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Abstract

We have designed and implemented a multi-linear dis-
criminant method of constructing and quantifying statisti-
cally significant changes on human identity photographs.
The method is based on a general multivariate two-stage
linear framework that addresses the small sample size prob-
lem in high-dimensional spaces. Starting with a 2D face
data set of well framed images, we determine a most charac-
teristic direction of change by organizing the data accord-
ing to the features of interest. Our goal here is to use all
the facial image features simultaneously rather than sepa-
rate models for texture and shape information. Our experi-
ments show that the method does produce plausible unseen
views for gender, facial expression and ageing changes. We
believe that this method could be widely applied for normal-
ization in face recognition and in identifying subjects after
a lapse of time.

1. Introduction

Multivariate statistical approaches have played an im-
portant role of recognizing face images and characterizing
their differences. The importance of using multivariate tech-
niques to analyze face images is related to the well-known
fact that face images are highly redundant not only owing
to the evidence that the image intensities of adjacent pix-
els are often correlated but also because every individual
has some common facial features such as mouth, nose, and
eyes. As a consequence, an input image with n pixels can

be projected onto a lower dimensional space without signif-
icant loss of information.

The most straightforward and successful statistical mod-
els for visual interpretation of well-framed face images have
been based on Principal Component Analysis (PCA). Since
the pioneering works of Sirovich and Kirby [16], and Turk
and Pentland [20], published approximately 20 years ago,
several subsequent works have projected face images on
a Principal Component Analysis (PCA) feature space to
not only reduce the dimensionality of the original samples
for further classification and analysis but also to interpret
and reconstruct the most expressive components [17] de-
scribed by all the training images. Impressive results on
this latter goal have been achieved by the well-known Ac-
tive Appearance Model (AAM) proposed by Cootes et al.
[3, 1, 4, 2]. Unfortunately, since the AAMs rely on PCA di-
rections ranked by the principle of maximum variance, the
first principal components with the largest eigenvalues do
not necessarily represent important discriminant directions
to separate sample groups.

In this paper, we have designed and implemented a
multi-linear discriminant method of constructing and quan-
tifying statistically significant unseen views of human iden-
tity photographs. Given a single photograph of an unseen
subject it is possible to construct new images with, for ex-
ample, a range of different expressions or with different
gender characteristics. The method could be widely ap-
plied for normalization in face recognition and in identi-
fying subjects after a lapse of time. It is based on the use
of a two-stage separating hyper-plane called Statistical Dis-
criminant Model (SDM)[10]. Starting with a data set of well



framed images, we determine a most characteristic direction
of change by organizing the data according to the features of
interest. For example, we may identify one group where all
the subjects are smiling, and a second group where all the
subjects have a neutral expression. If we now find the best
separating hyperplane of these two groups, for example by
using a linear discriminant regularized method called Max-
imum uncertainty Linear Discriminant Analysis (MLDA)
[19, 13, 12], we can use its normal vector to define the most
characteristic direction of change. Given a new subject im-
age we can adjust it by moving parallel to this direction in
the image space. So, for instance, we can transform a face
image with a neutral expression into a smiling one or vice
versa. The constructed images represent the maximum like-
lihood estimate of the appearance of the subject given the
data set that we start with. The method uses all the facial im-
age features simultaneously rather than as separate texture
and shape models. Our experiments on two dimensional im-
age sets show that the method does produce visually plau-
sible results for gender, facial expression and ageing facial
changes.

The remainder of this paper is divided as follows. In sec-
tion 2, we briefly review PCA and highlight its importance
as a multivariate technique on reducing the high dimension-
ality of face images but without losing variance information.
Section 3 describes the standard linear discriminant analy-
sis (LDA) and states the reasons for using a maximum un-
certainty version of this approach to perform the face ex-
periments required. The estimation of the separating hyper-
plane and the implementation of the Statistical Discrimi-
nant Model are described in section 4. In section 5, we de-
scribe all the experiments carried out in this work for the
gender, facial expression and ageing analyzes. In section 6,
we discuss a potential application for the SDM approach
focused on the age-progression using familiar features. Fi-
nally, in section 7, we conclude the paper, summarizing its
main contributions and describing possible future work.

2. Principal Components Analysis (PCA)

Although PCA is a well-known statistical technique [6,
9] that has been used in several image recognition prob-
lems, especially for dimensionality reduction, we provide
next a brief description of PCA for the sake of complete-
ness.

Let us consider the face recognition problem as an ex-
ample to illustrate the main idea of the PCA. In any im-
age analysis, and particularly in face image analysis, an in-
put image with n pixels can be treated as a point in an n-
dimensional space called the image space. The coordinates
of this point represent the values of each pixel of the image
and form a vector xT = [x1, x2, . . . , xn] obtained by con-
catenating the rows (or columns) of the image matrix. It is

well-known that well-framed face images are highly redun-
dant. As a consequence, an input image with n pixels can
be projected onto a lower dimensional space without signif-
icant loss of information.

Thus, let an N × n training set matrix X be composed
of N input face images with n pixels. This means that each
column of matrix X represents the values of a particular
pixel observed all over the N images. Let this data matrix X
have covariance matrix S with respectively P and Λ eigen-
vector and eigenvalue matrices, that is,

PT SP = Λ. (1)

It is a proven result that the set of m (m ≤ n) eigen-
vectors of S, which corresponds to the m largest eigenval-
ues, minimizes the mean square reconstruction error over
all choices of m orthonormal basis vectors [6]. Such a set
of eigenvectors that defines a new uncorrelated coordinate
system for the training set matrix X is known as the prin-
cipal components. In the context of face recognition, those
Ppca = [p1, p2, ..., pm] components are frequently called
eigenfaces [20]. The m principal components can then re-
place the initial n variables and the original data set, con-
sisting of N measurements on n variables, is reduced to a
data set consisting of N measurements on m principal com-
ponents.

3. Maximum Uncertainty LDA (MLDA)

The primary purpose of the Linear Discriminant Analy-
sis, or simply LDA, is to separate samples of distinct groups
by maximizing their between-class separability while min-
imizing their within-class variability. LDA assumes implic-
itly that the true covariance matrices of each class are equal
because the same within-class scatter matrix is used for all
the classes considered.

Let the between-class scatter matrix Sb be defined as

Sb =
g∑

i=1

Ni(xi − x)(xi − x)T (2)

and the within-class scatter matrix Sw be defined as

Sw =
g∑

i=1

(Ni−1)Si =
g∑

i=1

Ni∑
j=1

(xi,j−xi)(xi,j−xi)T (3)

where xi,j is the n-dimensional pattern (or sample) j from
class πi, Ni is the number of training patterns from class
πi, and g is the total number of classes or groups. The vec-
tor xi and matrix Si are respectively the unbiased sample
mean and sample covariance matrix of class πi [6]. The
grand mean vector x is given by



x =
1
N

g∑
i=1

Nixi =
1
N

g∑
i=1

Ni∑
j=1

xi,j , (4)

where N is, as described earlier, the total number of sam-
ples, that is, N = N1 + N2 + . . . + Ng .

The main objective of LDA is to find a projection ma-
trix Wlda that maximizes the ratio of the determinant of
the between-class scatter matrix to the determinant of the
within-class scatter matrix (Fisher’s criterion), that is,

Wlda = arg max
W

∣∣WT SbW
∣∣

|WT SwW |
. (5)

The Fisher’s criterion described in equation (5) is maxi-
mized when the projection matrix Wlda is composed of the
eigenvectors of S−1

w Sb with at most (g − 1) nonzero corre-
sponding eigenvalues [6, 5]. In the case of a two-class prob-
lem, the LDA projection matrix is in fact the leading eigen-
vector wlda of S−1

w Sb, assuming that Sw is invertible.
However, in limited sample and high dimensional prob-

lems, such as in face images analysis, Sw is either singu-
lar or mathematically unstable and the standard LDA can-
not be used to perform the separating task. To avoid both
critical issues, we have calculated wlda by using a maxi-
mum uncertainty LDA-based approach (MLDA) that con-
siders the issue of stabilizing the Sw estimate with a mul-
tiple of the identity matrix [18, 19]. In a study [19] with
application to the face recognition problem, Thomaz et. al
showed that the MLDA approach improved the LDA clas-
sification performance with or without a PCA intermediate
step and using less linear discriminant features. The wmlda

is calculated by replacing Sw in the Fisher’s criterion for-
mula described in equation (5) with its regularization ver-
sion. This regularization is based on the maximum entropy
idea that in limited sample size and high dimensional prob-
lems where the within-class scatter matrix is singular or
poorly estimated, the Fisher’s linear basis found by mini-
mizing a more difficult but appropriate inflated within-class
scatter matrix would also minimize a less reliable shrivelled
within-class estimate [19].

4. Statistical Discriminant Model (SDM)

The Statistical Discriminant Model is a two-stage
PCA+MLDA separating hyperplane that reduces the di-
mensionality of the original images and extracts discrimi-
nant information from images [10].

In order to estimate the SDM separating hyper-plane, we
use training examples and their corresponding labels to con-
struct the classifier. First a training set is selected and the
average image vector of all the training images is calcu-
lated and subtracted from each n-dimensional vector. Then
the training matrix composed of zero mean image vectors

is used as input to compute the Ppca transformation ma-
trix. The columns of this n x m transformation matrix are
eigenvectors, not necessarily in eigenvalues descending or-
der. We have retained all the PCA eigenvectors with non-
zero eigenvalues, that is, m = N − 1, to reproduce the total
variability of the samples with no loss of information. It is
important to emphasize that this PCA intermediate step has
been applied here because n � N , allowing the MLDA
scatter matrices to be calculable in computers with a nor-
mal memory size. In situations where N � n, the SDM ap-
proach does not need such PCA step for dimensionality re-
duction.

Thus, the zero mean image vectors are projected on the
principal components and reduced to m-dimensional vec-
tors representing the most expressive features of each one
of the n-dimensional image vector. Afterwards, this N x
m data matrix is used as input to calculate the Wmlda dis-
criminant transformation matrix, as described in the previ-
ous section. Since in this work we have limited ourselves to
two-group classification problems, there is only one wmlda

discriminant eigenvector. The most discriminant feature of
each one of the m-dimensional vectors is obtained by mul-
tiplying the N x m most expressive features matrix by the
m x 1 MLDA linear discriminant eigenvector. Hence, the
initial training set of face images consisting of N measure-
ments on n variables, is reduced to a data set consisting of
N measurements on only 1 most discriminant feature.

Once the two-stage SDM classifier has been constructed,
we can move along its corresponding projection vector and
extract the discriminant differences captured by the classi-
fier. Any point on the discriminant feature space can be con-
verted to its corresponding n-dimensional image vector by
simply: (1) multiplying that particular point by the wmlda

linear discriminant eigenvector previously computed; (2)
multiplying its m most expressive features by the Ppca

transformation matrix; and (3) adding the average image
calculated in the training stage to the n-dimensional image
vector. Therefore, assuming that the spreads of the classes
follow a Gaussian distribution and applying limits to the
variance of each group, such as ±3σi, where σi is the stan-
dard deviation of each group i ∈ {1, 2}, we can move along
the SDM most discriminant features and map the results
back into the image domain.

Additionally, any face image xi,j that followed the same
acquisition and spatial normalization protocols can incor-
porate the discriminant information captured by the two-
stage linear classifier. More specifically, this procedure of
transferring the most discriminant feature can be generated
through the following expression [19, 7, 13, 12]:

yi,j = xi,j + jσi · Ppcawmlda, (6)

where j ∈ {−3,−2,−1, 0, 1, 2, 3}. This operation is use-
ful not only to transfer the most discriminant feature to any



point on the original image space, but also, and most im-
portantly, predict how the discriminant information can af-
fect a particular sample that does not necessarily belong to
the training set.

5. Experimental Results

We have used frontal images of a face database publicly
available1 to carry out the experiments. This face database
contains a subset of 400 well framed frontal 2D face im-
ages, with 2 images (one with a neutral or non-smiling ex-
pression and the other with a smiling facial expression) for
each of 200 individuals (100 men and 100 women). All im-
ages are taken against a white homogenous background in
an upright frontal position and scale might vary about 10%.
The original size of each image is 640x480 pixels.

To minimize image variations that are not necessarily
related to differences between the faces, we automatically
aligned all the frontal face images using the directions of
the eyes as a measure of reference so that the pixel-wise fea-
tures extracted from the images correspond roughly to the
same location across all subjects. For implementation con-
venience, all the frontal images were then cropped to the
size of 300x250 pixels and converted to 8-bit grey scale.
Most images represent subjects between 19 and 40 years
old with distinct appearance, hairstyle, and adornments.

We have performed the following multi-linear discrim-
inant analyzes: male versus female (gender), non-smiling
versus smiling (facial expression) and young versus old
(ageing) experiments. For the gender experiment we have
composed a training set of 200 frontal male images, i.e. a
mixture of non-smiling and smiling male images, and 200
analogous frontal female images. For the expression exper-
iments, we have used the 200 frontal non-smiling images,
i.e. a mixture of male and female images, and their respec-
tive frontal smiling images. For the ageing experiments, we
have composed the young training set of 354 images (a mix-
ture of non-smiling and smiling face images of 177 subjects
under 30 years of age) and the old training set of 46 im-
ages (a mixture of non-smiling and smiling face images of
23 subjects over 30 years of age).

5.1. Interpretation and Reconstruction of the PCA
Most Expressive Components

As the average face image is an n-dimensional point
(n = 300 × 250 = 75000) that retains all common fea-
tures from the training sets, we could use this point to un-
derstand what happens visually when we move along the
principal components and reconstruct the respective coor-
dinates on the image space. Analogously to the works by

1 http://www.fei.edu.br/∼cet/facedatabase.html

Figure 1. Interpretation and reconstruction of
the first eight, from top to bottom, PCA most
expressive components. From left to right:
[−3

√
λi,−2

√
λi,−1

√
λi, x,+1

√
λi,+2

√
λi,+3

√
λi],

where i = {1, 2, . . . , 8}.

Cootes et al. [1, 2, 3, 4], we have reconstructed the new av-
erage face images by changing each principal component
separately using the limits of ±3

√
λi, where λi are the cor-

responding largest eigenvalues.
Figure 1 illustrates the transformations on the first eight

PCA most expressive components, that is, the first princi-
pal components that describe at least 2% of the total vari-
ance of all the 2D frontal face images. Since we have used
the same training images for gender, facial expression and
ageing experiments, the PCA most expressive components
are equal in all the experiments.

Looking at the Figure 1, it is important to note that be-
cause changes in either facial expression or ageing are much
less significant, PCA is unable to capture such minor vari-
ations in its first most expressive components. These re-
sults are expected because PCA tends to capture features



that have a considerable variation between all training sam-
ples, like changes in illumination, gender, and shape of the
head in our experiments. Therefore, if we need to identify
specific changes such as the variation in facial expression,
PCA has not proved to be a useful solution for this problem.
In fact, when we consider a whole intensity-level model to
perform the PCA analysis, there is no guarantee that a single
principal component will capture a specific variation alone,
no matter how discriminant that variation might be.

5.2. Interpretation and Reconstruction of the
Most Discriminant Hyper-planes

To perform the multi-linear discriminant analysis on the
face images, we have used the training sets previously se-
lected and their respective labels to construct the linear
classifiers corresponding to the gender, facial expression
and ageing separation tasks. Since in these experiments
we have limited ourselves to two-group classification prob-
lems, there is only one SDM discriminant eigenvector per
separation task.

Figure 2 presents, from top to bottom, the SDM most
discriminant features for the gender, facial expression and
ageing experiments. It displays the image regions captured
by the SDM approach that change when we move from the
left side (group 1 of male, non-smiling and young labeled
samples) of the dividing hyper-plane to the right one (cor-
responding group 2 of female, smiling and old labeled sam-
ples), following limits to the standard deviation and mean
of each sample group.

As can be seen, the SDM hyper-plane effectively extracts
the group differences, showing separately the gender, facial
expression and ageing features that mainly distinguish the
sample groups, without enhancing other image artifacts. For
instance, in the first row of Figure 2, from top to bottom,
there are some gender variations that are more significant
and consequently predominant in the most discriminant di-
rection selected, such as the shape of the face or head, pres-
ence or absence of beard or moustache, flatness and length
of the nose, and thickness of the eyebrows and shape of the
eyes. Analogously to the gender experiments, it is possi-
ble to see that the SDM hyper-plane has been able to cap-
ture the subtle facial expression changes and nothing else,
showing exactly what we should expect intuitively from a
face image when someone changes their expression from
non-smiling to smiling. In fact, it is possible to note that the
SDM most discriminant direction has predicted a facial ex-
pression not necessarily present in all the face images, that
is, the ”definitely non-smiling” or may be ”anger” status and
the ”definitely smiling” or may be ”happy” status described
respectively by the images −3σ1 and +3σ2 in the second
row, from top to bottom, of Figure 2. The third row of Fig-
ure 2, from top to bottom, displays the image regions cap-

Figure 2. Interpretation and reconstruction,
from top to bottom, of the most discrimi-
nant features captured by the SDM hyper-
planes for the gender, facial expression
and ageing experiments. From left (group
1 of either male, non-smiling or young la-
beled samples) to right (group 2 of either
female, smiling or old labeled samples):
[−3σ1, x1,+1σ1, boundary,−1σ2, x2,+3σ2].

tured by the SDM hyper-plane that change when we move
from the group 1 of labeled samples under 30 years of age
(left side) of the dividing hyper-plane to the group 2 of la-
beled samples over 30 years of age (right side). Despite the
very different sample sizes of these groups, it is possible to
see that the SDM hyper-plane captures a number of plausi-
ble changes owing to ageing, such as thickness of the eye-
lids and lips, growth of the nose, and a general reduction of
the skin elasticity with the appearance of facial wrinkles.

5.3. Effect Size of the Multi-Linear Discriminant
Differences Found

In the previous sub-section, the detection of the differ-
ences have been based only on visual inspection of the most
discriminant features. In this sub-section, we investigate the
effectiveness of the separating hyper-planes on recognizing
the group samples and the statistical significance of the dis-
criminant changes found for all the gender, facial expres-
sion and ageing experiments.

We have adopted the leave-one-out method to evalu-
ate the classification performance of the multi-linear clas-
sifiers. Throughout all the classification experiments, we
have assumed that the prior probabilities and misclassifica-
tion costs are equal for both groups of the two-group exper-
iments. On the PCA+MLDA subspace, the mean of each
class has been calculated from the corresponding training
samples and the Euclidean distance from each class mean
has been used to assign a test observation to either the male



Figure 3. Leave-one-face-out recognition
rates of the multi-linear classifiers.

or female groups in the gender experiment, to either the
non-smiling or smiling groups in the facial expression ex-
periment, and to either the young or old groups in the age-
ing experiment.

Figure 3 shows the leave-one-out recognition rates of the
multi-linear classifiers. As can be seen, in all discriminant
experiments, the SDM approach achieves high recognition
rates, that is, 94.5%, 95% and 86.5% for the gender, facial
expression and ageing experiments respectively. These clas-
sification results indicate that all the discriminant changes
found using the 2D frontal pre-aligned face images can be
sufficiently extracted by the linear SDM classifiers.

In order to determine and rank the statistical significance
of the SDM changes and avoid the use of raw units that are
quite arbitrary or lack meaning outside the investigation, we
have calculated the effect size of the differences, that is,

e =
x∗1 − x∗2

σp
(7)

where x∗1 and x∗2 denote, as shown in Figure 4, the trans-
formed images for the statistical extremes points calculated
at 3 standard deviations from each corresponding sample
group on the SDM separating hyper-plane and projected
back on the original image space. The parameter σp cor-
responds to the pooled standard deviation of the sample im-
ages and is given by

σp =

√
(N1 − 1)σ2

1 + (N2 − 1)σ2
2

(N1 + N2 − 2)
(8)

where σ2
1 and σ2

2 are the variances of each sample group
and, as a reminder, N1 and N2 are the number of training
samples of group 1 and group 2. We have used the pooled
variance rather than the variance of each sample group in
the e-values because the number of samples is limited and
N1 and N2 might be very different from each other.

Figure 4. SDM statistical extremes: (top) male
and female models; (middle) non-smiling and
smiling models; (bottom) young and old
models.

Figure 5 illustrates the spatial distribution of the inten-
sity e-changes superimposed on the average face image. We
consider a SDM difference important if its e-value exceeds
1 pooled standard deviation, that is, ‖e‖ ≥ 1. In both pic-
tures the colour-scales red-yellow and blue-green shows rel-
ative intensity change as a range of the effect size. In red-
yellow the tissues contained within the lines are brighter
(e ≥ 1) in the male, non-smiling and young groups com-
pared to the female, smiling and old groups, respectively.
Analogously, the areas in blue-green show discriminant re-
gions of relative tissue darkness (e ≤ −1) in the male, non-
smiling and young groups compared to the female, smiling
and old ones. Face regions contained within the lines and
closer to the spectrum of yellow and green show areas of
relatively larger statistical significance.

We can see clearly that by exploring the separating
hyper-planes found by the multi-linear discriminant analy-
sis and quantifying its most statistically significant changes
with the e-values we are able to identify and highlight facial
features that are most discriminant between the group sam-
ples, such as: forehead, eyebrow, eyes, nose, upper lip, chin
and neck for the gender experiments; eyes, shadow, cheek,
lips and mouth for the facial expression experiments; and
eyebrow, eyes, nose, and skin elasticity around the lips for



Figure 5. Statistical significance of the SDM
differences: (left) effect size of the intensity
changes described by the male and female
SDM models; (middle) effect size of the inten-
sity changes described by the non-smiling
and smiling SDM models; (right) effect size of
the intensity changes described by the young
and old SDM models.

the ageing experiments.

6. Discussion

We believe that the importance of the SDM results for
face interpretation and reconstruction, particularly on the
ageing experiments, is beyond the scope of capturing and
extracting discriminant information. For instance, the pro-
posed method can be seen as an automatic framework to
predict the age-progression in frontal face images using fa-
miliar features acquired under controlled conditions. Re-
cently, a number of researchers [11, 8, 15, 14] have mod-
eled facial changes with age using either PCA on different
models for texture and shape information [11, 15, 14] or
3D facial meshes in shape space only [8]. The main differ-
ence of our approach over these works is based on the fact
that we use a linear classifier and all the intensity features
simultaneously to estimate the ageing effects on the origi-
nal image space.

In order to evaluate the SDM approach on the problem
of estimating the age-progression in frontal face images us-
ing familiar features, we carried out some further experi-
ments by selecting two sets of frontal images (with at least
one neutral and one smiling facial expression) of two dis-
tinct families composed respectively of a very small num-
ber of 6 and 3 subjects over 37 years of age. Figure 6 shows
the frontal images used in this experiment, where the first
26 images, from top to bottom and left to right, are from the
family 1 and the others 22 from family 2.

Figure 7 illustrates the transformed images for the fam-
ily 1 and family 2 statistical extremes points calculated at 3
standard deviations from each corresponding sample group
on the SDM separating hyper-plane and the spatial distribu-
tion of these e-changes superimposed on a reference image.
Despite the small sizes of both sample groups, it is possi-

Figure 6. Families face samples.

ble to see that the SDM hyper-plane captures a number of
changes inherent to the families considered and never quan-
tified, such as the relative size of the head and neck, thick-
ness of the eyebrows, shape of the nose, and a light differ-
ence on the colour of the facial skin.

Figure 8 illustrates these most discriminant family fea-
tures transferred to an example image, not included on the
training set, when we move it to the statistical extremes us-

Figure 7. SDM statistical extremes and cor-
responding significance of the family e-
changes superimposed on a reference im-
age: (left) family 1 model; (middle) family 2
model; (right) statistical significance of the
SDM differences.



Figure 8. SDM reconstruction when we move
an example image (middle) in parallel to the
statistical extremes of the family hyper-plane
using equation (6): (left) to family 1 model;
(right) to family 2 model.

ing equation (6) and the direction defined by the SDM sepa-
rating hyper-plane. Despite the appearance of some artifacts
especially around the head, such as the earrings, due the
lack of an exclusive facial cropping on the pre-processing
step, we can note the main differences between the families
captured by the SDM hyperplane and translated to the ex-
ample image, like the relative size, position and shape of the
eyes, eyebrows, nose, and head.

7. Conclusion

In this work, we designed and implemented a multi-
linear method of constructing plausible and statistical sig-
nificant unseen views of human identity photographs. Since
the multi-linear statistical discriminant approach is not re-
stricted to any particular set of samples and involves the
same operations irrespective of the complexity of the exper-
iment, straightforward improvements can be made to this
approach by using larger training sets with non-rigid spa-
tially normalized images. We believe that the detailed de-
scription provided by the multi-linear analysis can facili-
tate, for instance, forensic specialists on the task of recog-
nizing missing children and adults, particularly in situations
where ethnic, gender, and parental face image samples are
available. Further work is being undertaken to investigate
this possibility in practice.
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