exactly doublethe cost of com-
puting only one, plusthe cost of computing the number of
inflexion points® for s(t).

(8)

3Note that we do not constrain the approximation to have the same
inflexion point(s) as S(t) itself. This can be added as a constraint but it
is not clear whether it would reduce the error more than by introducing
some other constraints.

APPROXIMATE ARC LENGTH PARAMETRIZATION

s()

(a) One Span (error = 13.6%)

s()

(b) Two Spans (error = 3.9%)

Figure 3: Differenceinthe approximating curve when us-
ing oneor two spans. Dottedlineis /. (¢) and thesolidline
is Lp(t). Thevertical dotted linesare theinflexion points
of s(t).

147

In Figure 3 we can see an example where s(t) has
3inflexion points (t1, t», and ¢3). In Fig. 3(a) Lp(t) has
only one span and in Fig. 3(b) it has two spans. The de-
creaseinerrorisvery significative, of order 3. Weexplain
how the error is being computed in the next section.

34 Summary of thealgorithm

Here isasummary of our algorithmto compute L 5 (t) as
aone or two-span Bézier curve using 3 points Legendre-
Gauss quadrature for cubic parametric curves:

1. Find the number of inflexion pointsfor s(¢)
2. If the number of inflexion pointsis0 or 1:

(8 Computes(1/3), s(2/3) and s(1) using equar

tion (7)
(b) Compute 5(1/3) = L4 and 5(2/3) =
5(2/3)

s(1)
(c) Compute V1, and V5, using equations (4) and
(5). The 4 control verticeswhich define L (t)
are then:

Vo =1(0,0) Vi = (1/3, V1)
Vo =(2/3,Voy) Va =(1,1)
3. Else s(t) has 2 or 3inflexion points:

(@ If s(¢) has2inflexionpointsat¢; andt,. Com-
putet,ia = (t2 +11)/2;

(b) Elses(t) has3inflexionpointsat;,t2, andis.
Dot,,04 = t2;

(©) tmiq isthe point a which the two spans mest.
Apply the agorithm described for one-span
abovetwice, when 0 < t < t,,;4 and when
tmig <t < 1.

If we are using more than 3 pointsto compute the quadra
ture, the only difference in the al gorithm described above
will be on step 2(a), where we compute the curve length
at specific t values.

4 Errors

It isimportant to distinguish between the two kinds of er-
rors present in our formulation. The first one is the in-
trinsic error associated with the numerical computation of
the Gaussian quadrature. We can make thiserror assmall
as desired if we use enough points when computing the
quadrature. The bigger n thesmaller theerror. Forn = 3,
for example, we have an associated error of:

. (23<3!>2)2 2 £ ()

6! 7 6!

Anais do I X SS BGRAPI, outubro de 1996

148

A

~ 15750

The second kind of error is the difference between

the real curve L(t) and the one computed using our a-

gorithm L (t). There are many possible metrics to mea-

sure this error and the most appropriate one is possibly

connected to the specific application where the arc length

parametrization is necessary. To assess the adequacy of

our algorithm we are using a local metric defined as the

absol ute difference between therea length and the com-
puted one as follows:

ne [_L 1]

| L(t) - Lp(t) | 9

It isimportant to noticethat thisdifferenceisalready
relativeinthesensethat sinceweare using thenormalized
version of thereal length, thetotal length of the curve be-
ing considered is 1.

5 Resaults

In order to assess how well Ly (t) is fitting L(t) we
tested our agorithm using 3 sets of 2D cubic Bézier
curves. It is important to note that our solution is not
limited to 2D curves and the tests could as easily be
done for any 3D parametric curves. In this case there
would be the extra cost associated with the addition of
a third dimension. The first two sets are the Bézier
curves which define 2 families (Cooper and Zurich) of
fonts (4 fonts per family) from Bitstream, Inc. Fig-
ure 4 shows one character from the Cooper family. The

Figure 4: Example of a Cooper font composed of 22
Bézier curves.

third set is a set of 3000 random Bézier curves we cre-
ated. Each curve in this set is described by its 4 con-
trol verticesin 2D. The 8 values were generated by in-
dependent calls to a uniformly distributed random gen-
erator number function described in [pres92]. The curve
depicted in Figure 8 for example has control vertices
defined by (6.885279,0.753269),(9.738172,4.203904),
(1.734599, 8.224792), and (8.154818, 4.145680). These
test sets provided areasonabl e challenge to our algorithm
since the range of curvesthey span is considerably large
for any design for practical purposes. Before using the
curves in the test sets we assessed them with respect to

Anais do I X SS BGRAPI, outubro de 1996

M. WALTER, A. FOURNIER

how far they were from being already arc length parame-
terized. Wemeasured |s(t) —¢| for ¢ varyingfrom0 to1in
steps of 0.05 and kept the maximum value among subin-
tervals. For the random test set for example, the range
of values varied from 0.013059 to 0.438717, with an av-
erage of 0.1707. We considered these curves far enough
from being arc length parameterized to be useful in our
tests.

The maximum and average errors for our tests are
summarized in Table 1. Since we have 4 fonts per family,
we are only listing for each family the font which gener-
ated the largest error.

0.14

012 : 1

o

i

T
— i

Error Magnitude
o
o
@
T

o

o

>
T

3 points quadrature

0.02f 22222710 points quadrature

I i i i i
0 500 1000 1500 2000 2500 3000
Number of Curves

Figure 5: Distribution of errors (| L g (t) — L(t)]) for the
random test set.

Number of Curves
w 2 @ @ ~ ©
8 S S 3 =} S
] S 3 S] 3]
T T T T

N

=3

S)
T

N
1)
S}

| ng _

I
[¢] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Error Magnitude

o

Figure 6: Histogram of errors for the random test set (10
points quadrature).

Errors
Test Set Cooper Zurich Random
number of curves 3401 1285 3000
max of set 0.060545 | 0.030641 | 0.087392
avg of maxerrors | 0.002432 | 0.001708 | 0.019202
avg of averages 0.000946 | 0.000737 | 0.007405

Table 1: Errorsfor At = 0.05, 10 points quadrature.

APPROXIMATE ARC LENGTH PARAMETRIZATION

1500

1000

Number of Curves

5001

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂmm e

. L
0 0.005 0.01 0.015 0.02 0.025 0.03
Error Magnitude

o

Figure 7: Histogram of errors for the Cooper family font
set (10 points quadrature).

For each curve in each test set we first computed
Lp(t) as presented in Section 3 of the paper. Then, we
madet vary from 0 to 1 in steps of 0.05 and computed the
error for each At aspresented in equation (9). Wekept for
each curve only the maximum valueamong all ¢ subinter-
vals.

The“true’ valueof the curvelength, L(t), was com-
puted using Simpson’srulewith 1.0e — 4 of fractional ac-
curacy. As we can see from the table, the errors for the
two font families are considerably small. The maximum
error of 6.1% for the Cooper family font, for instance,
would mean a difference of about 6 pixelsin 100 pixels
and the average error would mean a difference of lessthan
half apixel for 100 pixels. The errors for the random test
set were higher than those of the two family fonts as ex-
pected. The maximum error for this set was about 44%
higher than the maximum error for the font sets but still
the average error was only 1.9%. We believethat our ran-
dom test set gives an upper bound for the maximum error
associated with our agorithm.

In Figure5 we havetheerrorsfor the random test set
sorted and plotted as a continuous curve. We can clearly
see the effect that the number of points used to compute
the quadrature has on the final errors. As expected, 10
pointsquadrature gives usareasonabl e improvement over
3 points quadrature. We can see aso that for 10 points
quadrature more than 2500 curves had errors smaller than
4%, that is, more than 83% of the curvesin the set. Fig-
ure 6 shows the histogram of errors for the random test
set and Figure 7 for the worst case set from the Cooper
family font test (since that was the set with the highest er-
ror among the two families). Figure 8 shows the Bézier
curve from the random test set which had the maximum
error when we used 10 points for computing the quadra-
ture. In Figure 9 we show the computed approximation.
Thisisatypica case where our adaptive scheme for de-
ciding how many spansto usefailsto adequately approxi-

149

mate thered arc length. There are cases wherein spite of
the fact that s(¢) has only oneinflexion point, atwo-span
Bézier would provide a better approximation. In that case
agood alternate strategy isto keep only one span, but to
congtrain the curve to go through the inflexion point with
the tangent determined by % at that point. A similar ap-
proach can be used for the three inflexion points case to
determine the two spans.

Figure8: Curvefrom therandom set for whichthelargest
error in the approximation was computed.

S

Figure9: Length against ¢ for curvein Figure7. n = 10,
At = 0.05. Error = 8.7%. Thedotted lineis L (¢) and the
solidlineis L g (t). The dotted vertical line indicates the
inflexion point of L(t).

6 Conclusions

We presented a closed-form solution to compute a cubic
2D Bézier curve which approximates how the length of
a given parametric curve is varying with the parametric
variable. Thiscurveisimportant inapplicationswhere an
arc length parametrization is necessary, providing a sim-
ple way to relate the length with the parametric variable.
In this way our method gives a fast way to compute an
arc length parametrization, since once the length versust¢
curve iscomputed it takes only a constant timeto find the
parametric val ue associated with a given length and con-
versely. Our method presented a maximum error of 8.7%
and an average error of 1.9% for atest set of 3000 random
2D cubic Bézier curves. Wetested the algorithm also us-
ing 8 setsof 2D cubic Bézier curves designed as character
fontsby Bitstream, Inc. Among all 8 setsthe largest error
was 6.1% and theworst average error was 0.24%. The er-
rorswere computed asthe absol utedifference between the

Anais do I X SS BGRAPI, outubro de 1996

150

real curve length and the approximated one. Althoughwe
tested only Bézier curves the method does not depend on
the type of parametric curve studied. The random curves
used as test presented more irregularitiesthan curves ac-
tually designed such as for the Bitstream fonts. In partic-
ular therandom set included curves with cusps, loopsand
stationary points.

This work has been done in connection with the
problem of keeping the length of a given curve constant
while the user is manipulating the curve and in this con-
text having a fast and accurate way to compute an arc
length parametrization is a first concern. The agorithm
isfast enough to compute the length versust curveinreal
time, i.e., whilethe user is manipul ating a given paramet-
ric curve, our algorithmisfast enough to updatethe length
versust curvein real timeon a Silicon Graphics Indigo 2
workstation.

A possibly serious drawback isthat our constraints
on Lz (t) do not guarantee its monotonicity. Even though
this has not been a problem (no approximation was found
to be non-monotonicfor the non-random curves) it would
be indicated to check for monotonicity or better to add
congtraints to the approximation to enforce it.

We can achieve smaller errors basicaly in two dif-
ferent ways. computing the quadrature with more points
and use different ways to decide on how to select one or
two-spans for the approximation. Computing the quadra-
ture with more pointsis avery straightforward operation
and therefore the only consideration to be made isif we
are willing to pay the increase in computation time. As
for different criteria on when to use two spans instead of
one, thereare afew issues to address. Thefirst oneisthe
problem of automatically detecting when two-spans are
necessary, instead of one. We compute the number of in-
flexion pointsthat s(¢) has and make a decision based on
that. Our experience with the test sets have shown that
sometimes this criterion is too strict in the sense that it
forces a two-span approximation even when a one-span
would provide an approximation with roughly the same
error magnitude. A moreflexible scheme using theinflex-
ion pointsas the poi ntswhere weforce the approximation
to agree with the function and its first derivatives could
provide smaller errors in some cases. There is a trade-
off between a general approach like we have now and a
more specialized one where the kind of approximationis
derived on a case by case basis.

Acknowledgments

The help of Avi Naiman and Bitstream, Inc. in provid-
ing thefont familiesisgratefully acknowledged. Thefirst
author gratefully acknowledges the financial support of
CNPg and FUNDEPE and wishes to thank Rob Walker
from UBC for valuable feedback on a first version of
this paper. We gratefully acknowledge the support of

Anais do I X SS BGRAPI, outubro de 1996

M. WALTER, A. FOURNIER

the Canadian National Science and Engineering Research
Council through Research Grants.

References

[fari90] Gerad Farin. Curves and Surfaces for Com-
puter Aided Geometric Design. Academic

Press, 1990.

[fium95] Eugene Fiume. “lsometric Piecewise Poly-
nomia Curves’. Computer Graphics Forum,

Vol. 14, pp. 47-58, Jan 1995.

[gira87] Michael Girard. “Interactive Design of 3D
Computer-Animated Legged Animal Motion™.
IEEE Computer Graphics and Applications,

Vol. 7, No. 6, pp. 39-51, June 1987.

[grav95] JensGravesen. “TheLength of Bézier Curves'.
Graphics Gems V, pp. 199-205. Academic

Press, Boston, 1995.

Brian Guenter and Richard Parent. “Com-
puting the Arc Length of Parametric Curves’.
IEEE Computer Graphics and Applications,
Val. 10, No. 3, pp. 72-78, May 1990.

[guen90]

[jou92] Emery Jou and Weimin Han. “Minimal Energy
Splines with Various End Constraints’. Curve

and Surface Design, pp. 23-40. SIAM, 1992.

[pres92] WilliamH. Presset al. Numerical recipesinC:
theart of scientific computing. CambridgeUni-

versity Press, 1992.

[rals65] Anthony Ralston. A First Coursein Numerical

Analysis. McGraw-Hill, 1965.

[roul93] John A. Roulier. “Specifying the Arc Length
of Bézier Curves’. Computer Aided Geometric

Design, Vol. 10, No. 1, pp. 25-56, Feb 1993.

[shar82] Richard J. Sharpe and Richard W. Thorne.
“Numerical Method for extracting and arc
length parameterization from parametric
curves’. CAD, Vol. 14, No. 2, pp. 79-81,

1982.

