Real-Time Terrain Surface Extraction at Variable Resolution
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Abstract. Multiresolution terrain models allow the extraction of the surface at different levels of details. Real
terrain data is large enough to prevent from real-time walk-through at a reasonable level of detail. Moreover, a
coarse view of a terrain may not attend some application requirements. Therefore extracting the surface at
variable resolution may offer impressive good-looking views if, for instance, regions closer to the observer are
shown at a higher resolution then regions farther away. Besides, variable resolution extraction dramatically
reduces the number of polygons to be rendered allowing real-time walk-through of a large terrain model. This
paper proposes a multiresolution terrain model, based on Delaunay triangulation, that takes into account the
whole domain during triangulation without replicating unchanged triangles through different levels of detail.
The proposed model is the first that matches a whole domain Delaunay triangulation with accuracy of
extraction and low storage cost algorithms.
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. We may qualitatively evaluate a multiresolution terrain
1. Introduction : .

] o ) model based on many issues, such as supporting
Interactive applications are becoming more commogxpiicit/implicit multiresolution being hierarchical or
every day. Many high performance applications can B&ramidal, being matching or non-matchingd working

run on low-end personal computers. Particularly, flighgn regular or irregular distributed datfDeFlo+96a]
simulators and landscape viewers are achieving an

impressive level of realism and performance. HowevelMplicit multiresolution terrain models ensure that the
their accuracy is not very high. Geographic Informatiofréatest erro_r_found at most refined approximation is_ less
Systems (GIS), on the other hand, deal with very larggan a specified error value On the other hand, in
data bases and need much higher accuracy, what maR¥Blicit multiresolution models each refinement layer i
the problem of interactive three-dimensional visualizatioACcepts an error less than an error valfi®m a sequence
very hard. € = [y, &,... €] Of error values.

When displaying a terrain model, it is easy to observe thatmultiresolution terrain model where the region covered
regions far from the observer need not to be rendered whit a polygon in a given refinement is entirely covered by
the same level of detail as the closer ones. Hencefor@ily one polygon (called its parent) of the previous
many researchers [DeFPup95] [CiPuSc95] [deBDob9kgfinement layer is called dmerarchical terrain modellt
[Bert+95] have proposed polygonal models that offgmeans that the whole model may be represented by an
efficient storage of terrain data at different levels of detdilierarchical tree [DeFlo+96a]. In a hierarchical model, a
and linear time extraction of the surface. Those models grelygon is refined independently of the other polygons of
calledmultiresolution the same layer. This locality may affect the shape of the
olygons creating very elongated triangles close to the

A multiresolution terrain model may support extraction 0gorders that may bring numerical errors during rendering.
the terrain surface satisfying a fixed resolution or based MRis problem may be overcome [DeFlo+96a] but the
a resolution function that specifies how the r":'SOIUt'OF]esuIt will never represent a global optimal solution like

ShOUId. vary - throughout _the WhOIG. domain _(variapl?ne one given by a single Delaunay triangulation of the
resolution). Usually this resolution function IS\yhole domain [Rippago].

monotonically decreasing on the distance from the

observer. This is the case of flight simulators antflodels where the refinement process takes into account

landscape viewers. the entire domain may not preserve the hierarchical
relation among polygons belonging to distinct layers. In
such models each layer covers the entire domain and it



requires much storage due to the replication of trianglés [DefPup95], the Hierarchical Delaunay Triangulation
that does not change from one layer to another. Tho§4DT) is proposed. An Hierarchical Delaunay
models are calleghyramidal terrain modeldDeFlo89]. Triangulation is a matching tree structure that supports an
On the other hand pyramidal models may achieve a glotedplicit multiresolution representation of irregularly
optimal approximation for each layer. distributed terrain data. Each level, except the root, is built
. from the previous level by inserting points inside each
Terrain models where edges are preserved from one Ia¥er

to another. that is. edaes from one level of refinement arrlangle until the corresponding resolution of its level is
' » €49 hieved. Points are inserted following an algorithm

never ref|_ned further at the more refined Ievels., are salq gglled DELAUNAY SELECTOR [DeFlo+96b], that
be matching The great advantage of matching terrain rforms a Delaunay triangulation only inside the
models is that continuity of the surface extracted at any Bf

i Lo orresponding triangle. The final triangulation is not
the given levels of resolution is guaranteed [DeFIOJr%gg'ptimal, since only local points are considered during the

Matching is an exclusive property of hierarchical terrai
models that directly affects the extraction of a surface %te launay test, and the result presents many elongated

) . L . rlangles near the borders. This slivering problem is
variable resolution. Nonetheless, it is possible to extract a . . ; :

i . . .solved by insertion of interpolated points on the edges
continuous surface at variable resolution from a pyramid

. ) L : erforming a conforming Delaunay triangulation
mOdEI. solving discontinuities on the fly during the[DeFIo+96b], although the solution is still sub-optimal
rendering process.

since adjacent triangles are refined independently. They
Even though real terrain data is usually sampled onpaesent two algorithms to extract a continuous model at
regular space grid, it is highly interesting to adapt theariable resolution from a hierarchical triangulated
given data to the surface characteristics. Variable daarface, although the computational complexity is
distribution allows a better compression without loss afuboptimal.

rendering quality. Triangle decimation technique?n
[GarHec95][SchRP94] should be employed to obtain
from a regular distributed data the relevant informatio
needed to extract a terrain surface at a given resolution.

[CiPuSc95], an alternative approach called
HyperTriangulation (HT) is proposed. The idea is to
Biore a sort of history of the incremental refinement
process. Each vertex in the structure stores the number of
This paper proposes a multiresolution terrain modeihe refinement step of when it was inserted (elevation) and
calledPyramidal Delaunay Triangulatio(PDT), suitable each triangle stores the error of the approximation when it
for extracting continuous surfaces at variable resolutiowas created (birth error) and when it was refined (death
Pyramidal Delaunay Triangulatiorakes into account the error). Assuming that the terrain covers a region of the
whole domain during triangulation without replicatingXY plane, at each refinement stépthe new vertices
unchanged triangles through different levels of details amgiserted are raised along the Z axis at elevatidrhe x
ensuring the accuracy of the extracted surface. Althougind y coordinates of the vertices together with the
the model is non-matching, a simple solution is proposeaevation builds a virtual 3D structure of overlapping
to ensure the continuity of the extracted surfaces. triangles where the upper surface corresponds to the most
refined approximation of the terrain. Variable resolution

The rest of the paper is organized as follows. In section traction is achieved by traversing the structure and

Irgelatec{(;/vcljrlg)s Iare bne_{_ly rewe;m;'ed_l Sectlop 3 greseants tQﬁecking the birth and death errors of each triangle against
yramidal Delaunay Triangulationin section 4 a dafa , monotonically increasing error function that selects

struc;ure to enqode PDT is described. In section 5 Which triangles present the maximum error that satisfies
algorithms to build a PDT and extract a surface at varia e error function. This algorithm works with a breadth-
resolution are described and analyzed. And, finally, i

section 6, some applications are described and so
concluding remarks are given.

first order traversal starting at the view point with an
AEremental  construction of the surface. The
computational complexity is suboptimal .

2. Related work Opposing to the HDT and the HT, in [deBDob95] a
Several multiresolution models have been proposed on thettom-up approach callddnplicit Delaunay Pyramids
literature, see [DeFlo+96a] for an interesting survey. Mogroposed. It starts with a Delaunay triangulation of the
of them only support extraction at a constant resolutiotgrrain at the maximum resolution and eliminates a
Here we will focus on the models that are suitable fgrercentagex of vertices from the approximation at each
variable resolution extraction. step. Because of this geometry based construction, the
tolerance of each level is not explicitly controlled.
Although variable resolution surfaces can be extracted at



linear time complexity, the accuracy of the model may n@iven a DTM D, we call a coarse representation of D to
be guaranteed. any DTM D' = <V', E’, ® >, where V'O V. When this

In [Puppo96] a theoretical framework is proposed in ordd[2PPENS We say that a D' D. Given two DTMs D and

to formalize hierarchical triangulations, and an abstrall» Such that DD, and a vertex @ V - V', we call the
structure calledMultiTriangulation (MT) is presented. @Pproximation error of v, E(v) = {p(v)-h|, to the
MultiTtriangulations are axiomatically defined and do noflifference between the elevation of v and value h assigned
exist by themselves. In his work Puppo shows sonf@ V by the facetinduced by D’ that covers v.

interesting properties of MTs and claims that if someong ppT is partially a hierarchical structure, built from a
is able to identify how to match one model with theyTm D, where each layer, except for the root, is built
MultiTriangulation framework then the MT properties argrom the previous one by inserting into each facet the
automatically ensured. He illustrates how to identify thgoint p with the maximum approximation error that falls
HyperTriangulation and the Hierarchical Delaunaynside the facet and by inserting also the edges that
Triangulation as MultiTriangulations. connect p to the vertices of that facet. After the point
In [Bert+95] a formalization of a broader class Ofnsertipn,gmodified Delaunay triangulation is perfom)ed
multiresolution models in arbitrary dimensions that cafp Minimize the roughness of the approximation
incorporate both hierarchical and pyramidal models 4§PPad0]. The root is a degenerated node that points to
special cases is proposed. The intention of this model is!ft§ coarsest approximation of the terrain. Each layer built
compare hierarchical and pyramidal models in terms §fiS way is more refined that the previous one and the

storage cost and performance and to gain some highlidﬂPSt refined layer corresponds to the same approximation
in understanding when each model should be mofven by D. By construction, every facet induced by the
appropriate. model is a triangle.

3. Pvramidal Delaunay Triangulation A trianglet does not change from one level to the another

Y y 9 if there are no points to be inserted into the area covered
A Pyramidal Delaunay TriangulatiofPDT) is a surface py t. In order to ensure that unchanged triangles are not
model for terrain approximation that resembles geplicated from one level to another, the Delaunay test is
Delaunay Pyramid [DeFlo89] in the sense that it may Q§opagated only within triangles belonging to the same
considered, at first, as a sequence of Delaungel. It means that the Voronoi diagram of each layer
triangulations that cover (each one) the entire domain ghnsiders unchanged triangles as belonging to all of them,
approximation. The basic difference from the Delaunayyt they only propagate the Delaunay test at the first level

Pyramid is that triangles that do not change from one levglat they appear. When a vertex is inserted inside a
to another are not replicated in the next levels. trianglet, we say that has been refined.

A Mathematical Terrain ModefMTM) is a pair M = <V, Each triangle, roughly speaking, points to its three
®>, where V ={\, v, ..., \ } is afinite set of points in a adjacent triangles (adjacency links) and to the triangles of
domain D of the Euclidean plane >R and the next level that have a non-empty intersection with it
®: V - R is a function that associates to each point in ¥interference links). Figure 2 shows the layers built from
its corresponding elevation in the original terradn.is the DTM of figure 1 with and without the interference
called an elevation function. Migital Terrain Model links. Triangles that are not the destination of any
(DTM) is triple D = < V, E,® >, where V andd are interference link do not exist in fact. Thick lines represent
defined as above and E is a set of edges connecting the border edges.

vertices of V, such that <V, E> defines a planar connected

graph. A DTM induces a set of faces F that covers tr%é Data Structure to Encode the PDT
domain of approximation. Figure 1 illustrates a DTM.  The Pyramidal Delaunay Triangulation should use an
edge oriented representation in order to prevent any vertex
from being considered more then once. Camera
transformations over vertices are computed just once per
frame. To do so, we should have an array of vertices and
use the index of the position of the vertices at this array to
build the triangles.

The vertex array must store for each vertex its world
coordinates, camera coordinates and screen coordinates.
Camera and screen coordinates are updated at every frame

Figure 1 - A Digital Terrain Model



exhibition. A flag to indicate whether these coordinateBvery triangle must store the index of its three vertices
have already been updated is needed to avcighd the index of its interior point with the maximum
recalculating the projection of the same vertex twice.  approximation error. It must also store information about
its three edges and an array of pointers to the triangles of
O the next level (its children) that have a non-empty
intersection with it (interference links). Storing the
information whether the point with the maximum error
lies on an edge, and the number of the edge, should help
speed up the extraction algorithms. Pointers to its three
neighbors (adjacency links) and to the next triangle in the
influence ring are also stored in the triangle directly.

typedef struct triangle
int Vertices[3];
int MaxErrorPoint;
int MaxErrorPointOnAnEdge;
edge *Edges[3];
triangle *Neighbors[3];
num BirthError;
num DeathError;
int BirthLevel;

triangle *Children]MAX_CHILDREN];
triangle *NextInTheRing;
} triangle;

5. Building a PDT

We now describe the PDT construction algorithm.
Although the final result is close to a Delaunay Pyramid,
the algorithm to build a PDT is very similar to the
algorithm to build a Ternary Triangulation [DeFlo+84]. A
Ternary Triangulation (3T) is a multiresolution terrain
model where at each step just one point is inserted inside
each triangle. The main problem with this structure is that

Figure 2 - A Pyramidal Delaunay Triangulation
typedef struct point

num x,y,z,w;
} point;

typedef struct vertex

point world;

point camera;
point screen;
boolean ready;
} vertex;
vertex Vertices]MAX_VERTICES];

at each level, the points are inserted closer to the edges,
resulting to very thin triangles. The main difference
between the PDT and the 3T is that the PDT performs the
Delaunay Selector algorithm after inserting the points at

each level. The input to the algorithm is basically the
Considering the algorithms to extract a surfacdomain of approximation D and the maximum error
representation, it is desirable to store information abogfloweds.

the edges of the triangles. Each edge that links two , , i
vertices is unique for the whole structure. Until an edge f&yramidal triangulations  suffer the problem of non-

split (point on an edge) or swapped (Delaunay test) it |i”ga_tc_h|ng between the edges from one level to another.
kept from one level to another. This is the reason wh|/iS IS due to the Delaunay test that forces some edges to
triangle adjacency is not stored on the edges. Each edgj@P- Typically, a single edge swap is harmless to the
must store its two vertices and the level which it is split gontinuity of the extracted surface. The problem arises
swapped (death level). A flag indicating whether one J¥N€n successive swaps of adjacent edges occur. When
its adjacent triangles has already been visited is neededfife Swapping leads to an edge at level i+1 that connects

order to check for continuity on the frontier between tw&VO interior points of two non adjacent triangles of level i,
different resolutions. then we say that this edge is potentially harmful to the

continuity of the extracted surface. This means that the

typedef struct edge resolution function may not change across such edges.
int Vertices[2]; Edge RP,, in figu_re 3, is a harmful _edge. Therefore, we
int DeathLevel; have to link the triangles of the previous level that overlap
boolean AlreadyPainted; with the harmful edge in a way that the extraction

} edge;



procedure will draw them separately. These links build a
ring called thenfluence ring

We callinternal edgeshe edges created to link an internal
point P of a triangle to the vertices of t. Anytime an

internal edge is swapped, it turns inth@mful edgeln t

figure 3, edge PC is an internal edge that turns;® P

when swapped.

L

Figure 4 - Adjacency links without a direct neighbor

level i level i+1 Sometimes, there may not be any point to be inserted in a
trianglet’ of level i. If this is the case, the triangles of
level i+1 that share an edge with must have their
Influence rings are easily maintained during the tremdjacency link related to that edge pointing’ td=igure 4
building process. Every triangle has to keep one sing#ows the adjacency links of a triangle with a neighbor
pointer to the next triangle in the ring. In the beginnindyelonging to the previous level. The Delaunay Selector
this pointer is assigned to the triangle itself. Anytime aperformed at step 3 cannot propagate through an edge
edge swap occurs, if the edge is an internal edge, then Hetween triangles belonging to different levels

parents of the two triangles that share the internal ed . : .
have their rings united, otherwise, the two triangles th en the internal poinp that presents the maximum

share the swapped edge are inspected whether any of tEm" faIIs_on an edgee_, the trlanglet a_nd the_
have a non unitary influence ring. If it occurs, their ringgorrespondlng neighbor will have their opposite vertices

are united. The insertion of points on the edges deservgoapneCted tp at level i+1, yielding only two children to

special attention due to the potential they have to produggCh one. This SItU?tIOﬂS IS spown atfigure 5.

discontinuities on the extracted surface. Anytime a point
is inserted on an edge, the four triangles created at the new
level are tied together in the same ring and the rings of
their parents are also united.

Figure 3 - Harmful edges

An iterative algorithm for constructing a Pyramidal
Delaunay Triangulation is described in algorithm 1. The

building of the influence rings may also be performed Figure 5 - Insertion of points on an edge

during the Delaunay test procedure. Considering that the number of points at level i;jsttre
Build(triangle root) height of the PDT is h, and that, from Euler’'s formula, the
{ f;gfgﬁ?Hiligr‘eLne;’g}t:hi?mot total number of triangles at level i is bounded by2rthe
total space needed to store the triangles of the entire PDT
t.BitrhLevel = 1; is given by
Q.put(t);
: Q.get() "
t= Q.get();
while(t 1= nil ) _%(Zn—S) < (h+1)(2n -5)
{ o =
'{f(t'B'rthLevel - bevel) Since the PDT allows each triangle from one level to
P= Point with the maximum error; point to every triangle of the next level, the theoretical
i E(P)B>u:ildchiltfrén(t,l3,Level+1); space complexity needed to store interference links is
t= Q.get(); given by
} h
else
{ .
DelaunaySelector(root,Level); i:%(n' 'n'l) = (h+1)(|’?)
BuildInfluenceRings(root,Level++);
) } Hence, the total space complexity to store the PDT is the
} same of the Delaunay Pyramid encoded withcthraplete

Algorithm 1 - General surface building algorithm data structurdDeFlo89] and bounded by



(h+1).(2n -5)+(h+1).(H = (h+1).(F + 2n -5), the HyperTriangulation [CiPuSc95]. For landscape

. : . viewing or flight simulation, the resolution function

mhféft?cfstgﬁ Pheégﬁlg?f meerzz(r-;{?]"ngls the total number should select triangles based on their distance to the
' ' observer or the size of their projection on the view plane.

However, since the PDT does not replicates an unchang®igorithm 2 illustrates the general surface extraction

trianglet from one level to any other level thatbelongs, algorithm.

interference links are also r rivial link . . .
te. erence links are aiso educ_ed because trivia S Yfhen extracting a surface at variable resolution we must
avoided and is linked only to triangles that have a non-

v int " i it at the first level ter 1 be aware of discontinuities that may occur at the frontier
empty intersection with 1t at the first level greater han , ., e an two different resolutions. Such discontinuities are

that t does not occurs. Although the complexity of th'?e ated to the death of an edge, i.e., the edge exists in the

worfst case rt?rphalnFs)D_LFn_chgngeg, dtT)e p:_actmallc Sﬂ‘f"t arser level and has been swapped or split at the more
pertormance of the IS bounded by a linear Tuncioff,eq jevel. Thereforahe only safe situation to render a

of the _number of p0|n'§s becagse _the average degree igngle ensuring continuity is when all of its neighbors
vertex in a Delaunay triangulation is never greater than Wtisfies the resolution functiortence, if a trianglet

([PreShas5], p.211) and we insert just one point P&htisfies the resolution functidR and a neighbot of t

triangle then the average number of children is NeVebes not satisfiR, then we must handle this situation
greater then twenty four. The total space required f '

r
interference links is then given by %roperly.

h Extract(triangle root)
Z(Z4F|) < (h)(24n) queue CurrentQueue, NextQueue;
=1 for all children t of the root
and the total space complexity is bounded to {

CurrentQueue.put(t);

(h+1).(2n -5)+(h).(24n¥ (h+1).(26n -5), )
do

thereforeO(hn). In [Bert+95] an improved data structure {

was proposed to encode the Delaunay Pyramid called First = = CurrentQueueget();
sequence of lists of triangléSLT). The idea consists of {

storing each level as a list of triangles created at that level. if( IR(1))

As the SLT structure does not stores interference links, CurrentQueue.PutRing(t);
only extraction at a fixed resolution is allowed with low }

cost. The space complexity is (h+1)*(2n-5) and the {else

number of stored triangles may be much smaller if the CurrentQueue.put(t);

}

t = CurrentQueue.get();

refinement process modifies few triangles at each level.

6. Surface Extraction from a PDT
A PDT allows extraction of surfaces at either fixed or
variable resolution for resolutions with error values

greater then the error tolerarecgiven when the PDT was t = CurrentQueue.get();
built. Render(t, NextQueue);

}
while(t I= First);

do

. . . . hil t C 1 . t N
Surface extraction is performed according to a resolution while( nat CurrentQueue.empty() )

functionR that checks whether a triangle is to be rendered CurrentQueue = NextQueue;
or not. One such surface can be extracted from the PDT NextQueue.Resel();
through a breadth-first traversal that starts at the root and while( not CurrentQueue.empty() )
selects for each level the triangles that satisfies the
resolution function and have to be painted. Each triangle
is checked twice because a triangle that satisfies ti¢hen we insert a poir® inside a triangle to build the
resolution function may be refined if some triangle of itgext level, two or three triangles are created and we call
influence ring does not satisfies. them thevirtual children oft. We say they are virtual

For fixed resolution extraction, the resolution functiofP&c@use they may not exist as childrert @it the next
selects the triangles that have the birth error less or eqtf}fe! due to a Delaunay edge swap. In figure 6, the virtual

to the desired extraction resolution, following the ideas &flldren of triangle ABC are the triangles PAB, PBC,
PAC. Triangle PBC is also @al child of triangle ABC.

Algorithm 2 - General surface extraction algorithm



Since a virtual child may not exist in the finalchildren are put on the queue of the next level according
triangulation, it is not safe to maintain their interferencto the situations described above.
links to the next level. They only need adjacency links tQq render( triangle t, queue &NextQueue )
their real neighbors. {
if( t has no children or t is virtual)
Draw(t);

else

if(IR(t))
{

NextQueue.PutChildren(t);
}

else
if(R holds for all neighbors of t)

Draw(t);

Figure 6 - Typical Triangle Refinement else
Virtual children are used to handle non harmful edges. ?)r all riangles t neighibors of t
When a trianglé does not satisfy the resolution function, e = common edge of tand t;
it means that it must be refined (its children must be if( t is from a coarser level or
checked) and so its entire ring of influence. When a R(t)or
triangle t satisfies the resolution functioR and its S renypanedy P
influence ring contains only itself then, if a neighboof { _ _
t does not satisfR, the virtual child ot corresponding to ,  NeQuevePuinualchidle)
t' will be put in the rendering queue tif belongs to a }
coarser level (did not change from one level to another) pr }
t’ satisfies the resolution functidr or their common edge Algorithm 3 - Render Algorithm
eis alive in the next level ar dies due to an splitting er
has already been painted. Considering that all operations performed by function

Render on a triangle require constant time and that the

The absence of interference links means that virtuglia) nymper of visited triangles is linear with the number
triangles are ease and cheap to create during the t®€the extracted triangles), time complexity of the

creation process with a constant spatial cost per reg@ly, ting operation i©(n), wheren is the number of the
triangle. In figure 7, the virtual children of triangle ABcei(tracted triangles

are the triangles PAB, PBC. Triangle PBC is also a rea

child of triangle ABC. 7. Conclusion
A We have tested the PDT building TINs from regular
T square grid distribution and irregular distributed input set.
P In both cases we have used a decimation technique based
B C on the error of the approximation to eliminate redundant

information on the terrain. Figure 8 illustrates two images

from the same view of a terrain data in a 22020 grid

and the image corresponding to the difference between
them. The first view is rendered with full resolution
accepting an error tolerance of 0.1 pixel. The second view
Figure 7 - Triangle with Maximum Error on an Edge is rendered with variable resolution checking the

FunctionRender . shown in alaorithm irectl int perirr_leter of the project_ed triangle as the res_olution
unctionRender , sho algo 3, directly pa Sfunctlon. The full resolution mesh has 17759 triangles

the triangle if it is a virtual triangle or if it has no children 0 .
or if all of its neighbors satisfy the resolution function. h_and the coarse one has 14485 (81.55%). The difference

the triangle does not satisfy the resolution funciothen image corresponds to an error of 2.38%. Figure 9 shows

its real children have to be put in the queue of the netxr}e corresponding meshes of both rendered view.

level, NextQueue. On the other hand, if some neighb@We have considered our results very encouraging and
does not satisfy the resolution function then its virtuadppropriate to virtual environment modeling where
interactive fly-through is necessary. Now we are




interested in adapting the model for very large data inpacknowledgments
and multiresolution models for arbitrary objects placed 9N would like to thanks to Ana Cristina Garcia for her

the terrain.

Figure 8 - Full and variable resolution views

Figure 9 - Full and variable resolution meshes

unconditional faith on this work and to Airam Marques
for implementing and discussing the algorithms presented
in this paper.
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