
Real-Time Terrain Surface Extraction at Variable Resolution

LUIZ CARLOS CASTRO GUEDES

ADDLabs - Laboratório de Documentação Ativa e Design Inteligente,
Departamento de Ciência da Computação, Universidade Federal Fluminense

Praça Valonguinho s/n, Ed. Instituto de Matemática 4o andar, Centro, 24210-130 Niterói, RJ, Brasil
guedes@dcc.uff.br

Abstract. Multiresolution terrain models allow the extraction of the surface at different levels of details. Real
terrain data is large enough to prevent from real-time walk-through at a reasonable level of detail. Moreover, a
coarse view of a terrain may not attend some application requirements. Therefore extracting the surface at
variable resolution may offer impressive good-looking views if, for instance, regions closer to the observer are
shown at a higher resolution then regions farther away. Besides, variable resolution extraction dramatically
reduces the number of polygons to be rendered allowing real-time walk-through of a large terrain model. This
paper proposes a multiresolution terrain model, based on Delaunay triangulation, that takes into account the
whole domain during triangulation without replicating unchanged triangles through different levels of detail.
The proposed model is the first that matches a whole domain Delaunay triangulation with accuracy of
extraction and low storage cost algorithms.

Keywords: multiresolution model, terrain model, real-time extraction, variable resolution

1. Introduction

Interactive applications are becoming more common
every day. Many high performance applications can be
run on low-end personal computers. Particularly, flight
simulators and landscape viewers are achieving an
impressive level of realism and performance. However,
their accuracy is not very high. Geographic Information
Systems (GIS), on the other hand, deal with very large
data bases and need much higher accuracy, what makes
the problem of interactive three-dimensional visualization
very hard.

 When displaying a terrain model, it is easy to observe that
regions far from the observer need not to be rendered with
the same level of detail as the closer ones. Henceforth,
many researchers [DeFPup95] [CiPuSc95] [deBDob95]
[Bert+95] have proposed polygonal models that offer
efficient storage of terrain data at different levels of detail
and linear time extraction of the surface. Those models are
called multiresolution.

A multiresolution terrain model may support extraction of
the terrain surface satisfying a fixed resolution or based on
a resolution function that specifies how the resolution
should vary throughout the whole domain (variable
resolution). Usually this resolution function is
monotonically decreasing on the distance from the
observer. This is the case of flight simulators and
landscape viewers.

We may qualitatively evaluate a multiresolution terrain
model based on many issues, such as supporting
explicit/implicit multiresolution, being hierarchical or
pyramidal, being matching or non-matching and working
on regular or irregular distributed data [DeFlo+96a].

Implicit multiresolution terrain models ensure that the
greatest error found at most refined approximation is less
than a specified error value ε. On the other hand, in
explicit multiresolution models each refinement layer i
accepts an error less than an error value εi from a sequence
ε = [ε1, ε2,... εn] of error values.

A multiresolution terrain model where the region covered
by a polygon in a given refinement is entirely covered by
only one polygon (called its parent) of the previous
refinement layer is called an hierarchical terrain model. It
means that the whole model may be represented by an
hierarchical tree [DeFlo+96a]. In a hierarchical model, a
polygon is refined independently of the other polygons of
the same layer. This locality may affect the shape of the
polygons creating very elongated triangles close to the
borders that may bring numerical errors during rendering.
This problem may be overcome [DeFlo+96a] but the
result will never represent a global optimal solution like
the one given by a single Delaunay triangulation of the
whole domain [Rippa90].

Models where the refinement process takes into account
the entire domain may not preserve the hierarchical
relation among polygons belonging to distinct layers. In
such models each layer covers the entire domain and it

requires much storage due to the replication of triangles
that does not change from one layer to another. Those
models are called pyramidal terrain models [DeFlo89].
On the other hand pyramidal models may achieve a global
optimal approximation for each layer.

Terrain models where edges are preserved from one layer
to another, that is, edges from one level of refinement are
never refined further at the more refined levels, are said to
be matching. The great advantage of matching terrain
models is that continuity of the surface extracted at any of
the given levels of resolution is guaranteed [DeFlo+96a].
Matching is an exclusive property of hierarchical terrain
models that directly affects the extraction of a surface at
variable resolution. Nonetheless, it is possible to extract a
continuous surface at variable resolution from a pyramidal
model solving discontinuities on the fly during the
rendering process.

Even though real terrain data is usually sampled on a
regular space grid, it is highly interesting to adapt the
given data to the surface characteristics. Variable data
distribution allows a better compression without loss of
rendering quality. Triangle decimation techniques
[GarHec95][SchRoβ94] should be employed to obtain
from a regular distributed data the relevant information
needed to extract a terrain surface at a given resolution.

This paper proposes a multiresolution terrain model,
called Pyramidal Delaunay Triangulation (PDT), suitable
for extracting continuous surfaces at variable resolution.
Pyramidal Delaunay Triangulation takes into account the
whole domain during triangulation without replicating
unchanged triangles through different levels of details and
ensuring the accuracy of the extracted surface. Although
the model is non-matching, a simple solution is proposed
to ensure the continuity of the extracted surfaces.

The rest of the paper is organized as follows. In section 2,
related works are briefly reviewed. Section 3 presents the
Pyramidal Delaunay Triangulation. In section 4 a data
structure to encode PDT is described. In section 5 the
algorithms to build a PDT and extract a surface at variable
resolution are described and analyzed. And, finally, in
section 6, some applications are described and some
concluding remarks are given.

2. Related work

Several multiresolution models have been proposed on the
literature, see [DeFlo+96a] for an interesting survey. Most
of them only support extraction at a constant resolution.
Here we will focus on the models that are suitable for
variable resolution extraction.

In [DefPup95], the Hierarchical Delaunay Triangulation
(HDT) is proposed. An Hierarchical Delaunay
Triangulation is a matching tree structure that supports an
explicit multiresolution representation of irregularly
distributed terrain data. Each level, except the root, is built
from the previous level by inserting points inside each
triangle until the corresponding resolution of its level is
achieved. Points are inserted following an algorithm
called DELAUNAY_SELECTOR [DeFlo+96b], that
performs a Delaunay triangulation only inside the
corresponding triangle. The final triangulation is not
optimal, since only local points are considered during the
Delaunay test, and the result presents many elongated
triangles near the borders. This slivering problem is
solved by insertion of interpolated points on the edges
performing a conforming Delaunay triangulation
[DeFlo+96b], although the solution is still sub-optimal
since adjacent triangles are refined independently. They
present two algorithms to extract a continuous model at
variable resolution from a hierarchical triangulated
surface, although the computational complexity is
suboptimal.

In [CiPuSc95], an alternative approach called
HyperTriangulation (HT) is proposed. The idea is to
store a sort of history of the incremental refinement
process. Each vertex in the structure stores the number of
the refinement step of when it was inserted (elevation) and
each triangle stores the error of the approximation when it
was created (birth error) and when it was refined (death
error). Assuming that the terrain covers a region of the
XY plane, at each refinement step i the new vertices
inserted are raised along the Z axis at elevation i. The x
and y coordinates of the vertices together with the
elevation builds a virtual 3D structure of overlapping
triangles where the upper surface corresponds to the most
refined approximation of the terrain. Variable resolution
extraction is achieved by traversing the structure and
checking the birth and death errors of each triangle against
a monotonically increasing error function that selects
which triangles present the maximum error that satisfies
the error function. This algorithm works with a breadth-
first order traversal starting at the view point with an
incremental construction of the surface. The
computational complexity is suboptimal .

Opposing to the HDT and the HT, in [deBDob95] a
bottom-up approach called Implicit Delaunay Pyramid is
proposed. It starts with a Delaunay triangulation of the
terrain at the maximum resolution and eliminates a
percentage α of vertices from the approximation at each
step. Because of this geometry based construction, the
tolerance of each level is not explicitly controlled.
Although variable resolution surfaces can be extracted at

linear time complexity, the accuracy of the model may not
be guaranteed.

In [Puppo96] a theoretical framework is proposed in order
to formalize hierarchical triangulations, and an abstract
structure called MultiTriangulation (MT) is presented.
MultiTtriangulations are axiomatically defined and do not
exist by themselves. In his work Puppo shows some
interesting properties of MTs and claims that if someone
is able to identify how to match one model with the
MultiTriangulation framework then the MT properties are
automatically ensured. He illustrates how to identify the
HyperTriangulation and the Hierarchical Delaunay
Triangulation as MultiTriangulations.

In [Bert+95] a formalization of a broader class of
multiresolution models in arbitrary dimensions that can
incorporate both hierarchical and pyramidal models as
special cases is proposed. The intention of this model is to
compare hierarchical and pyramidal models in terms of
storage cost and performance and to gain some highlight
in understanding when each model should be more
appropriate.

3. Pyramidal Delaunay Triangulation

A Pyramidal Delaunay Triangulation (PDT) is a surface
model for terrain approximation that resembles a
Delaunay Pyramid [DeFlo89] in the sense that it may be
considered, at first, as a sequence of Delaunay
triangulations that cover (each one) the entire domain of
approximation. The basic difference from the Delaunay
Pyramid is that triangles that do not change from one level
to another are not replicated in the next levels.

A Mathematical Terrain Model (MTM) is a pair M = <V,
Φ>, where V = { v1, v2, ..., vn } is a finite set of points in a
domain D of the Euclidean plane R2, and
Φ: V → R is a function that associates to each point in V
its corresponding elevation in the original terrain. Φ is
called an elevation function. A Digital Terrain Model
(DTM) is triple D = < V, E, Φ >, where V and Φ are
defined as above and E is a set of edges connecting the
vertices of V, such that <V, E> defines a planar connected
graph. A DTM induces a set of faces F that covers the
domain of approximation. Figure 1 illustrates a DTM.

Figure 1 - A Digital Terrain Model

Given a DTM D, we call a coarse representation of D to
any DTM D’ = < V’, E’, Φ >, where V’ ⊂ V. When this
happens we say that a D’ ⊂ D. Given two DTMs D and
D’, such that D’ ⊂ D, and a vertex v ∈ V - V’, we call the
approximation error of v, E(v) = |Φ(v)-h|, to the
difference between the elevation of v and value h assigned
to v by the facet induced by D’ that covers v.

A PDT is partially a hierarchical structure, built from a
DTM D, where each layer, except for the root, is built
from the previous one by inserting into each facet the
point p with the maximum approximation error that falls
inside the facet and by inserting also the edges that
connect p to the vertices of that facet. After the point
insertion, a modified Delaunay triangulation is performed
to minimize the roughness of the approximation
[Rippa90]. The root is a degenerated node that points to
the coarsest approximation of the terrain. Each layer built
this way is more refined that the previous one and the
most refined layer corresponds to the same approximation
given by D. By construction, every facet induced by the
model is a triangle.

A triangle t does not change from one level to the another
if there are no points to be inserted into the area covered
by t. In order to ensure that unchanged triangles are not
replicated from one level to another, the Delaunay test is
propagated only within triangles belonging to the same
level. It means that the Voronoi diagram of each layer
considers unchanged triangles as belonging to all of them,
but they only propagate the Delaunay test at the first level
that they appear. When a vertex is inserted inside a
triangle t, we say that t has been refined.

Each triangle, roughly speaking, points to its three
adjacent triangles (adjacency links) and to the triangles of
the next level that have a non-empty intersection with it
(interference links). Figure 2 shows the layers built from
the DTM of figure 1 with and without the interference
links. Triangles that are not the destination of any
interference link do not exist in fact. Thick lines represent
the border edges.

4. Data Structure to Encode the PDT

The Pyramidal Delaunay Triangulation should use an
edge oriented representation in order to prevent any vertex
from being considered more then once. Camera
transformations over vertices are computed just once per
frame. To do so, we should have an array of vertices and
use the index of the position of the vertices at this array to
build the triangles.

The vertex array must store for each vertex its world
coordinates, camera coordinates and screen coordinates.
Camera and screen coordinates are updated at every frame

exhibition. A flag to indicate whether these coordinates
have already been updated is needed to avoid
recalculating the projection of the same vertex twice.

Figure 2 - A Pyramidal Delaunay Triangulation

typedef struct point
{

num x,y,z,w;
} point;

typedef struct vertex
{

point world;
point camera;
point screen;
boolean ready;

} vertex;
vertex Vertices[MAX_VERTICES];

Considering the algorithms to extract a surface
representation, it is desirable to store information about
the edges of the triangles. Each edge that links two
vertices is unique for the whole structure. Until an edge is
split (point on an edge) or swapped (Delaunay test) it is
kept from one level to another. This is the reason why
triangle adjacency is not stored on the edges. Each edge
must store its two vertices and the level which it is split or
swapped (death level). A flag indicating whether one of
its adjacent triangles has already been visited is needed in
order to check for continuity on the frontier between two
different resolutions.

typedef struct edge
{

int Vertices[2];
int DeathLevel;
boolean AlreadyPainted;

} edge;

Every triangle must store the index of its three vertices
and the index of its interior point with the maximum
approximation error. It must also store information about
its three edges and an array of pointers to the triangles of
the next level (its children) that have a non-empty
intersection with it (interference links). Storing the
information whether the point with the maximum error
lies on an edge, and the number of the edge, should help
speed up the extraction algorithms. Pointers to its three
neighbors (adjacency links) and to the next triangle in the
influence ring are also stored in the triangle directly.

typedef struct triangle
{

int Vertices[3];
int MaxErrorPoint;
int MaxErrorPointOnAnEdge;
edge *Edges[3];
triangle *Neighbors[3];
num BirthError;
num DeathError;
int BirthLevel;
triangle *Children[MAX_CHILDREN];
triangle *NextInTheRing;

} triangle;

5. Building a PDT

We now describe the PDT construction algorithm.
Although the final result is close to a Delaunay Pyramid,
the algorithm to build a PDT is very similar to the
algorithm to build a Ternary Triangulation [DeFlo+84]. A
Ternary Triangulation (3T) is a multiresolution terrain
model where at each step just one point is inserted inside
each triangle. The main problem with this structure is that
at each level, the points are inserted closer to the edges,
resulting to very thin triangles. The main difference
between the PDT and the 3T is that the PDT performs the
Delaunay Selector algorithm after inserting the points at
each level. The input to the algorithm is basically the
domain of approximation D and the maximum error
allowed ε.

Pyramidal triangulations suffer the problem of non-
matching between the edges from one level to another.
This is due to the Delaunay test that forces some edges to
swap. Typically, a single edge swap is harmless to the
continuity of the extracted surface. The problem arises
when successive swaps of adjacent edges occur. When
edge swapping leads to an edge at level i+1 that connects
two interior points of two non adjacent triangles of level i,
then we say that this edge is potentially harmful to the
continuity of the extracted surface. This means that the
resolution function may not change across such edges.
Edge P1P2, in figure 3, is a harmful edge. Therefore, we
have to link the triangles of the previous level that overlap
with the harmful edge in a way that the extraction

procedure will draw them separately. These links build a
ring called the influence ring.

We call internal edges the edges created to link an internal
point P of a triangle t to the vertices of t. Anytime an
internal edge is swapped, it turns into a harmful edge. In
figure 3, edge PC is an internal edge that turns to P1P2

when swapped.

 level i level i+1

Figure 3 - Harmful edges

Influence rings are easily maintained during the tree
building process. Every triangle has to keep one single
pointer to the next triangle in the ring. In the beginning,
this pointer is assigned to the triangle itself. Anytime an
edge swap occurs, if the edge is an internal edge, then the
parents of the two triangles that share the internal edge
have their rings united, otherwise, the two triangles that
share the swapped edge are inspected whether any of them
have a non unitary influence ring. If it occurs, their rings
are united. The insertion of points on the edges deserve a
special attention due to the potential they have to produce
discontinuities on the extracted surface. Anytime a point
is inserted on an edge, the four triangles created at the new
level are tied together in the same ring and the rings of
their parents are also united.

An iterative algorithm for constructing a Pyramidal
Delaunay Triangulation is described in algorithm 1. The
building of the influence rings may also be performed
during the Delaunay test procedure.

Build(triangle root)
{ queue Q; int Level = 1;

for all children t of the root
{

t.BitrhLevel = 1;
Q.put(t);

}
t = Q.get();
while(t != nil)
{

if(t.BirthLevel == Level)
{

P= Point with the maximum error;
if(E(P) >= ε)

BuildChildren(t,P,Level+1);
t = Q.get();

}
else
{

DelaunaySelector(root,Level);
BuildInfluenceRings(root,Level++);

}
}

}

Algorithm 1 - General surface building algorithm

Figure 4 - Adjacency links without a direct neighbor

Sometimes, there may not be any point to be inserted in a
triangle t’ of level i. If this is the case, the triangles of
level i+1 that share an edge with t’ must have their
adjacency link related to that edge pointing to t’ . Figure 4
shows the adjacency links of a triangle with a neighbor
belonging to the previous level. The Delaunay Selector
performed at step 3 cannot propagate through an edge
between triangles belonging to different levels

When the internal point p that presents the maximum
error falls on an edge e, the triangle t and the
corresponding neighbor will have their opposite vertices
connected to p at level i+1, yielding only two children to
each one. This situations is shown at figure 5.

Figure 5 - Insertion of points on an edge

Considering that the number of points at level i is ni, the
height of the PDT is h, and that, from Euler’s formula, the
total number of triangles at level i is bounded by 2ni-5, the
total space needed to store the triangles of the entire PDT
is given by

h

 Σ(2ni-5) ≤ (h+1)(2n -5)
i=0

Since the PDT allows each triangle from one level to
point to every triangle of the next level, the theoretical
space complexity needed to store interference links is
given by

h

Σ(ni .ni-1) ≤ (h+1)(n2)
i=0

Hence, the total space complexity to store the PDT is the
same of the Delaunay Pyramid encoded with the complete
data structure [DeFlo89] and bounded by

t t'

t

t'

A

B C
P

P1

P2
P3

A

B C

P

P1

P2P3

(h+1).(2n -5)+(h+1).(n2) = (h+1).(n2 + 2n -5),

where h is the height of the PDT and n is the total number
of vertices on the PDT, therefore O(hn2).

However, since the PDT does not replicates an unchanged
triangle t from one level i to any other level that t belongs,
interference links are also reduced because trivial links are
avoided and t is linked only to triangles that have a non-
empty intersection with it at the first level greater than i
that t does not occurs. Although the complexity of the
worst case remains unchanged, the practical spatial
performance of the PDT is bounded by a linear function
of the number of points because the average degree of a
vertex in a Delaunay triangulation is never greater than six
([PreSha85], p.211) and we insert just one point per
triangle then the average number of children is never
greater then twenty four. The total space required for
interference links is then given by

 h

Σ(24ni) ≤ (h)(24n)
 i=1

and the total space complexity is bounded to

(h+1).(2n -5)+(h).(24n) ≤ (h+1).(26n -5),

therefore O(hn). In [Bert+95] an improved data structure
was proposed to encode the Delaunay Pyramid called
sequence of lists of triangles (SLT). The idea consists of
storing each level as a list of triangles created at that level.
As the SLT structure does not stores interference links,
only extraction at a fixed resolution is allowed with low
cost. The space complexity is (h+1)*(2n-5) and the
number of stored triangles may be much smaller if the
refinement process modifies few triangles at each level.

6. Surface Extraction from a PDT

A PDT allows extraction of surfaces at either fixed or
variable resolution for resolutions with error values
greater then the error tolerance ε given when the PDT was
built.

Surface extraction is performed according to a resolution
function R that checks whether a triangle is to be rendered
or not. One such surface can be extracted from the PDT
through a breadth-first traversal that starts at the root and
selects for each level the triangles that satisfies the
resolution function and have to be painted. Each triangle
is checked twice because a triangle that satisfies the
resolution function may be refined if some triangle of its
influence ring does not satisfies.

For fixed resolution extraction, the resolution function
selects the triangles that have the birth error less or equal
to the desired extraction resolution, following the ideas of

the HyperTriangulation [CiPuSc95]. For landscape
viewing or flight simulation, the resolution function
should select triangles based on their distance to the
observer or the size of their projection on the view plane.
Algorithm 2 illustrates the general surface extraction
algorithm.

When extracting a surface at variable resolution we must
be aware of discontinuities that may occur at the frontier
between two different resolutions. Such discontinuities are
related to the death of an edge, i.e., the edge exists in the
coarser level and has been swapped or split at the more
refined level. Therefore, the only safe situation to render a
triangle ensuring continuity is when all of its neighbors
satisfies the resolution function. Hence, if a triangle t
satisfies the resolution function R and a neighbor t’ of t
does not satisfy R, then we must handle this situation
properly.

Extract(triangle root)
{

queue CurrentQueue, NextQueue;

for all children t of the root
{

CurrentQueue.put(t);
}

do
{

First = t = CurrentQueue.get();
do
{

if(!R(t))
{

CurrentQueue.PutRing(t);
}
else
{

CurrentQueue.put(t);
}

t = CurrentQueue.get();
}
while(t != First);

do
{

t = CurrentQueue.get();
Render(t, NextQueue);

}
while(not CurrentQueue.empty());

CurrentQueue = NextQueue;
NextQueue.Reset();

}
while(not CurrentQueue.empty())

}

Algorithm 2 - General surface extraction algorithm

When we insert a point P inside a triangle t to build the
next level, two or three triangles are created and we call
them the virtual children of t. We say they are virtual
because they may not exist as children of t at the next
level due to a Delaunay edge swap. In figure 6, the virtual
children of triangle ABC are the triangles PAB, PBC,
PAC. Triangle PBC is also a real child of triangle ABC.

Since a virtual child may not exist in the final
triangulation, it is not safe to maintain their interference
links to the next level. They only need adjacency links to
their real neighbors.

Figure 6 - Typical Triangle Refinement

Virtual children are used to handle non harmful edges.
When a triangle t does not satisfy the resolution function,
it means that it must be refined (its children must be
checked) and so its entire ring of influence. When a
triangle t satisfies the resolution function R and its
influence ring contains only itself then, if a neighbor t’ of
t does not satisfy R, the virtual child of t corresponding to
t’ will be put in the rendering queue if t’ belongs to a
coarser level (did not change from one level to another) or
t’ satisfies the resolution function R or their common edge
e is alive in the next level or e dies due to an splitting or e
has already been painted.

The absence of interference links means that virtual
triangles are ease and cheap to create during the tree
creation process with a constant spatial cost per real
triangle. In figure 7, the virtual children of triangle ABC
are the triangles PAB, PBC. Triangle PBC is also a real
child of triangle ABC.

Figure 7 - Triangle with Maximum Error on an Edge

Function Render , shown in algorithm 3, directly paints
the triangle if it is a virtual triangle or if it has no children
or if all of its neighbors satisfy the resolution function. If
the triangle does not satisfy the resolution function R then
its real children have to be put in the queue of the next
level, NextQueue. On the other hand, if some neighbor
does not satisfy the resolution function then its virtual

children are put on the queue of the next level according
to the situations described above.

void Render(triangle t, queue &NextQueue)
{

if(t has no children or t is virtual)
{

Draw(t);
}
else
if(!R(t))
{

NextQueue.PutChildren(t);
}
else
if(R holds for all neighbors of t)
{

Draw(t);
}
else
{

for all triangles t’ neighbors of t
{

e = common edge of t and t’;

if(t’ is from a coarser level or
R(t’) or
e does not die due to a swap or
e.AlreadyPainted)

{
NextQueue.PutVirtualChild(t,e);

}
}

}
}

Algorithm 3 - Render Algorithm

Considering that all operations performed by function
Render on a triangle require constant time and that the
total number of visited triangles is linear with the number
of the extracted triangles, n, time complexity of the
extracting operation is O(n), where n is the number of the
extracted triangles.

7. Conclusion

We have tested the PDT building TINs from regular
square grid distribution and irregular distributed input set.
In both cases we have used a decimation technique based
on the error of the approximation to eliminate redundant
information on the terrain. Figure 8 illustrates two images

from the same view of a terrain data in a 120 × 120 grid
and the image corresponding to the difference between
them. The first view is rendered with full resolution
accepting an error tolerance of 0.1 pixel. The second view
is rendered with variable resolution checking the
perimeter of the projected triangle as the resolution
function. The full resolution mesh has 17759 triangles
and the coarse one has 14485 (81.55%). The difference
image corresponds to an error of 2.38%. Figure 9 shows
the corresponding meshes of both rendered view.

We have considered our results very encouraging and
appropriate to virtual environment modeling where
interactive fly-through is necessary. Now we are

A

B C
P

A

B C
P

A

B CP

A

B C
P

interested in adapting the model for very large data input
and multiresolution models for arbitrary objects placed on
the terrain.

Figure 8 - Full and variable resolution views

Figure 9 - Full and variable resolution meshes

Acknowledgments

I would like to thanks to Ana Cristina Garcia for her
unconditional faith on this work and to Airam Marques
for implementing and discussing the algorithms presented
in this paper.

References

[Bert+95] - Bertolotto, M., De Floriani, L., Marzano, P.,
“Pyramidal Simplicial Complexes”, ACM Symp Solid
Modeling and Applic., Salt Lake City, Utah.

[CiPuSc95] - Cignoni,P., Puppo,E., Scopigno, R.,
“Representation and Visualization of Terrain Surfaces at
Variable Resolution”, Intl. Symp. Scientific Visualization,
World Scientific, Cagliari, Italy.

[deBDob95] - de Berg, M., Dobrindt, K.T.G., “On Levels
of Detail in Terrains”, Utrecht University, tech.rep CS-
1995-12.

[DeFlo+96a] - De Floriani, L., Marzano, P., Puppo,E.,
“Multiresolution Models for Topographic Surface
Description”, The Visual Computer 12, 7:317-345.

[DeFlo+96b] - De Floriani, L., Magillo, P., Bussy, S.,
Bailey, E., “Triangle-Based Surface Models”, Genova
University,tech.rep.DISI-TR-??-??

[DeFlo89] - De Floriani, L., “A Pyramidal Data Structure
for Triangle-Based Surface Description”, IEEE
Computers Graphics & Applications 9,2:67-68

[DeFlo+84] - De Floriani, L. et al. “A Hierarchical Data
Structure for Surface Approximation”, Comp. and
Graphics 8, 2:475-484.

[DeFPup95] - De Floriani, L., Puppo,E., “Hierarchical
Triangulation for Multiresolution Surface Description”,
ACM Transactions on Graphics 14, 4:363-411.

[GarHec95] - Garland, M., Heckbert, P., “Fast Polygonal
Approximation of Terrains and Height Fields”, Carnegie
Mellon University, tech. Rep. CMU-CS-95-181.

[PreSha85] - Preaparata, F., Shamos, M., “Computational
Geometry: An Introduction”, Springer Verlag, 1985.

[Puppo96] - Puppo, E., “Variable Resolution Terrain
Surfaces”, Genova University, tech.rep DISI-TR-96-6.

[Rippa90] - Rippa, S., “Minimal Roughness Property of
the Delaunay Triangulation”, Computer Aided Geometric
Design 7:293-301.

[SchRoβ94] - Schöder, F., Roβbach, P., “Managing the
Complexity of Digital Terrain Models”, Computers and
Graphics 18, 6:775-783.

